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Verifying NP Computations Fast
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WHAT KINDS OF
SUCCINCT ARGUMENTS
ARE THERE?



[Kilian]

tools: PCP system + collision-resistant hashing

1 offline message

. public coins
3 online messages

[Micali]
apply Fiat-Shamir paradigm in the Random Oracle model

1 non-interactive & publicly-verifiable message



CAN WE REDUCE
# ONLINE MESSAGES
W/O RANDOM ORACLES?



Succinct Non-Interactive Arguments
(SNARGS)

statement proof

w (M,X,T) T




Succinct Non-Interactive Arguments

(SNARGS)
|1*
G | K

proving key verification key
) T
—

statement proof
W (M, x, T) T’:
— B 1V

have privately-verifiable constructions
under relatively-clean (albeit non-falsifiable) assumptions
[DL] [Mie] [BCCTa] [DFH] [GLR] [BC]



Probabilistic Checking & Succinct Arguments

A VERY PRODUCTIVE PARADIGM

Step 1: information-theoretic probabilistic checking,
in @ model where the prover is restricted in some form

Step 2: use cryptography to force the restriction

EXAMPLES

Step 1 = design a PCP
Step 2 = force prover to commit to a PCP

Step 1 = desigh a no-signaling MIP
Step 2 = force prover to act as no-signaling provers

Step 1 = design an MIP
Step 2 = force prover to act as non-communicating provers



TODAY: Preprocessing SNARGs
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Preprocessing SNARGs
® setup work is amortized over MANY proofs

® can obtain public verifiability [Groth,Lipmaa,GGPR]

® lead to constructions w/o expensive preprocessing [BCCTb]
(provided the SNARG has a natural POK)

step 1: reduce CircuitSAT to algebraic satisfaction problem
step 2: use crypto to succinctly verify the latter

surprising: do not seem to rely on probabilistic checking!




OUR CONTRIBUTIONS



THIS WORK

give a general recipe to construct preprocessing SNARGS;
the recipe is a new instantiation of the paradigm

Specifically:

Step 1: (information-theoretic)
design a 2-message linear interactive proof (LIP)

Step 2: (cryptographic)
force prover to act as a linear function

results for Step 1: constructions of succinct LIPs
results for Step 2: compilers for private and public cases

® simpler and more efficient preprocessing SNARGs

® re-interpret previous constructions from new perspective



Linear PCPs

A PCP where the proof oracle is a linear function.
Previously used in another instantiation of paradigm:

[IKO]

linear PCP
l + linearity testing

strong
linear PCP

l + function commitment

4-msg NP argument
with small communication



Linear Interactive Proofs (LIPs)

The prover is algebraically bounded: specifically, linear.

(in both completeness

Px,W = ]Fkxm

91, -, qQm € F

&
~

Aq, ..., € [F

V(x)

and soundness!)

We are interested in LIPs that are input oblivious:

V =(0Q,D)s.t.




PRIVATE VERIFICATION  (a1wss;

/

PCP linear PCP
. / \[GGPR]
compiler compiler
Step 1 (information-theoretic)\ succinc’é/
Step 2 (cryptographic) linear IP
compiler

|

privately-verifiable
preprocessing SNARG



Step 2: From LIP To pp SNARG

(private verification)

G(1*,T)  (pk,sk) « Gen(1F)
<C_% Encpi ﬂ 0 r
<C—m El’lek <q_'m
proving key l u verification key
o = (pKk,Cq, ..., Cip) T = (sk,u)
V(t, x,m)
P(o,x,w) C1 | [Decy, | %4

HomEvalpk (Px,W! C) At




Step 2: From LIP To pp SNARG

(private verification)

) T ~
Linear Targeted Malleability (~[BSW]) on-falsifiable

encryption scheme that ONLY allows > assumption

[F -linear homomorphic operations  _/  (somewhat
justified by [GW] )

(e.g., knowledge variant of Paillier)

proving key verification key
o = (pk,Cqy, ..., C) T = (sk,u)
V(t, x,m)
P(O', Xy W) ﬁ) Decsk il>
HomEval, (P, ., C 5 ‘1 Dy(r,u)
pk( X,W ) &) Decsk ai




PUBLIC VERIFICATION  (aiuvss)

27?7 /

linear PCP

S/ N[GGPR]
compiler
Step 1 (information-theoretic) ?77 ‘/
Step 2 (cryptographic) linear IP
compiler

|

publicly-verifiable
preprocessing SNARG



Step 2: From LIP To pp SNARG (sketch)

G(15,T)  (pk, I < Gen(1¥)
<C_% Encpi ﬂ 0 r
Im Enc dm Encpef(w)
[ pk
proving key verification key
0 = (ka €1y eees Cm) — (.’.)
V(t, x,m)
P, x,w) 1 | [Decg| -2
HomEval . (P iy, €) | A | Dy(e,u)
pk\‘x,w: ¢ a
(same) Ck, | [ Decsk | =%




Step 2: From LIP To pp SNARG (sketch)

G(15,T)  (pk, I < Gen(1¥)
<C_% Encpi ﬂ 0 r
Im Enc dm Encpef(w)
[ pk
proving key verification key
0 = (ka €1y eees Cm) T = (.’.)
V(t, x,m)
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(same) —




Step 2: From LIP To pp SNARG (sketch)

G(15,T)  (pk, I < Gen(1¥)
<C_% Encpi ﬂ 0 r
Im Enc dm Encpef(w)
[ pk
proving key verification key
g = (ka C1yuney Cm) = (.’.)
V(t, x,m)
P(o,x,w) Cq need to test roots:

HomEval ,C,E
HomEvalyx (Pew,€) | A7 | 7058 pk(Dz, €, Encp(u))

C
(same) —k, € Encp(0)?




Step 2: From LIP To pp SNARG (sketch)

G(15,T)  (pk, I < Gen(1¥)
<C_% Encpi ﬂ 0 r
<C—m El’lcpk <q—m' llz(ncpk(u)
proving key l u verification kIe)y
0 = (ka €1y eees Cm) — (.’.)
V(t, x,m)
P(o,x,w) 1

N T D !AJE
HomEvalpk(Px,w, c) N eStpk( x1 € nCpk(u))

(same) —>




Publicly-Verifiable pp SNARGs
H;;;r
interactive compiler

oroof Xeprocessmg SNARG

publicly-verifiable

uses bilinear maps + KEA
27?7 gives us Encoding with:
= - test quadratic predicates
query/decision algorithms - certain one-way hardness
are low-degree polynomials - almost-linear homomorph.

-
a balancing act: : : : :



Summary

® A simple and motivated recipe low-degree
inear PCP
PCP linear PCP |
\ / compiler
compiler compiler I}
N\ / low-degree
linear IP linear IP
| |
compiler compiler
| |
privately-verifiable publicly-verifiable
preprocessing SNARG preprocessing SNARG

® See paper for more (including ZK generic transformation)



THANKS!
http://eprint.iacr.org/2012/718
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FOLLOWING ARE OLD SLIDES



[Naor 03] [GW11]

Falsifiable Assumptions

An assumption is falsifiable if a challenger can efficiently test, via
an interactive protocol, whether an efficient adversary breaks it.

Example: DL=" max Pr[(A, C) = win] < negl "

gx
A C eiose”
y=g"
5 -

Other examples:
DDH, RSA, LWE, QR, ...

Unexamples (i.e., non-falsifiable):
- (P, V) iS ZK (not a game: requires a simulator)
- knowledge of exponent: givenrandom (g,h) EG X G
(not a game: requires an extractor)  can’t efficiently generate (gﬁ, hﬁ)

without “knowing” 8
[Dam91] [HT98]



non-falsifiable assumptions
are not all equally strong/complex

By investigating such assumptions
and their power, we may:

- identify “nice” NF assumptions

- discover entirely new constructions



Bilinear Techniques & Preprocessing

seeking to minimize #group elements in a NI proof

very different construction approach

# messages offline secure : .
supported . g publicly main
functions : : work is w. verifier verifiable? assumption

unc offline online cheap? oracle? ‘ P
[Groth]
[Lipmaal] NP 1 1 NO YES YES “KEA”
[GGPR]

the verifier must preprocess
the circuit to make a CRS



Bootstrapping SNARKSs:

A New Path To the Holy Gralil

[Bitansky, Canetti, C, Tromer]



Bootstrapping SNARKSs

provided a SNARG has a natural proof of knowledge
(all known ones do)
its efficiency properties can be improved to “optima

|H

# messages offline secure ) i
g supported workis  w. verifier publicly main
functions  offline online cheap? oracle? verifiable? assumption
-~ NP 1 1 X X X X
Beetb] ()
NP 1 1 YES X X X+ CRH

ADDITIONAL EFFICIENCY BONUSES

® complexity preservation:

proverin T - poly(k) time for T time computations
S - poly(k) space S space

® transformation does not invoke the PCP theorem



The Old Path

Sl 2
A

% 3
ol
M

&
E

Kilian then FS

w/ “RO HASH”
preprocessing (pv) SNARK

PCP

[Groth]
[Lipmaa] W/ “KEA”
[GGPR]

machine
computations



A New Path

)

Kilian then FS
w/ “RO HASH”

preprocessing (pv) SNARK

PCP

[Groth]
[Lipmaa] W/ “KEA”
[GGPR]

machine
computations



A New & Better Path

any SNARK

(no matter how v

SNARK line preprocessing (pv) SNARK

PCP

[Groth]
[Lipmaa] W/ “KEA”
[GGPR]

machine
computations



A General Technique
For Making Preprocessing SNARKSs

[Bitansky, C, Ishai, Ostrovsky, Paneth]



How Make Preprocessing SNARKs?

supported

# messages offline secure
work is w. verifier
cheap? oracle?

publicly main
verifiable? assumption

functions  ,ffline online

[Groth]
[Lipmaa]
[GGPR]
[BCIOI\’]

NP 1 1 NO YES YES “KEA”

\

General technique to make preprocessing SNARKs:

Step 1
Step 2

design a 2-message linear interactive proof (LIP)
force prover to act as a linear function



A New & Better Path

any SNARK

(no matter how c

SNARK line preprocessing (pv) SNARK

PCP, linear targeted
[BCIOP] Lp  malleability

machine /

computations




REST OF TALK

1) on bootstrapping SNARKs
[Bitansky, Canetti, C, Tromer]

2) on making preprocessing SNARKs
[Bitansky, C, Ishai, Ostrovsky, Paneth]



ON
BOOTSTRAPPING SNARKS



Theorem
Suppose CRHs exist.

Then there are efficient T; and T, such that:
any SNARK

Ty

complexity-preserving SNARK

Tz

complexity-preserving PCD

complexity-preserving = - no preprocessing
- prover has quasi-optimal
time & space complexity



high-level intuition
with no abstraction layers for

Theorem’ (removing preprocessing)
Suppose CRHs exist.

Then there is an efficient T such that:

preprocessing publicly-verifiable SNARK

g

publicly-verifiable SNARK

WHAT DO WE DO??




The Core Idea:
bootstrap the SNARK

Main Observation
only need to budget for small computations...
as small as SNARK verification

(plus a bit more)

= inefficiencies are "localized”
and thus become inexpensive!



ON MAKING
PREPROCESSING SNARKS



Designing Efficient Arguments

Step 1: information-theoretic probabilistic checking,
in @ model where the prover is restricted in some form

Step 2: use cryptography to “implement” the model

EXAMPLES
Step 1 = design a PCP
Step 2 = force prover to commit to a PCP

Step 1 = design a nsMIP
Step 2 = force prover to act as no-signaling provers

Step 1 = design an MIP
Step 2 = force prover to act as non-communicating provers



Designing Efficient Arguments

Step 1: information-theoretic probabilistic checking,
in @ model where the prover is restricted in some form

Step 2: use cryptography to “implement” the model

A New Example

design a 2-message linear interactive proof
force prover to act as a linear function

Q1: how to design LIPs with suitable efficiency?
Q2: how to use crypto to make a prover linear?



Linear Interactive Proofs (LIPs)

The prover is algebraically bounded: specifically, linear.

91, -, qQm € F
Aq, ..., € IF\ V(x)

pd
~

P(x,w)

INeF*Mm peFfs.t. a=Tlq+Db
(IT, b depend on x, w)

We are interested in LIPs that are:
- succinct: k = 0(1) -
- input oblivious: V = (Q,D) s.t. < 4 -» 4m QL —F

A1) o, A




Step 2: Making Provers Linear
WARM UP: from LIP to privately-verifiable pp SNARK

TOOLS:
LIP (P, (Q,D))

B q11-"1qm uif ot

P(x,w)| a,,.. a ‘uEIF*
” it

I(C ryptO”




Step 2: Making Provers Linear
WARM UP: from LIP to privately-verifiable pp SNARK

<'=—L;E- EnCpk <q—:1 Q /r ER ]F*
- <
< Encpy dm
|uer
proving key verificatiin key
o = (pK,Cq, e, Cy) T = (sk,u)
V(t, x,m)
P(0,x,w) €1 | [Decg |22
= : . D (. u)
~ a x }
HomEval, (P(x,w), ¢) | °k, | [ Decgy | 5




Step 2: Making Provers Linear
WARM UP: from LIP to privately-verifiable pp SNARK

Linear Targeted Malleability (~[BSW]) non-falsifiable

encryption scheme that ONLY aIIowg\f assumption

IF -additive homomorphic operations
(e.g., Paillier)

proving key verification key
o = (pk,Cqy, ..., C) T = (sk,u)
V(t, x,m)
P(O-J X, W) ﬁ) Decsk i.l)
- 5 | DxCu)
~ a X )
HomEval, (P(x, w), ¢) Lk | | Decgy | =%




Step 2: Making Provers Linear

What happens if we want public verifiability?

Being ab
implies t

= ()W

e to test properties of the prover’s answers
nat we must give up semantic security.

nat notion of security should Enc,i(g;) satisfy?

In particular, security must be preserved even
given certain leakage on the queries.

I=> (2) What kinds of LIPs then suffice?



Step 2: Making Provers Linear

(1) What notion of security should Encpx(q;) satisfy?
(1) A-power OW
s « A(pk, Encyi(s), Encyi(s2), ..., Encpr(s2))

p” « A(pK, Encpk(p1(s)), ..., Encpi(pe(s)))
p*(s)=0,p" # 0 D1, e, Pp Of degree A

(2) What kinds of LIPs then suffice?
(2) LIPs with low-degree verifiers
Def: an LIP (P, (@, D)) has degree (dg, dp) if

i) @(7) has total degree at most d,

ii) D,,(u, @) has total degree at most dj
(Q and D,. are multivalued multivariate polynomials over [F)



Step 2: Making Provers Linear

SKETCH

s Q1 .
<— EnCpk;’w Q /r Er IF
Con ) A
Jn Encpi |« qm Enepk( 2)
|uer pk
proving key verification ke
o = (pk, ¢, ..., Cm) t=
V(t, x,m)
P(O-J X, W) &) Decsk i}
- f | DaCw)
~ a X )
HomEval, (P(x,w), ¢) | °k, | [ Decgy | 5




Step 2: Making Provers Linear

SKETCH
,,,,, (pk, D+ Gen(1%)
<i"' Encpkﬁwa 0 TEg
Coy == ) A
< Encpi |[< Am E”Cpk(u)
|uer pk
proving key verification ke
0= (ka % URTLY Cm) t=
V(t, x,m)
c "
P(O':_x: w) _1> ¢ Dx(,) AEncpk(u)
HomEval, (P(x, w), ¢) Lk,




Step 2: Making Provers Linear

SKETCH
k ..........................................
G (1%) = _m(pk i)as; Gen(1%)
. 1 *
<_ Encpkgw 0 T €r F
c = ) A
<—mm: qm Encpk(u)
|uer pk
proving key verificatiin ke
o = (pk,cy, ., Cm) t=
V(t, x,m)
¢
P (a'_’" w) 1, |HomEval, (Dy, &, AEncy (1))
HomEval, (P(x, w), ¢) Sk, € Encpk(o)?




Step 2: Making Provers Linear

SKETCH - test root with bilinear map so need dp = 2
- similar linear TM assumption

Ll (1F) = _(pk, i)w?_ Gen(1%)

ll!l:Tl ﬁlmm

iy ql *
= EnCpk;M 0 T Ep IF
Cop [ ) AR
~m El‘lek qm ncpk(u)
|uer pk
proving key verification ke
o = (pk,cy, ., Cm) t=
V(t, x,m)
P(O-J X, W) 61 R
HomEvalpk (P (JC ) W) ) C) Ck; “tests quadratic roots”




publicly-verifiable pp SNARK

Step 2 T v

LIP with degree (poly(k),2)

Step 1 T

277




publicly-verifiable pp SNARK

Step 2 T v

LIP with degree (poly(k),2)

Step 1 T

Linear PCP with degree (poly(k),2)




Linear PCPs (LPCPs)

A PCP in which (honest and dishonest) proofs are [F-linear.

4y, 9k EFT

. @M
m -k Aq, ..., € IF\ V(x)

(7t depends on x, w)



Linear PCPs (LPCPs)

A PCP in which (honest and dishonest) proofs are [F-linear.

4y, 9k EFT
m
mEF a4, ...,ag E]F\ V(x)

(7t depends on x,w) @i = (1T, q;)

Similarly, input oblivious: V = (Q, D) s.t.

1, qk 0 TE&

|u€ F*
D and degrees (dQ, dD).
X




Linear PCPs (LPCPs)

A PCP in which (honest and dishonest) proofs are [F-linear.

4y, 9k EFT
m
mEF a4, ...,ag E]F\ V(x)

(7t depends on x,w) @i = (1T, q;)

Two technical notes:

(1) linear PCP in [IKO,SMBW,SVP+,SBV+] does not
restrict oracle to be linear in dishonest case

(2) not the same as linear PCPP in [BSHLMO09,Meil2]; there
it is a proximity tester for the kernels of linear circuits



From LPCPs To LIPs

Given a k-query m-length LPCP, how to construct an LIP of
similar efficiency?

91 qk € [F™
m
mEF ay,..,ax EF V(x)

Why isn’t an LPCP already an LIP? Consistency.



From LPCPs To LIPs

Given a k-query m-length LPCP, how to construct an LIP of
similar efficiency?

1 9k € ™
m
el a, .., ax €F V(x)

-+

consistency check
_ vk
Qi+1 = Di=1 @iq; Where ay, ..., ap €Eg

@ preserves algebraic properties!
/

qd 1)) q’(k+1)m € F

[l € )
Il:,-(k+1)><(k+1)m a'l, e a’k+1 el V(JC)

Tl




publicly-verifiable pp SNARK

Step 2 ﬁ \/

LIP with degree (poly(k),2)

Step 1 ﬁ\/

Linear PCP with degree (poly(k),2)

Step O ﬁ

277



publicly-verifiable pp SNARK

Step 2 ﬁ \/

LIP with degree (poly(k),2)

Step 1 ﬁ\/

Linear PCP with degree (poly(k),2)

Step O ﬁ

designing LPCPs for NP with O(1) queries is easy!



publicly-verifiable pp SNARK

Step 2 ﬁ \/

LIP with degree (poly(k),2)

Step 1 ﬁ\/

Linear PCP with degree (poly(k),2)

[ALMSS] [GGPR]
Step O m = 0(IC|) m = 0(|Cl)
k=3 k =3 (Or 4‘)

system of O(|C|) quadratic equations over F



Two Known Paths To The Holy Grail

SNARK line preprocessing SNARK

PCP

LPCP
machine %7 C

computations



THANKS!
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