Graph Analysis with Node Differential Privacy

Sofya Raskhodnikova
Penn State University

Joint work with Shiva Kasiviswanathan (GE Research), Kobbi Nissim (Ben-Gurion U. and Harvard U.), Adam Smith (Penn State)
Publishing information about graphs

Many datasets can be represented as graphs

- “Friendships” in online social network
- Financial transactions
- Email communication
- Romantic relationships

Privacy is a big issue!

American J. Sociology, Bearman, Moody, Stovel

Private analysis of graph data

Graph G Trusted curator Users

Government, researchers, businesses (or) malicious adversary

- Two conflicting goals: utility and privacy
 - utility: accurate answers
 - privacy: ?

Differential privacy for graph data

Graph G Trusted curator

Users

Government, researchers, businesses (or) malicious adversary

Intuition: neighbors are datasets that differ only in some information we’d like to hide (e.g., one person’s data)

Differential privacy [Dwork McSherry Nissim Smith 06]

An algorithm A is ϵ-differentially private if for all pairs of neighbors G, G' and all sets of answers S:

$$\Pr[A(G) \in S] \leq e^\epsilon \Pr[A(G') \in S]$$
Two variants of differential privacy for graphs

- **Edge** differential privacy

 Two graphs are **neighbors** if they differ in **one edge**.

- **Node** differential privacy

 Two graphs are **neighbors** if one can be obtained from the other by deleting **a node and its adjacent edges**.
Node differentially private analysis of graphs

- **Two conflicting goals:** utility and privacy
 - Impossible to get both in the worst case

- **Previously:** no node differentially private algorithms that are accurate on realistic graphs
Our contributions

• First node differentially private algorithms that are accurate for sparse graphs
 – node differentially private for all graphs
 – accurate for a subclass of graphs, which includes
 • graphs with sublinear (not necessarily constant) degree bound
 • graphs where the tail of the degree distribution is not too heavy
 • dense graphs
• Techniques for node differentially private algorithms
• Methodology for analyzing the accuracy of such algorithms on realistic networks

Concurrent work on node privacy [Blocki Blum Datta Sheffet 13]
Our contributions: algorithms

- Node differentially private algorithms for releasing
 - number of edges
 - counts of small subgraphs (e.g., triangles, k-triangles, k-stars)
 - degree distribution

![Diagram showing a frequency distribution of degrees]
Our contributions: accuracy analysis

- Accuracy analysis of our algorithms for graphs with not-too-heavy-tailed degree distribution

 - number of edges
 - counts of small subgraphs (e.g., triangles, \(k\)-triangles, \(k\)-stars)
 - degree distribution

\[\|A_\epsilon(G) - \text{DegDistri}b(G)\|_1 = o(1) \]
Previous work on

differentially private computations on graphs

Edge differentially private algorithms

- **number of triangles, MST cost** [Nissim Raskhodnikova Smith 07]
- **degree distribution** [Hay Rastogi Miklau Suciu 09, Hay Li Miklau Jensen 09]
- **small subgraph counts** [Karwa Raskhodnikova Smith Yaroslavtsev 11]
- **cuts** [Blocki Blum Datta Sheffet 12]

Edge private against Bayesian adversary (*weaker* privacy)

- **small subgraph counts** [Rastogi Hay Miklau Suciu 09]

Node zero-knowledge private (*stronger* privacy)

- **average degree, distances to nearest connected, Eulerian, cycle-free graphs for dense graphs** [Gehrke Lui Pass 12]
Differential privacy basics

Graph G → Trusted curator → Users

How accurately can an ϵ-differentially private algorithm release $f(G)$?
Global sensitivity framework [DMNS’06]

- Global sensitivity of a function f is
 \[
 \partial f = \max_{(\text{node})\text{neighbors } G, G'} |f(G) - f(G')|
 \]

- For every function f, there is an ϵ-differentially private algorithm that w.h.p. approximates f with additive error $\frac{\partial f}{\epsilon}$.

- Examples:
 - $f_\sim(G)$ is the number of edges in G. \[\partial f_\sim = n. \]
 - $f_\Delta(G)$ is the number of triangles in G. \[\partial f_\Delta = \binom{n}{2}. \]
“Projections” on graphs of small degree

Let $\mathcal{G} =$ family of all graphs,

$$\mathcal{G}_d = \text{family of graphs of degree } \leq d.$$

Notation. $\partial f =$ global sensitivity of f over \mathcal{G}.

$$\partial df = \text{global sensitivity of } f \text{ over } \mathcal{G}_d.$$

Observation. ∂df is low for many useful f.

Examples:

- $\partial df_\Delta = d$ (compare to $\partial f_\Delta = n$)
- $\partial df_\Delta = \binom{d}{2}$ (compare to $\partial f_\Delta = \binom{n}{2}$)

Goal: privacy for all graphs
Method 1: Lipschitz extensions

A function f' is a **Lipschitz extension** of f from G_d to G if:

- f' agrees with f on G_d and
- $\partial f' = \partial_d f$

- Release f' via GS framework [DMNS’06]
- Requires designing Lipschitz extension for each function f
 - we base ours on maximum flow and linear and convex programs
Lipschitz extension of f_-: flow graph

For a graph $G=(V, E)$, define **flow graph of G:**

Add edge (u, v') iff $(u, v) \in E$.

$v_{\text{flow}(G)}$ is the value of the maximum flow in this graph.

Lemma. $v_{\text{flow}(G)}/2$ is a Lipschitz extension of f_-.
Lipschitz extension of f_-: flow graph

For a graph $G = (V, E)$, define **flow graph of G**:

Add edge (u, v') iff $(u, v) \in E$.

$v_{\text{flow}}(G)$ is the value of the maximum flow in this graph.

Lemma. $v_{\text{flow}}(G)/2$ is a Lipschitz extension of f_-.

Proof:

1. $v_{\text{flow}}(G) = 2f_-(G)$ for all $G \in \mathcal{G}_d$
2. $\partial v_{\text{flow}} = 2 \cdot \partial_d f_-$
Lipschitz extension of \(f_- : \) flow graph

For a graph \(G=(V,E) \), define flow graph of \(G \):

\[\nu_{flow}(G) \] is the value of the maximum flow in this graph.

Lemma. \(\nu_{flow}(G)/2 \) is a Lipschitz extension of \(f_- \).

Proof:
1. \(\nu_{flow}(G) = 2f_- (G) \) for all \(G \in G_d \)
2. \(\partial \nu_{flow} = 2 \cdot \partial_d f_- = 2d \)
Method 2: Generic reduction to privacy over G_d

Input: Algorithm B that is node-DP over G_d

Output: Algorithm A that is node-DP over G, has accuracy similar to B on “nice” graphs

- Time(A) = Time(B) + $O(m+n)$
- Reduction works for all functions f

How it works: Truncation $T(G)$ outputs G with nodes of degree $> d$ removed.
- Answer queries on $T(G)$ instead of G
 - via Smooth Sensitivity framework [NRS’07]
Our results

- Node differentially private algorithms for releasing
 - number of edges
 - counts of small subgraphs (e.g., triangles, k-triangles, k-stars)
 - degree distribution

\{ via Lipschitz extensions \}
\{ via generic reduction \}
Conclusions

- It is possible to design node differentially private algorithms with good utility on sparse graphs
 - One can first test whether the graph is sparse privately

- Directions for future work
 - Node-private synthetic graphs
 - What are the right notions of privacy for network data?
Lipschitz extensions via linear/convex programs

For a graph $G=([n], E)$, define LP with variables x_T for all triangles T:

Maximize $\sum_{T=\Delta \text{ of } G} x_T$

$0 \leq x_T \leq 1$ for all triangles T

$\sum_{T:v \in V(T)} x_T \leq \binom{d}{2} = \Delta_d f_\Delta$

$v_{LP}(G)$ is the value of LP.

Lemma. $v_{LP}(G)$ is a Lipschitz extension of f_Δ.

- Can be generalized to other counting queries
- Other queries use convex programs
Our results

- Node differentially private algorithms for releasing
 - number of edges
 - counts of small subgraphs (e.g., triangles, k-triangles, k-stars)
 - degree distribution

- Accuracy analysis of our algorithms for graphs with not-too-heavy-tailed degree distribution: with α-decay for constant $\alpha > 1$

Notation: $\bar{d} =$ average degree

$P(d) =$ fraction of nodes in G of degree $\geq d$

A graph G satisfies α-decay if for all $t > 1$: $P(t \cdot \bar{d}) \leq t^{-\alpha}$

- Every graph satisfies 1-decay
- Natural graphs (e.g., "scale-free" graphs, Erdos-Renyi) satisfy $\alpha > 1$
Our results

- Node differentially private algorithms for releasing
 - number of edges
 - counts of small subgraphs (e.g., triangles, k-triangles, k-stars)
 - degree distribution

- Accuracy analysis of our algorithms for graphs with not-too-heavy-tailed degree distribution: with α-decay for constant $\alpha > 1$

A graph G satisfies α-decay if for all $t > 1$: $P(t \cdot \bar{d}) \leq t^{-\alpha}$

- number of edges
- counts of small subgraphs (e.g., triangles, k-triangles, k-stars)
- degree distribution

$(1+o(1))$-approximation

$\|A_{\epsilon,\alpha}(G) - \text{DegDistrib}(G)\|_1 = o(1)$
Method 2: Generic reduction to privacy over G_d

Input: Algorithm B that is node-DP over G_d

Output: Algorithm A that is node-DP over G, has accuracy similar to B on "nice" graphs

- Time(A) = Time(B) + $O(m+n)$
- Reduction works for all functions f

How it works: **Truncation** $T(G)$ outputs G with nodes of degree $> d$ removed.

- Answer queries on $T(G)$ instead of G
 - via Smooth Sensitivity framework [NRS'07]
 - via finding a DP upper bound ℓ on $LS_T(G)$ [Dwork Lei 09, KRSY'11]
 and running any algorithm that is (ϵ/ℓ)-node-DP over G_d
Generic Reduction via Truncation

- **Truncation** $T(G)$ removes nodes of degree $> d$.
- On query f, answer

 $$A(G) = f(T(G)) + \text{noise}$$

How much noise?

Local sensitivity of T as a map \(\{\text{graphs}\} \rightarrow \{\text{graphs}\}\)

\[
dist(G, G') = \#(\text{node changes to go from } G \text{ to } G')
\]

\[
LS_T(G) = \max_{G': \text{neighbor of } G} \dist(T(G), T(G'))
\]

Lemma. $LS_T(G) \leq 1 + \max (n_d, n_{d+1}),$

where $n_i = \#\{\text{nodes of degree } i\}$.

Global sensitivity $\max_G LS_T(G)$ is too large.
Smooth Sensitivity of Truncation

Smooth Sensitivity Framework [NRS ‘07]

- $S_f(G)$ is a smooth bound on local sensitivity of f if
 - $S_f(G) \geq LS_f(G)$
 - $S_f(G) \leq e^\varepsilon S_f(G')$ for all neighbors G and G'

Lemma.

$$S_T(G) \leq \max_{k \geq 0} e^{-\varepsilon k}(1 + \#\{\text{nodes of degree } (d \pm (k + 1))\})$$

is a smooth bound for T, computable in time $O(m + n)$

“Chain rule”: $S_f(G) = S_T(G) \cdot \Delta_d f$ is smooth for $f \circ T$

Lemma. (∀G, d) If we truncate to a random degree in $[2d, 3d]$,

$$E[S_T(G)] \leq (P(d)n) \frac{3 \log n}{\varepsilon d} + \frac{1}{\varepsilon} + 1$$

Utility: If G is d-bounded, add noise $O(\Delta_{3d} f / \varepsilon^2)$
Releasing Degree Distribution via Generic Reduction

- Application: Releasing the degree distribution

Theorem: There exists a node-DP algorithm A such that

$$\|A_{\epsilon,\alpha}(G) - \text{DegDistrib}(G)\|_1 = o(1)$$

with prob. at least $2/3$ if G satisfies α-decay for $\alpha > 2$.
