
Distributed Oblivious RAM forDistributed Oblivious RAM for
Secure Two-Party Computation

Steve Lu Rafail Ostrovsky
Stealth UCLA

Stealth

Tokyo JapanTokyo, Japan
March 5, 2013

Supported in part by the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior National Business Center (DoI/NBC) contract number D11PC20199. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation therein. Disclaimer: The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsement, either expressed or implied, of IARPA, DoI/NBC, or
the U.S. Government.

OverviewOverview

• Motivation
• Problem StatementProblem Statement
• Review
• New Results
• Conclusion• Conclusion

2

Background – Oblivious RAM
(Goldreich’87)

• RAM Model
– Small trusted component (CPU, client)p (,)
– Large untrusted component (RAM, server)

Obli i• Obliviousness
– Hide the contents and so-called “access-

pattern”
• A program Π is oblivious if one can simulate the

(randomized) sequence of accesses to RAM given
only the number of accesses

33

Original Motivation of ORAM:
Bootstrapping Secure Hardware

Trusted Component
(CPU)(CPU) Untrusted Components

(RAM, Storage)

4

Private Cloud ServicesPrivate Cloud Services

Trusted Component
(Client)()

U t t d C tUntrusted Components
(Cloud Services)

5

OverviewOverview

• Motivation
• Problem StatementProblem Statement
• Review
• New Results
• Conclusion• Conclusion

6

Oblivious RAM SolutionsOblivious RAM Solutions

• Goal: Given a T-time S-space program Π,
compile it into a T’-time S’-space oblivious
program Π’

• “Square-root” solution (Goldreich [G87,GO96])
– O(n1/2 log n) (amortized) Client time overheadO(n log n) (amortized) Client time overhead

• “Hierarchical” solution (Ostrovsky [O90,GO96])
O(log3 n) (amortized) Client time overhead– O(log3 n) (amortized) Client time overhead

• Constant (in security param.)Client space in both

77

Many Subsequent Works
• Constant Client Space

– Pinkas-Reinman [PR10], Goodrich-Mitzenmacher [GM11],Pinkas Reinman [PR10], Goodrich Mitzenmacher [GM11],
Kushilevitz-L-Ostrovsky [KLO12],…

• Larger Client Space
Willi Si [WS08] Willi Si C b [WSC08]– Williams-Sion [WS08], Williams-Sion-Carbunar [WSC08],
Goodrich-Mitzenmacher [GM11], Boneh-Mazieres-Popa
[BMP11], Goodrich-Mitzenmacher-Ohrimenko-Tamassia
[GMOT12] Stefanov Shi Song [SSS11][GMOT12], Stefanov-Shi-Song [SSS11],…

• Information-Theoretic
– Ajtai [A10], Damgård-Meldgaard-Nielsen [DMN11],…Ajtai [A10], Damgård Meldgaard Nielsen [DMN11],…

• Worst-Case Client Time per query
– Ostrovsky-Shoup [OS97], Stefanov-Shi-Song [SSS11],

G d i h Mit h Oh i k T i [GMOT11]Goodrich-Mitzenmacher-Ohrimenko-Tamassia [GMOT11],
Shi-Chan-Stefanov-Li [SCSL11],…

• ...
88

Motivating ProblemMotivating Problem
• For solutions with constant client memory• For solutions with constant client memory

– Lowest overhead O(log2n/loglogn)
Kushilevitz L Ostrovsky [KLO12]Kushilevitz-L-Ostrovsky [KLO12]

• Problem #1: Can we improve the overhead?

9

More MotivationMore Motivation

• Most existing secure computation protocols• Most existing secure computation protocols
operate on circuits
– Circuit needs to be as large as the longest executionCircuit needs to be as large as the longest execution

path
– Circuit needs to be as large as the inputs
– Most algorithms are not considered in terms of circuits

• Modular approach
– Build efficient secure computation for a small class of

circuits
E t d t bit– Extend to arbitrary programs

• Problem #2: Can we come up with efficient
candidates for secure RAM computation?

10
candidates for secure RAM computation?

Secure Computation of RAM ProgramsSecure Computation of RAM Programs

Input A Input BInput A Input B

Wish to securely compute some
program Π (A B)program Π (A,B)

Can we bootstrap existing secure
circuit computation solutions?

11

circuit computation solutions?
(Rather than converting the programs
into circuits)

Our ContributionOur Contribution
• We show how to get ORAM client• We show how to get ORAM client

overhead down to O(logn)
In a modified model– In a modified model

– Constant client memory
– From OWF

• There are alternative approaches that
achieve this by increasing client memory y g y
[GM11,SSS11,…]
– These are efficient stand-alone solutions for

12ORAM, but doesn't mesh well with our next
step...

Our Contribution (Cont)Our Contribution (Cont.)

• We show how this leads to an efficient
2-party protocol for secure computation of p y p p
RAM programs

Secure circuit computation
Ostrovsky-Shoup
compiler [OS97]

Secure circuit computation
with constant overhead
(e.g. Ishai et al. [IKOS08,
IPS08])IPS08])

13

OverviewOverview

• Motivation
• Problem StatementProblem Statement
• Review
• New Results
• Conclusion• Conclusion

14

Review: Hierarchical Solution [O90,GO96]

• Set up the Server/RAM in a hierarchy of
tables

• Tables with sizes in geometric progression
• Hash tables

– Bucketed hash tables with log sized bucketsBucketed hash tables with log sized buckets

• Main property: (v,x) appears encrypted in a
level i in table position hashi(v)level i in table position hashi(v)

1515

Review: Reading an elementReview: Reading an element

Top level is special
We scan it in its entirety

I want to read
“Real or Random”

hi(7)

7

I want to read
memory locationIf 7 was found or not

7
dummy

1616

Review: Writing an elementReview: Writing an element

Write to first
t l ti

I want to write data

empty location

As a level fills up
there is an update

7

I want to write data
to memory location

there is an update
mechanism

7

1717

Review [GM11]: ORAM with
Cuckoo Hashing

• Cuckoo hash tables [PR01]
– O(1) worst-case lookup, O(n) space() p () p

• Given a log-sized stash and sufficiently large
table, negl. overflowtable, negl. overflow

• Use cuckoo hash for larger levels
Oblivious shuffle into cuckoo hash table• Oblivious shuffle into cuckoo hash table
– Our solution bypasses this

1818

Review: Application to Secure RAM Computation
(introduced in [OS97])

Main Idea:
D i t S

x2We want to
Compute

Designate Servers,
Then jointly simulate
ORAM CPU using

secure circuit
x1F(x1,...,x6)

secure circuit
computation

x3

This means
bl t twe are able to get

secure program
computation with

overhead proportional

x4

x6
p p

to that of ORAM (and
underlying secure

circuit computation)

Gordon et al.
[G+12] for
sublinear
DB queries

19x5

q

OverviewOverview

• Motivation
• Problem StatementProblem Statement
• Review
• New Results
• Conclusion• Conclusion

20

Our ResultsOur Results
• We make two changes to the model:We make two changes to the model:

– Multiple non-colluding servers
• Useful theoretical tool• Useful theoretical tool

– Interactive Proofs  multiple provers
– Private Information Retrieval  multiple servers
– …

• e.g. two different cloud services

– Server can now perform simple computations

21

Our ResultsOur Results
• In this model:In this model:

– O(log n) access overhead with constant client
memorymemory

• Matches lower bound in the original setting [GO96]
– Bypass the expensive “oblivious sort” duringBypass the expensive oblivious sort during

updates

22

Distributed Oblivious RAMDistributed Oblivious RAM

...

• To read a value, alternate
between servers

23
• Let’s see how update works

Distributed Oblivious RAM
U d ti th l l ith t ti !Updating the levels – without sorting!

Temp
Storage

...

Move to temp via client

Compute hashes &
have the server build the hash table

3 10 8 2
9 7 5 6

24

have the server build the hash table

Move back to other server via client

9 7 5 6
4 1

Choosing The ParametersChoosing The Parameters
• Top level sizeTop level size

– O(log n)

• Bucket size
– O(log n/loglog n)
– Stash of O(log n)

• Cuckoo Stash size
– O(log n)

25• “Cache the stash”

Application: Secure Computation on
RAM PRAM Programs

Input A Input B

Wish to securely compute some
program Π (A,B)

Exploring the idea of [OS97]:
• Alice plays the role of Server 1
• Bob plays the role of Server 2
• Design a circuit for ORAM CPU
• Use secure (constant overhead) circuit computation to run the CPU step

26
• Result of computation tells each server where to look

OverviewOverview

• Motivation
• Problem StatementProblem Statement
• Review
• New Results
• Conclusion• Conclusion

27

ConclusionConclusion

• Described new result for O(logn) overhead
ORAM in the multi-server model

A li ti t RAM t ti• Application to secure RAM computation

28

Open ProblemsOpen Problems

• Improve the overhead (or show a new
lower bound in this model))

Wh t l d ith thi d l?• What else can we do with this model?

• Can we get non-interactive ORAM for an
entire program (m ltiple read/ rite)?entire program (multiple read/write)?

(Yes! --Come to the rump session )
29

Thank YouThank You

30

Choosing The Hash TablesChoosing The Hash Tables
• Smallest bufferSmallest buffer

– Just an array
– O(log n) size turns out to be the right answer– O(log n) size turns out to be the right answer

• Standard Bucket Hashing for smaller levels:
T i b t b k t i d fl– Tension between bucket size and overflow
probability

• Bucket too big Too much overhead• Bucket too big  Too much overhead
– How big is too big? O(loglog n) levels, goal is O(log n)

overhead, so at most O(log n/loglog n)
B k t t ll O fl b bilit b 1/ l• Bucket too small  Overflow probability becomes 1/poly
(leads to security problems, see [KLO12])

– O(log n/loglog n) not large enough!

31

(g g g) g g

Choosing The Hash Tables (cont)Choosing The Hash Tables (cont.)
• How do we get around this?• How do we get around this?

– Add a log n sized stash
– Isn't this worse?

• Additional log n elements we need to scan per level
• Larger than a bucket!

• Observation (cf [GM11,KLO12]):Observation (cf [GM11,KLO12]):
– Only one active stash (lowest updated level)

Thi t h b i t d i t th hi h– This stash can be re-inserted into the hierarchy

32

Choosing The Hash Tables (cont)Choosing The Hash Tables (cont.)
• Cuckoo Hash Tables• Cuckoo Hash Tables

– Larger levels all use cuckoo hash tables with
t hstash

– log n sized stash
• Can be re-inserted as well

33

Client OverheadClient Overhead
• Read/Write

– Read the entire smallest buffer O(log n)
– Read one bucket for each bucketed hash level

• ~7loglog n levelsg g
• Stash implicitly read
• Bucket of size O(log n/loglog n)
• Total: O(log n)

– Read two locations for each cuckoo hash table
• ~log n levels
• Stash implicitly read
• 2 locations each
• Total: O(log n)

• Updatep
– For each level, if that level is of size k, then every k steps the

Client moves O(k) elements between the servers
– O(log n) levels

34

(g)
– Total: O(log n)

