Graph Analysis with
Node Differential Privacy

Sofya Raskhodnikova
Penn State University

Joint work with ~ Shiva Kasiviswanathan (GE Research),

Kobbi Nissim (Ben-Gurion U. and Harvard U.),
Adam Smith (Penn State)

PENNOSTATE

&

Publishing information about graphs

Many datasets can be represented as graphs
* “Friendships” in online social network
e Financial transactions
e Email communication

e Romantic relationships

Privacy Is a
big Issue!

Private analysis of graph data

Graph G Trusted Users
curator Government,
| !tji(l{t’ queries researchers,
‘jj\::’ & % ;t;__ < businesses
\}‘Ef;ff_ n 12 g answers (or)
AN RS > - -
/ K malicious
B e adversary

* Two conflicting goals: utility and privacy
— utility: accurate answers
— privacy: ?

Differential privacy for graph data

Graph G Trusted Users
curator Government,

& \‘/_1 _! = ((queries) researcners

B g A t_ A businesses
~ PN >
;,‘;E.;;/ A PN answers (or)
/!/’ I =N > malicious
- s f\
— /i adversary

e |ntuition: neighbors are datasets that differ only in some
information we’d like to hide (e.g., one person’s data)

b

ifferential privacy [Dwork McSherry Nissim Smith 06]\

An algorithm A is e-differentially private if
for all pairs of neighbors G, G’ and all sets of answers S:

_ Pr[A(G) € S] < e Pr[A(G') € §])

4

Two variants of differential privacy for graphs

e Edge differential privacy

G:

Two graphs are neighbors if one can be obtained from the other
by deleting a node and its adjacent edges.

Node differentially private analysis of graphs

Graph G Trusted Users
curator Government,

Htwti~’ i ((queries) researchers

L A businesses
N ™ >
e 0 answers (or)
/!/ ~ Tk > malicious
/ — &
— T e adversary

* Two conflicting goals: utility and privacy
— Impossible to get both in the worst case

* Previously: no node differentially private
algorithms that are accurate on realistic graphs

Our contributions

e First node differentially private algorithms that are
accurate for sparse graphs
— node differentially private for all graphs

— accurate for a subclass of graphs, which includes
e graphs with sublinear (not necessarily constant) degree bound
e graphs where the tail of the degree distribution is not too heavy
e dense graphs

e Techniques for node differentially private algorithms

e Methodology for analyzing the accuracy of such
algorithms on realistic networks

Concurrent work on node privacy [Blocki Blum Datta Sheffet 13]

Our contributions: algorithms

* Node differentially private algorithms for releasing

— number of edges %

— counts of small subgraphs &) W C.
(e.g., triangles, k-triangles, k-stars)

— degree distribution

N

'Frequency

.t

Degrees

Our contributions: accuracy analysis

e Accuracy analysis of our algorithms for graphs with not-too-
heavy-tailed degree distribution

— number of edges
— counts of small subgraphs ~ (1+0(1))-approximation
(e.g., triangles, k-triangles, k-stars) _

— degreedistribution } ||A.(G) — DegDistrib(G)|l; = o(1)

Previous work on

differentially private computations on graphs

Edge differentially private algorithms

e number of triangles, MIST cost [Nissim Raskhodnikova Smith 07]

e degree distribution [Hay Rastogi Miklau Suciu 09, Hay Li Miklau Jensen 09]
e small subgraph counts [Karwa Raskhodnikova Smith Yaroslavtsev 11]

® cuts [Blocki Blum Datta Sheffet 12]

Edge private against Bayesian adversary (weaker privacy)
e small subgraph counts [Rastogi Hay Miklau Suciu 09]

Node zero-knowledge private (stronger privacy)

e average degree, distances to nearest connected, Eulerian,
cycle-free graphs for dense graphs [Gehrke Lui Pass 12]

10

Differential privacy basics

Graph G Trusted Users
curator Government,
‘i‘ ’j (statistic f researchers,
A i N businesses
’: #;f};’/f g A approximation) (or)
- !/ \“\;ﬂ/’:}\: to f(G) malicious
— . e adversary

How accurately
can an e-differentially private algorithm release f(G)?

11

Global sensitivity framework [DMNS06]

* Global sensitivity of a function f is

of = 1f(G) = f(G")]

max
(node)neighbors G,G/

e For every function f, there is an e-differentially private
algorithm that w.h.p. approximates f with additive error

El

* Examples:
» f_(G) is the number of edges in G. af_=n.
» fa(G) is the number of triangles in G. 6fA=('z').

12

“Projections” on graphs of small degree

Let G = family of all graphs, G
G4 = family of graphs of degree < d.
Notation. @ f = global sensitivity of f over G.

dg4 f = global sensitivity of f over 4.
Observation. d4f is low for many useful f.
Examples:

» d4f-=d (comparetodf_= n)
» 8af s =(%) (compareto af , = (3))

———Goal: privacy for all graprf<

Method 1: Lipschitz extensions

A function f' is a Lipschitz extension
of f from G, to G if
> [’ agrees with f on G; and

___ > of =a4f J

e Release f' via GS framework [DMNS'06]

G,

high df
af' =adqf

low&df
f'=r1

e Requires designing Lipschitz extension for each function f
— we base ours on maximum flow and linear and convex programs

14

Lipschitz extension of [_: flow graph

For a graph G=(V, E), define flow graph of G:

Add edge (u, v") iff (u,v) € E. J
V510w(G) is the value of the maximum flow in this graph.
Lemma. vgow(G)/2 is a Lipschitz extension of f_.

15

Lipschitz extension of [_: flow graph

For a graph G=(V, E), define flow graph of G:

Add edge (u, v") iff (u,v) € E. J
V510w(G) is the value of the maximum flow in this graph. |
Lemma. vf,w(G)/2 is a Lipschitz extension of f_.
Proof: (1) vgow(G) =2f_(G) for all GE G4
(2) @ vpow=2:0uf -

16

Lipschitz extension of [_: flow graph

For a graph G=(V, E), define flow graph of G:

V10wl G) is the value of the maximum flow in this graph. |

Lemma. vf,w(G)/2 is a Lipschitz extension of f_.
Proof: (1) vgowl(G) =2f_(G) for all GE G4
(2) dvpow=2:04f-=2d

17

Method 2: Generic reduction to privacy over G4

Vs)
Input: Algorithm B that is node-DP over G4

Output: Algorithm A that is node-DP over G, high af
has accuracy similar to B on “nice” graphs)

g
¢ Time(A)=Time(B) + O(m+n)
e Reduction works for all functions f
How it works: Truncation T(G) outputs G
with nodes of degree > d removed.

e Answer queries on T(G) instead of G
» via Smooth Sensitivity framework [NRS'07]

Our results

* Node differentially private algorithms for releasing
- number of edges h

— counts of small subgraphs
(e.g., triangles, k-triangles, k-stars))
— degree distribution } via generic reduction

via Lipschitz
" extensions

19

Conclusions

e |tis possible to design node differentially private algorithms
with good utility on sparse graphs
— One can first test whether the graph is sparse privately
e Directions for future work

— Node-private synthetic graphs
— What are the right notions of privacy for network data?

20

Lipschitz extensions via linear/convex programs

For a graph G=([n], E), define LP with variables xr for all triangles T:

Maximize Z Xt
T=Aof G
0<xr<1 for all triangles T

Xp < g for all nodes v
r=\2
- T:weV(T) = A;if A J

v1p(G) is the value of LP.

Lemma. v p(G) is a Lipschitz extension of f .

e Can be generalized to other counting queries
e Other queries use convex programs

21

Our results

* Node differentially private algorithms for releasing

- number of edges
— counts of small subgraphs &) w
(e.g., triangles, k-triangles, k-stars)

— degree distribution

e Accuracy analysis of our algorithms for graphs with not-too-
heavy-tailed degree distribution: with a-decay for constant a > 1

Notation: d = average degree

P(d) = fraction of nodes in G of degree = d Frequency

<t %

A graph G satisfies a-decay if <
[forallt>1: P(t-J)St'“J _'i\

d t-d Degrees

— Every graph satisfies 1-decay
— Natural graphs (e.g., “scale-free” graphs, Erdos-Renyi) satisfy @ > 1

22

Our results

* Node differentially private algorithms for releasing

- number of edges
— counts of small subgraphs &) w

(e.g., triangles, k-triangles, k-stars)
— degree distribution

e Accuracy analysis of our algorithms for graphs with not-too-
heavy-tailed degree distribution: with a-decay for constanta > 1

A graph G satisfies a-decay if forallt > 1: P(t - cf) <t ¢

— number of edges B
— counts of small subgraphs - (1+0(1))-approximation
(e.g., triangles, k-triangles, k-stars))

— degree distribution } ”Ae,a(G) —])eg])istrib((;)lll = 0(1)

23

Method 2: Generic reduction to privacy over G4

-~
Input:

~

Algorithm B that is node-DP over G4

Output: Algorithm A that is node-DP over G,

N

has accuracy similar to B on “nice” graphs)

e Time(A)=Time(B) + O(m+n)
e Reduction works for all functions f
How it works: Truncation T(G) outputs G

with nodes of degree > d removed.

e Answer queries on T(G) instead of G
» via Smooth Sensitivity framework [NRS'07]

» viafinding a DP upper bound £ on LSy (G) [Dwork Lei 09, KRSY’11]
and running any algorithm that is (E)-node-DP over G,

V7
\

T

—T(G)

S

— 57(G)

1

query f

TG+ noise(S: (6) - Auf)

24

Generic Reduction via Truncation

* Truncation T(G) removes ' Frequency Nodes that
nodes of degree > d. | determine LSy (G)
e On query f, answer _I_‘
A(G) = f(T(G)) + noise
d: Degrees

How much noise?

Local sensitivity of T as a map {graphs} — {graphs}
dist(G,G') = #(node changes to go from G to G’)

LST(G) = G’:ne{gha{:%r of G diSt(T(G)’T(G))

Lemma. LSp(G) < 1+ max (ng,ng4+1),
where n;= #{nodes of degree i}.

Global sensitivity max LS7(G) is too large.

25

Smooth Sensitivity of Truncation

(Smooth Sensitivity Framework [NRS ‘07])
S7(G) is a smooth bound on local sensitivity of f if
- 5:(6) = LS#(6)
\. -~ 5;(G) < e°S¢(G") for all neighbors G and G’ Y

Lemma.
Sr(G) < maxe™(1 + #{nodes of degree (d + (k +1))})
is a smooth bound for T, computable in time O(m + n)
“Chain rule”: S¢(G) = Sp(G) - Ayf is smooth for f o T
Lemma. (VG, d) If we truncate to a random degree in [2d, 3d],
E[S7(6)] < (P(d)m) B2 1 2 4 1

€

#(nodes of
degree above d)

Utility: If G is d-bounded, add noise O (As4f/€?)

26

Releasing Degree Distribution via Generic Reduction

query f

AT > f(T(G))+ noise(S7(G) - Ayf)
vt N s-516) —

e Application: Releasing the degree distribution
Theorem: There exists a node-DP algorithm A such that

|4e.c(6) — DegDistrib(G) ||, = o(1)

with prob. at least 2/; if G satisfies a-decay for a > 2.

27

