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Background – Oblivious RAM
(Goldreich’87)

• RAM Model
– Small trusted component (CPU, client)p ( , )
– Large untrusted component (RAM, server)

Obli i• Obliviousness
– Hide the contents and so-called “access-

pattern” 
• A program Π is oblivious if one can simulate the 

(randomized) sequence of accesses to RAM given 
only the number of accesses
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Original Motivation of ORAM:
Bootstrapping Secure Hardware

Trusted Component
(CPU)(CPU) Untrusted Components

(RAM, Storage)
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Private Cloud ServicesPrivate Cloud Services

Trusted Component
(Client)( )

U t t d C tUntrusted Components
(Cloud Services)
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Oblivious RAM SolutionsOblivious RAM Solutions

• Goal: Given a T-time S-space program Π, 
compile it into a T’-time S’-space oblivious 
program Π’

• “Square-root” solution (Goldreich [G87,GO96])
– O(n1/2 log n) (amortized) Client time overheadO(n log n) (amortized) Client time overhead

• “Hierarchical” solution (Ostrovsky [O90,GO96])
O(log3 n) (amortized) Client time overhead– O(log3 n) (amortized) Client time overhead

• Constant (in security param.)Client space in both
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Many Subsequent Works
• Constant Client Space

– Pinkas-Reinman [PR10], Goodrich-Mitzenmacher [GM11],Pinkas Reinman [PR10], Goodrich Mitzenmacher [GM11], 
Kushilevitz-L-Ostrovsky [KLO12],…

• Larger Client Space
Willi Si [WS08] Willi Si C b [WSC08]– Williams-Sion [WS08], Williams-Sion-Carbunar [WSC08], 
Goodrich-Mitzenmacher [GM11], Boneh-Mazieres-Popa 
[BMP11], Goodrich-Mitzenmacher-Ohrimenko-Tamassia 
[GMOT12] Stefanov Shi Song [SSS11][GMOT12], Stefanov-Shi-Song [SSS11],…

• Information-Theoretic
– Ajtai [A10], Damgård-Meldgaard-Nielsen [DMN11],…Ajtai [A10], Damgård Meldgaard Nielsen [DMN11],…

• Worst-Case Client Time per query
– Ostrovsky-Shoup [OS97], Stefanov-Shi-Song [SSS11], 

G d i h Mit h Oh i k T i [GMOT11]Goodrich-Mitzenmacher-Ohrimenko-Tamassia [GMOT11], 
Shi-Chan-Stefanov-Li [SCSL11],…

• ...
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Motivating ProblemMotivating Problem
• For solutions with constant client memory• For solutions with constant client memory

– Lowest overhead O(log2n/loglogn) 
Kushilevitz L Ostrovsky [KLO12]Kushilevitz-L-Ostrovsky [KLO12]

• Problem #1: Can we improve the overhead?
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More MotivationMore Motivation

• Most existing secure computation protocols• Most existing secure computation protocols 
operate on circuits
– Circuit needs to be as large as the longest executionCircuit needs to be as large as the longest execution 

path
– Circuit needs to be as large as the inputs
– Most algorithms are not considered in terms of circuits

• Modular approach
– Build efficient secure computation for a small class of 

circuits
E t d t bit– Extend to arbitrary programs

• Problem #2: Can we come up with efficient 
candidates for secure RAM computation?

10
candidates for secure RAM computation?



Secure Computation of RAM ProgramsSecure Computation of RAM Programs

Input A Input BInput A Input B

Wish to securely compute some 
program Π (A B)program Π (A,B)

Can we bootstrap existing secure 
circuit computation solutions?

11

circuit computation solutions?  
(Rather than converting the programs 
into circuits)



Our ContributionOur Contribution
• We show how to get ORAM client• We show how to get ORAM client 

overhead down to O(logn) 
In a modified model– In a modified model

– Constant client memory
– From OWF

• There are alternative approaches that 
achieve this by increasing client memory y g y
[GM11,SSS11,…]
– These are efficient stand-alone solutions for 

12ORAM, but doesn't mesh well with our next 
step...



Our Contribution (Cont )Our Contribution (Cont.)

• We show how this leads to an efficient 
2-party protocol for secure computation of p y p p
RAM programs

Secure circuit computation
Ostrovsky-Shoup 
compiler [OS97]

Secure circuit computation 
with constant overhead 
(e.g. Ishai et al. [IKOS08, 
IPS08])IPS08])
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Review: Hierarchical Solution [O90,GO96]

• Set up the Server/RAM in a hierarchy of 
tables

• Tables with sizes in geometric progression
• Hash tables

– Bucketed hash tables with log sized bucketsBucketed hash tables with log sized buckets

• Main property: (v,x) appears encrypted in a 
level i in table position hashi(v)level i in table position hashi(v)
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Review: Reading an elementReview: Reading an element

Top level is special
We scan it in its entirety

I want to read
“Real or Random”

hi(7)

7

I want to read
memory locationIf 7 was found or not

7
dummy
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Review: Writing an elementReview: Writing an element

Write to first
t l ti

I want to write data

empty location

As a level fills up
there is an update

7

I want to write data 
to memory location

there is an update
mechanism

7
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Review [GM11]: ORAM with 
Cuckoo Hashing 

• Cuckoo hash tables [PR01]
– O(1) worst-case lookup, O(n) space( ) p ( ) p

• Given a log-sized stash and sufficiently large 
table, negl. overflowtable, negl. overflow

• Use cuckoo hash for larger levels
Oblivious shuffle into cuckoo hash table• Oblivious shuffle into cuckoo hash table
– Our solution bypasses this
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Review: Application to Secure RAM Computation
(introduced in [OS97])

Main Idea:
D i t S

x2We want to
Compute

Designate Servers,
Then jointly simulate
ORAM CPU using

secure circuit
x1F(x1,...,x6)

secure circuit 
computation

x3

This means
bl t twe are able to get

secure program
computation with

overhead proportional

x4

x6
p p

to that of ORAM (and
underlying secure 

circuit computation)

Gordon et al. 
[G+12] for 
sublinear
DB queries

19x5
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Our ResultsOur Results
• We make two changes to the model:We make two changes to the model:

– Multiple non-colluding servers
• Useful theoretical tool• Useful theoretical tool

– Interactive Proofs  multiple provers
– Private Information Retrieval  multiple servers
– …

• e.g. two different cloud services

– Server can now perform simple computations
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Our ResultsOur Results
• In this model:In this model:

– O(log n) access overhead with constant client 
memorymemory

• Matches lower bound in the original setting [GO96]
– Bypass the expensive “oblivious sort” duringBypass the expensive oblivious sort  during 

updates
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Distributed Oblivious RAMDistributed Oblivious RAM

...

• To read a value, alternate 
between servers

23
• Let’s see how update works



Distributed Oblivious RAM  
U d ti th l l ith t ti !Updating the levels – without sorting!

Temp 
Storage

...

Move to temp via client

Compute hashes & 
have the server build the hash table

3 10 8 2 
9 7 5 6

24

have the server build the hash table

Move back to other server via client

9 7 5 6 
4 1 



Choosing The ParametersChoosing The Parameters
• Top level sizeTop level size

– O(log n)

• Bucket size
– O(log n/loglog n)
– Stash of O(log n)

• Cuckoo Stash size
– O(log n)

25• “Cache the stash”



Application: Secure Computation on 
RAM PRAM Programs

Input A Input B

Wish to securely compute some 
program Π (A,B)

Exploring the idea of [OS97]:
• Alice plays the role of Server 1
• Bob plays the role of Server 2
• Design a circuit for ORAM CPU
• Use secure (constant overhead) circuit computation to run the CPU step

26
• Result of computation tells each server where to look
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ConclusionConclusion

• Described new result for O(logn) overhead 
ORAM in the multi-server model

A li ti t RAM t ti• Application to secure RAM computation
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Open ProblemsOpen Problems

• Improve the overhead (or show a new 
lower bound in this model))

Wh t l d ith thi d l?• What else can we do with this model?

• Can we get non-interactive ORAM for an 
entire program (m ltiple read/ rite)?entire program (multiple read/write)? 

(Yes! --Come to the rump session  )
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Thank YouThank You
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Choosing The Hash TablesChoosing The Hash Tables
• Smallest bufferSmallest buffer

– Just an array
– O(log n) size turns out to be the right answer– O(log n) size turns out to be the right answer

• Standard Bucket Hashing for smaller levels:
T i b t b k t i d fl– Tension between bucket size and overflow 
probability

• Bucket too big Too much overhead• Bucket too big  Too much overhead
– How big is too big? O(loglog n) levels, goal is O(log n) 

overhead, so at most O(log n/loglog n)
B k t t ll O fl b bilit b 1/ l• Bucket too small  Overflow probability becomes 1/poly 
(leads to security problems, see [KLO12])

– O(log n/loglog n) not large enough!
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Choosing The Hash Tables (cont )Choosing The Hash Tables (cont.)
• How do we get around this?• How do we get around this?

– Add a log n sized stash
– Isn't this worse?

• Additional log n elements we need to scan per level
• Larger than a bucket!

• Observation (cf [GM11,KLO12]):Observation (cf [GM11,KLO12]):
– Only one active stash (lowest updated level)

Thi t h b i t d i t th hi h– This stash can be re-inserted into the hierarchy
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Choosing The Hash Tables (cont )Choosing The Hash Tables (cont.)
• Cuckoo Hash Tables• Cuckoo Hash Tables

– Larger levels all use cuckoo hash tables with 
t hstash

– log n sized stash
• Can be re-inserted as well
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Client OverheadClient Overhead
• Read/Write

– Read the entire smallest buffer O(log n)
– Read one bucket for each bucketed hash level

• ~7loglog n levelsg g
• Stash implicitly read
• Bucket of size O(log n/loglog n)
• Total: O(log n)

– Read two locations for each cuckoo hash table
• ~log n levels
• Stash implicitly read
• 2 locations each
• Total: O(log n)

• Updatep
– For each level, if that level is of size k, then every k steps the 

Client moves O(k) elements between the servers
– O(log n) levels
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– Total: O(log n)


