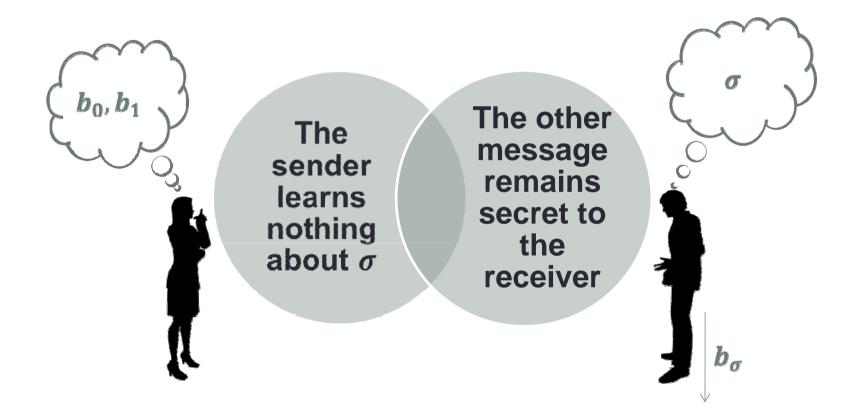
ON THE FEASIBILITY OF EXTENDING OBLIVIOUS TRANSFER

Yehuda Lindell



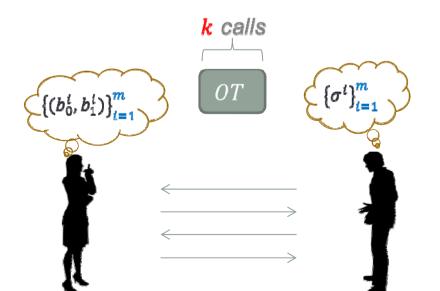
Hila Zarosim

TCC 2013

Oblivious Transfer

Oblivious Transfer

- One of the most important primitives in secure computation
 - Used in essentially all constructions of secure computation protocols
- Requires strong hardness assumptions
 - Enhanced TDP ; homomorphic encryption


Oblivious Transfer

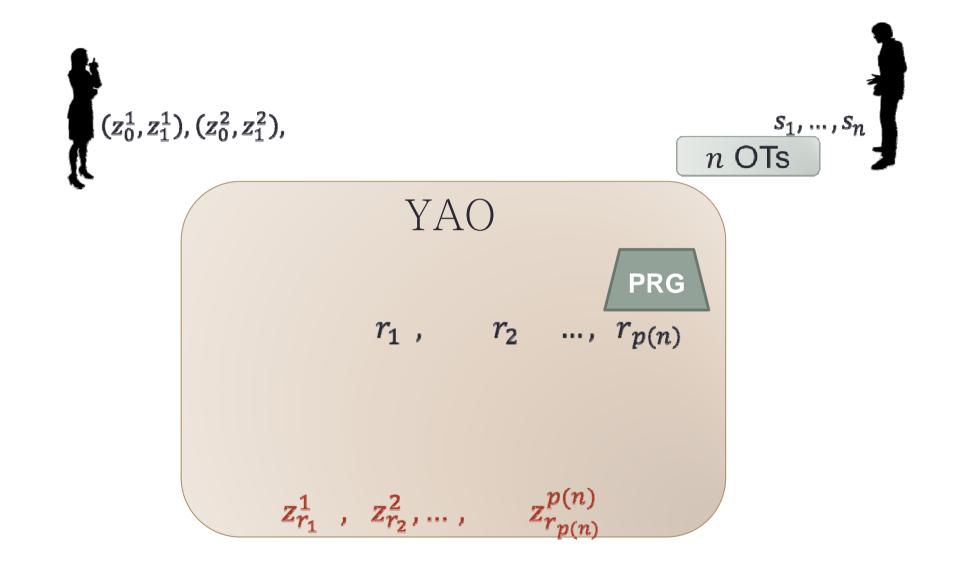
• OT is expensive and a secure protocol usually needs many executions of oblivious transfer

- In 1996 Beaver asked the following question:
 - Is it possible to use a small number of OT's and a weak assumption to obtain many OT's?

OT-Extensions

- [Beaver96]: It is possible to obtain *poly(n)* OT's given only O(n) OT's and OWFs
 - This concept is called an "OT-extension"
- Let k < m. An OT-extension from k to m securely computes m OT's given k calls to an ideal-box for computing OT

OT-Extensions


- [Beaver96]: It is possible to obtain *poly(n)* OT's given only O(n) OT's and OWFs
 - This concept is called an "OT-extension"
- Let k < m. An OT-extension from k to m securely computes m OT's given k calls to an ideal-box for computing OT
- Theorem [Beaver96]: OT cannot be extended information-theoretically

Efficient OT-Extension

- The original construction of Beaver is not efficient
- In 2003, an efficient OT-extension protocol was presented [IKNP03]
- Efficient OT-extension are widely used to speed-up protocols that use many OTs

OT Extensions - Background

- The protocol of Beaver uses Yao's garbled circuits
- In Yao's protocol:
 - Symmetric encryption for every gate of the Boolean circuit
 - Oblivious transfer for every bit of the P_2 's (the receiver) input

A Theoretical Study of OT Extension

- We know that OT extensions exist assuming OWFs
- We know that OT extensions cannot be computed information theoretically [B96]

• WE DON'T KNOW ANYTHING ELSE!

- This paper: we initiate a theoretical feasibility study of OT extensions
 - What can and cannot be achieved and under what assumptions?

On the feasibility of OT-extension

• We ask the following questions:

What is the minimal assumption required for constructing OT-extensions?

Is it possible to extend a *logarithmic* number of oblivious transfers?

Can oblivious transfer be extended with *adaptive* security?

On the feasibility of OT-extension

• We ask the following questions:

What is the minimal assumption required for constructing OT-extensions?

Is it possible to extend a *logarithmic* number of oblivious transfers?

Can oblivious transfer be extended with *adaptive* security?

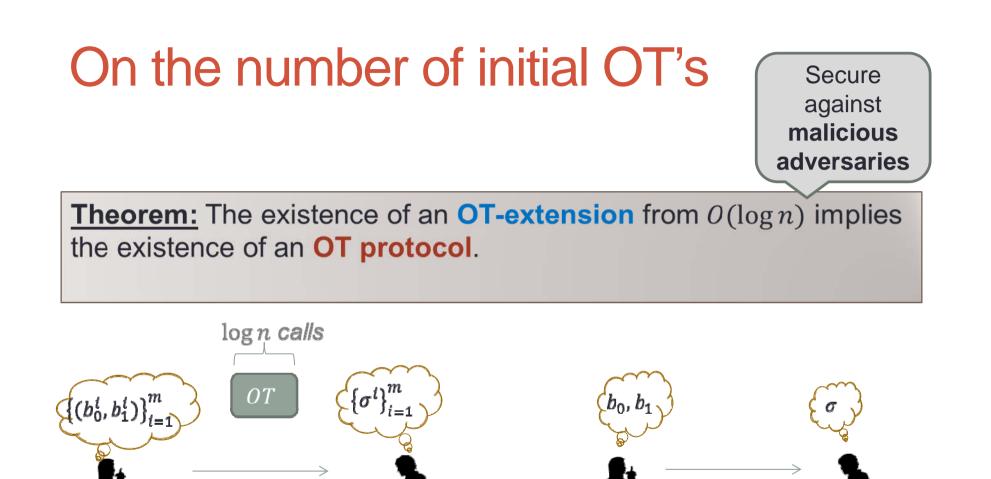
Minimal Assumptions

<u>Theorem</u>: The existence of a secure OT-extension implies the existence of one-way functions.

 Corollary: One-way functions are sufficient and necessary for (statistically secure) OT-extensions

- Given an OT-extension, we construct two ensembles D₁ and D₂ such that:
 - D_1 and D_2 are PPT constructible
 - D_1 and D_2 are computationally indistinguishable
 - D_1 and D_2 are statistically far
- The existence of such ensembles implies the existence of OWFs [Gol90]

- Loosely speaking:
 - D₁ represents the real-world execution of the protocol on random inputs
 - D₂ represents the ideal-world execution on random inputs
- They are computationally indistinguishable
- We use a result of [WW10] on OT-extensions to show that the ensembles are statistically far apart


On the feasibility of OT-extension

• We ask the following questions:

What is the minimal assumption required for constructing OT-extensions?

Is it possible to extend a *logarithmic* number of oblivious transfers?

Can oblivious transfer be extended with *adaptive* security?

- We use the OT-extension to construct an OT protocol.
 The challenge is to eliminate the calls to ideal OT
- The receiver can guess the outputs it was supposed to obtain from the OTs
- There are only $O(\log n)$ calls, and so the probability that the receiver guesses correctly is $2^{O(\log n)} = \frac{1}{poly(n)}$
 - Our construction guarantees that when the receiver guesses incorrectly, it obtains the correct output with prob. $\frac{1}{2}$
 - Thus, overall it obtains correct output with prob. $\frac{1}{2} + \frac{1}{p(n)}$

- We obtain OT with weak correctness
- Weak correctness can be amplified by multiple executions
- Malicious security guarantees that the receiver learns nothing
 - This is needed because the receiver "deviates" from the protocol
 - It guesses the output rather than taking the output from the OT calls

On the feasibility of OT-extension

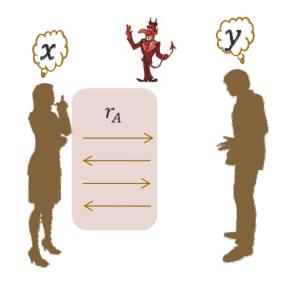
• We ask the following questions:

What is the minimal assumption required for constructing OT-extensions?

Is it possible to extend a *logarithmic* number of oblivious transfers?


Can oblivious transfer be extended with *adaptive* security?

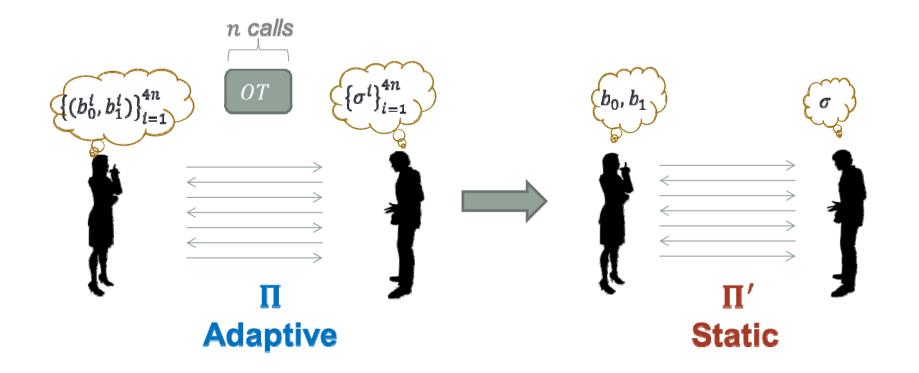
Adaptive Security

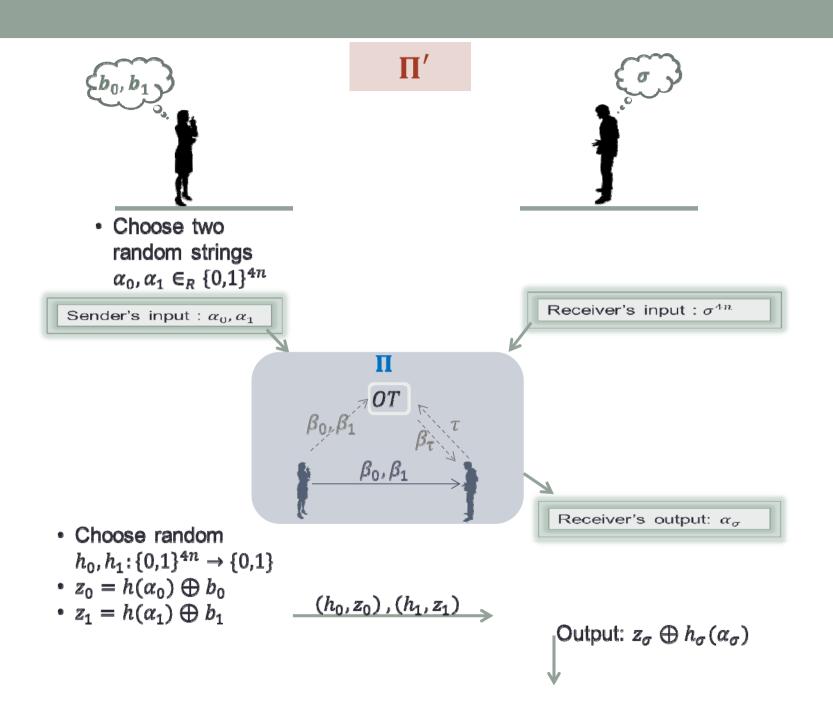

- The adversary chooses who to corrupt and when based on its view during the execution
- Corruptions can be made also at the end of the execution ("post-execution phase"), when the transcript is fixed
- Once a party is corrupted, the adversary receives its input and random tape

- Assume that Alice is corrupted at the outset.
 - The simulator has to generate a simulated view for Alice.

- Assume that Alice is corrupted at the outset.
 - The simulator has to generate a simulated view for Alice.
- Assume that Bob is corrupted at the post execution phase.

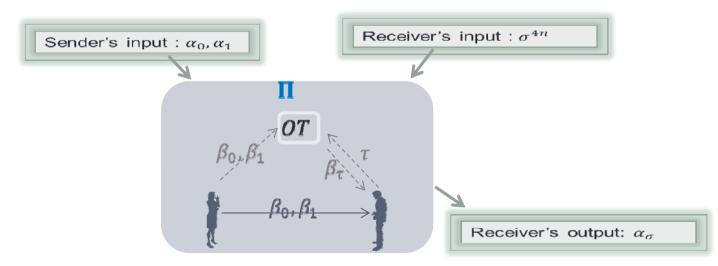
- Assume that Alice is corrupted at the outset.
 - The simulator has to generate a simulated view for Alice.
- Assume that Bob is corrupted at the post execution phase.
 - The simulator learns the input of Bob and has to generate a view for Bob that is consistent with the input of Bob and the already fixed view of Alice.


 r_A

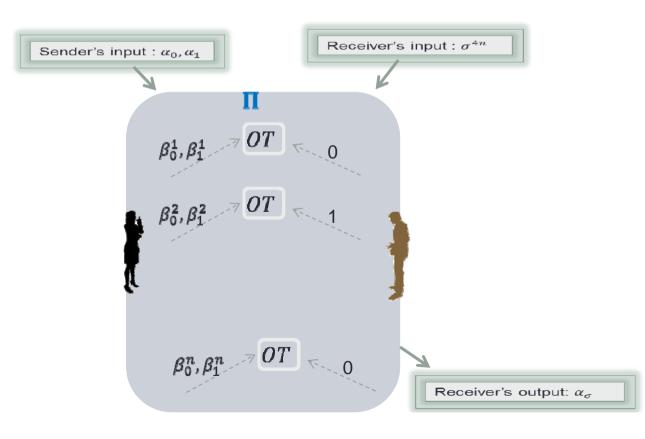

 r_B

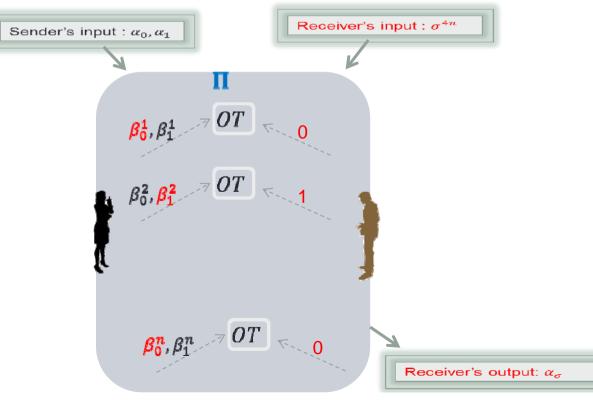
• Hence, the simulated view of Alice should be such that it can later be "explained" as consistent with any possible input of Bob.

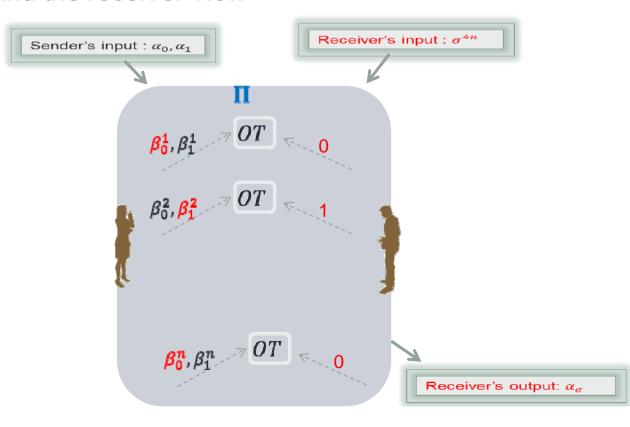
Extensions with Adaptive Security

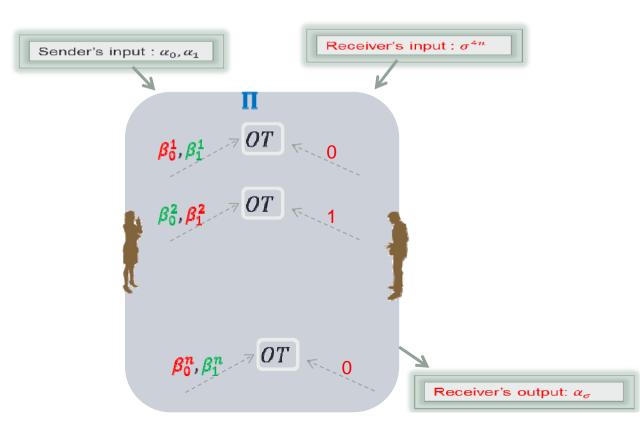

<u>Theorem:</u> The existence of an adaptively secure OT-extension implies the existence of a statically secure OT protocol.

- For each ideal-OT in Π :
 - The receiver in I learns one of the sender's inputs.
 - In Π', the receiver leans both of the sender's inputs.
- This gives the receiver n additional bits of information.
 - This might leak information about $\alpha_{1-\sigma}$ and hence about $b_{1-\sigma}$.
- However, $\alpha_{1-\sigma}$ is 4n bits long.
 - Hence, there is still enough entropy in $h(\alpha_{1-\sigma})$.


- \bullet The main technical challenge is to simulate the view of the receiver in Π^\prime
 - We would like to use the simulator guaranteed to exist for Π


- A simulated view of the receiver in Π contains one of (β₀, β₁) for each ideal-OT
- A simulated view for the receiver in Π' must contain **both** (β_0, β_1)


 Assume that the receiver in Π is corrupted at the beginning of the protocol


- Assume that the receiver in Π is corrupted at the beginning of the protocol
 - · Fix a simulated view for the receiver
 - This view contains n outputs of the ideal-OTs

- Now, assume that the sender is corrupted at the postexecution phase
 - The simulator generates a sender-view that is consistent with $\alpha_{1-\sigma}$ and the receiver-view

- Append the inputs of the n ideal-OTs to the already-fixed receiver-view
 - We call this an "extended receiver-view"

- Given the input $\alpha_{1-\sigma}$ of the sender, the simulator generates an extended receiver-view
- The new extended receiver-view contains n more bits of information
 - For every fixed receiver-view, there are 2^n extended views
- However, there are 2^{4n} possible $\alpha_{1-\sigma}$
- Hence, for "many" possible $\alpha_{1-\sigma}$, we obtain the same extended receiver-view
- We conclude that the extended view does not leak too much information on $\alpha_{1-\sigma}$
 - There is still enough entropy in $h(\alpha_{1-\sigma})$ to hide $b_{1-\sigma}$

Summary

- In this work, we study the feasibility of extending OT
- We show that OWF are necessary for extending OT

- To extend only a logarithmic number of oblivious transfers, one has to construct an OT protocol from scratch
- Adaptive OT extensions based on a weaker assumption than static oblivious transfer do not exist

Open Questions

- We showed that an adaptively secure OT-extension implies statically secure OT
 - Can adaptively secure OT-extension be based on assumption weaker than needed for adaptively secure OT?
- Is it possible to construct a semi-honest OT-extension from O(log n) from assumptions weaker that the existence of OT?
- Extending other primitives?

