Graph Analysis with Node Differential Privacy

Sofya Raskhodnikova

Penn State University

Joint work with

Shiva Kasiviswanathan (GE Research), Kobbi Nissim (Ben-Gurion U. and Harvard U.), Adam Smith (Penn State)

Publishing information about graphs

Many datasets can be represented as graphs

- "Friendships" in online social network
- Financial transactions
- Email communication
- Romantic relationships

image source http://community.expressorsoftware.com/blogs/mtarallo/36-extracting-datafacebook-social-graph-expressor-tutorial.html

Privacy is a big issue!

Private analysis of graph data

- Two conflicting goals: utility and privacy
 - utility: accurate answers
 - privacy: ?

Differential privacy for graph data

 Intuition: neighbors are datasets that differ only in some information we'd like to hide (e.g., one person's data)

Differential privacy [Dwork McSherry Nissim Smith 06]

An algorithm A is ϵ -differentially private if

for all pairs of neighbors G, G' and all sets of answers S:

$$Pr[A(G) \in S] \leq e^{\epsilon} Pr[A(G') \in S]$$

Two variants of differential privacy for graphs

Edge differential privacy

Two graphs are neighbors if they differ in one edge.

Node differential privacy

Two graphs are **neighbors** if one can be obtained from the other by deleting *a node and its adjacent edges*.

Node differentially private analysis of graphs

- Two conflicting goals: utility and privacy
 - Impossible to get both in the worst case

 Previously: no node differentially private algorithms that are accurate on realistic graphs

Our contributions

- First node differentially private algorithms that are accurate for sparse graphs
 - node differentially private for all graphs
 - accurate for a subclass of graphs, which includes
 - graphs with sublinear (not necessarily constant) degree bound
 - graphs where the tail of the degree distribution is not too heavy
 - dense graphs
- Techniques for node differentially private algorithms
- Methodology for analyzing the accuracy of such algorithms on realistic networks

Concurrent work on node privacy [Blocki Blum Datta Sheffet 13]

Our contributions: algorithms

- Node differentially private algorithms for releasing
 - number of edges
 - counts of small subgraphs

(e.g., triangles, k-triangles, k-stars)

degree distribution

Our contributions: accuracy analysis

 Accuracy analysis of our algorithms for graphs with not-tooheavy-tailed degree distribution

```
    number of edges
    counts of small subgraphs
        (e.g., triangles, k-triangles, k-stars)
    degree distribution } ||A<sub>∈</sub>(G) − DegDistrib(G)||<sub>1</sub> = o(1)
```

Previous work on

differentially private computations on graphs

Edge differentially private algorithms

- number of triangles, MST cost [Nissim Raskhodnikova Smith 07]
- degree distribution [Hay Rastogi Miklau Suciu 09, Hay Li Miklau Jensen 09]
- small subgraph counts [Karwa Raskhodnikova Smith Yaroslavtsev 11]
- cuts [Blocki Blum Datta Sheffet 12]

Edge private against Bayesian adversary (weaker privacy)

• small subgraph counts [Rastogi Hay Miklau Suciu 09]

Node zero-knowledge private (stronger privacy)

 average degree, distances to nearest connected, Eulerian, cycle-free graphs for dense graphs [Gehrke Lui Pass 12]

Differential privacy basics

How accurately

can an ϵ -differentially private algorithm release f(G)?

Global sensitivity framework [DMNS'06]

• Global sensitivity of a function f is

$$\partial f = \max_{\text{(node)neighbors } G,G'} |f(G) - f(G')|$$

- For every function f, there is an ϵ -differentially private algorithm that w.h.p. approximates f with additive error $\frac{\partial f}{\epsilon}$.
- Examples:
- $\triangleright f_{-}(G)$ is the number of edges in G.
- $ightharpoonup f_{\Delta}(G)$ is the number of triangles in G.

$$\partial f_{-} = n.$$

$$\partial f_{\Delta} = \binom{n}{2}$$
.

"Projections" on graphs of small degree

Let G = family of all graphs,

 G_d = family of graphs of degree $\leq d$.

Notation. ∂f = global sensitivity of f over G.

 $\partial_d f$ = global sensitivity of f over G_d .

Observation. $\partial_d f$ is low for many useful f.

Examples:

- $ightharpoonup \partial_d f_- = d$ (compare to $\partial f_- = n$)
- ightharpoonup $\partial_d f_{\Delta} = {d \choose 2}$ (compare to $\partial f_{\Delta} = {n \choose 2}$)

 $\boldsymbol{\mathcal{G}}$

Method 1: Lipschitz extensions

A function f' is a Lipschitz extension of f from G_d to G if F' agrees with f on G_d and G_d and

- Release f' via GS framework [DMNS'06]
- ullet Requires designing Lipschitz extension for each function f
 - we base ours on maximum flow and linear and convex programs

Lipschitz extension of f_{-} : flow graph

For a graph G=(V, E), define flow graph of G:

 $v_{\text{flow}}(G)$ is the value of the maximum flow in this graph.

Lemma. $v_{\text{flow}}(G)/2$ is a Lipschitz extension of f_{-} .

Lipschitz extension of f_{-} : flow graph

For a graph G=(V, E), define flow graph of G:

 $v_{\text{flow}}(G)$ is the value of the maximum flow in this graph.

Lemma. $v_{\text{flow}}(G)/2$ is a Lipschitz extension of f_{-} .

Proof: (1)
$$v_{\text{flow}}(G) = 2f_{-}(G)$$
 for all $G \in \mathcal{G}_d$
(2) $\partial v_{\text{flow}} = 2 \cdot \partial_d f_{-}$

Lipschitz extension of f_{-} : flow graph

For a graph G=(V, E), define flow graph of G:

 $v_{\text{flow}}(G)$ is the value of the maximum flow in this graph.

Lemma. $v_{\text{flow}}(G)/2$ is a Lipschitz extension of f_{-} .

Proof: (1)
$$v_{\text{flow}}(G) = 2f_{-}(G)$$
 for all $G \in \mathcal{G}_d$

(2)
$$\partial v_{\text{flow}} = 2 \cdot \partial_d f_- = 2d$$

Method 2: Generic reduction to privacy over G_d

Input: Algorithm B that is node-DP over G_d Output: Algorithm A that is node-DP over G_d has accuracy similar to B on "nice" graphs

- Time(A) = Time(B) + O(m+n)
- Reduction works for all functions f

How it works: Truncation T(G) outputs G with nodes of degree > d removed.

- Answer queries on T(G) instead of G
 - via Smooth Sensitivity framework [NRS'07]

Our results

Node differentially private algorithms for releasing

```
    number of edges
    counts of small subgraphs
        (e.g., triangles, k-triangles, k-stars)
    degree distribution
    via Lipschitz
        extensions
    via generic reduction
```

Conclusions

- It is possible to design node differentially private algorithms with good utility on sparse graphs
 - One can first test whether the graph is sparse privately
- Directions for future work
 - Node-private synthetic graphs
 - What are the right notions of privacy for network data?

Lipschitz extensions via linear/convex programs

For a graph G=([n], E), define LP with variables x_T for all triangles T:

Maximize
$$\sum_{T=\Delta \text{ of } G} x_T$$

$$0 \le x_T \le 1 \qquad \text{for all triangles } T$$

$$\sum_{T:v \in V(T)} x_T \le \binom{d}{2} \quad \text{for all nodes } v$$

$$= \Delta_d f_\Delta$$

 $v_{LP}(G)$ is the value of LP.

Lemma. $v_{LP}(G)$ is a Lipschitz extension of f_{\triangle} .

- Can be generalized to other counting queries
- Other queries use convex programs

Our results

- Node differentially private algorithms for releasing
 - number of edges
 - counts of small subgraphs

(e.g., triangles, k-triangles, k-stars)

- degree distribution
- Accuracy analysis of our algorithms for graphs with not-tooheavy-tailed degree distribution: with α -decay for constant $\alpha>1$

Notation: \overline{d} = average degree P(d) = fraction of nodes in G of degree $\geq d$

A graph G satisfies α -decay if for all t > 1: $P(t \cdot \bar{d}) \le t^{-\alpha}$

- Every graph satisfies 1-decay
- Natural graphs (e.g., "scale-free" graphs, Erdos-Renyi) satisfy $\alpha > 1$

Our results

- Node differentially private algorithms for releasing
 - number of edges
 - counts of small subgraphs

(e.g., triangles, k-triangles, k-stars)

- degree distribution
- Accuracy analysis of our algorithms for graphs with not-tooheavy-tailed degree distribution: with α -decay for constant $\alpha > 1$

A graph G satisfies α -decay if for all t > 1: $P(t \cdot \bar{d}) \le t^{-\alpha}$

- number of edges

- counts of small subgraphs (e.g., triangles, k-triangles, k-stars) (1+o(1))-approximation degree distribution $\|A_{\epsilon,\alpha}(G) - DegDistrib(G)\|_1 = o(1)$

Method 2: Generic reduction to privacy over G_d

Input: Algorithm B that is node-DP over $oldsymbol{\mathcal{G}}_d$

Output: Algorithm A that is node-DP over G,

has accuracy similar to B on "nice" graphs

- Time(A) = Time(B) + O(m+n)
- Reduction works for all functions f

How it works: Truncation T(G) outputs G with nodes of degree > d removed.

- via Smooth Sensitivity framework [NRS'07]
- ightharpoonup via finding a DP upper bound ℓ on $LS_T(G)$ [Dwork Lei 09, KRSY'11] and running any algorithm that is $\binom{\epsilon}{\ell}$ -node-DP over G_d

Generic Reduction via Truncation

- Truncation T(G) removes nodes of degree > d.
- On query f, answer A(G) = f(T(G)) + noise

How much noise?

Local sensitivity of T as a map $\{graphs\} \rightarrow \{graphs\}$ $dist(G, G') = \#(node\ changes\ to\ go\ from\ G\ to\ G')$

$$LS_T(G) = \max_{G': \text{ neighbor of } G} dist(T(G), T(G'))$$

Lemma. $LS_T(G) \leq 1 + \max(n_d, n_{d+1}),$

where n_i = #{nodes of degree i}.

Global sensitivity $\max_{G} LS_{T}(G)$ is too large.

Smooth Sensitivity of Truncation

Smooth Sensitivity Framework [NRS '07]

 $S_f(G)$ is a smooth bound on local sensitivity of f if

- $-S_f(G) \geq LS_f(G)$
- $-S_f(G) \le e^{\epsilon} S_f(G')$ for all neighbors G and G'

Lemma.

$$S_T(G) \le \max_{k \ge 0} e^{-\epsilon k} \left(1 + \#\{nodes\ of\ degree\ \left(d \pm (k+1)\right)\}\right)$$

is a smooth bound for T, computable in time O(m+n)

"Chain rule": $S_f(G) = S_T(G) \cdot \Delta_d f$ is smooth for $f \circ T$

Lemma. $(\forall G, d)$ If we truncate to a *random* degree in [2d, 3d],

Lemma.
$$(\forall G, d)$$
 If we truncate to a random degree in $E[S_T(G)] \leq (P(d)n) \frac{3 \log n}{\epsilon d} + \frac{1}{\epsilon} + 1$

#(nodes of degree above d)

Utility: If G is d-bounded, add noise $O(\Delta_{3d} f / \epsilon^2)$

Releasing Degree Distribution via Generic Reduction

Application: Releasing the degree distribution

Theorem: There exists a node-DP algorithm A such that $\left\|A_{\epsilon,\alpha}(G) - DegDistrib(G)\right\|_1 = o(1)$

with prob. at least $^2/_3$ if G satisfies α -decay for $\alpha > 2$.