Languages with Efficient Zero-Knowledge PCP are in SZK

MOHAMMAD MAHMOODY (CORNELL)

DAVID XIAO (LIAFA)
Probabilistically Checkable Proofs (PCPs)

Hybrid of “traditional” and “interactive” proofs:

- **Completeness**: if \(\varphi \in L \) there is some acceptable proof \(\pi \)
- **Soundness**: if \(\varphi \notin L \) any proof rejected with high prob.

[Babai-Fortnow-Lund’90]: \textbf{NEXP} provable using PCPs
Zero-Knowledge PCPs

Def: View of any efficient verifier can be efficiently "simulated" (similar to ZK interactive proofs)

- Harder to achieve zero-knowledge PCPs (than provers) verifier can read any PCP answers.
- Easier to achieve sound PCPs (than provers).

[Kilian-Petrink-Tardos’97] \textit{NEXP} has (statistical) zero-knowledge PCPs

- Inherently of super-polynomial length (even for \textit{NP})
Efficient Zero-Knowledge PCPs

Efficient PCP:

- Given any query q, the answer $\pi(q)$ can be computed in time $\text{poly}(|\varphi|)$
- Meaningful even if PCP has super-polynomial length

The zero-knowledge PCP of [KPT’97] is not efficient even for NP

Main Question: Are there efficient (statistical) ZK PCPs for NP?
Main Question: Are there efficient (statistical) ZK PCPs for NP?
Motivation: Basing Crypto on Tamper Proof Hardware

[Kat07, MS08, CGS08, GKR08, GISVW10, Kol10, GIMS10, ...]

[Goyal-Ishai-M-Sahai’10] Unconditional (statistical) zero-knowledge for NP in Interactive PCP model [KR’08]: Prover generates an efficient PCP π + answers 2 challenges

Implies zero-knowledge for NP using 1 stateless hardware and 4 messages

Left open: Using only one stateless hardware? Equivalent to our main question: Are there efficient ZK PCPs for NP?
Motivation: Resettable Statistical Zero-Knowledge

Resettable ZK [CGGM’00]: Verifier can “reset” (rewind) prover to previous state

[Garg-Ostrovsky-Visconti-Wadia’12] Quad-Resid. has an efficient single prover
resettable statistical zero-knowledge.

Corollary: Efficient statistical zero-knowledge PCPs exist for Quad-Resid
Proof: Let \(\pi(q_1, q_2, ..., q_t) \) returns the sequence of answers to \(a_1, a_2, ..., a_t \)
Limits of Efficient (statistical) Zero-Knowledge PCPs?

Main Question: Are there efficient ZK PCPs for \textbf{NP}?

[Ishai-M-Sahai’12] Any language with an efficient ZK PCP using a non-adaptive verifier is in co-AM

\textbf{Corollary:} No efficient ZK for \textbf{NP} using a non-adaptive verifier unless the polynomial-time hierarchy collapses [BHZ’87]
Our Result

Theorem: Any language L with an efficient statistical ZK PCP has a statistical zero-knowledge single-prover proof system (i.e. $L \in SZK$)

- Removes the non-adaptivity constraint of [IMS’12]
- Improves the $coAM$ bound to $SZK \subseteq coAM$

Corollary: No NP-complete language has an efficient statistical ZK PCP unless the polynomial-time hierarchy collapses.
Ideas behind the proof
Approach of [IMS’12]

[IMS’12]: If language L has an efficient statistical ZK PCP with a non-adaptive verifier $\Rightarrow L \in \text{AM} \cap \text{coAM}$.

Goal: Decide both L and \overline{L} with help of an untrusted prover in $O(1)$ rounds.

Have: Statistical ZK Simulator SIM for PCP

Protocol: for both L and \overline{L}:

1. "Extract" a PCP π from $SIM(\varphi)$

2. Run PCP verifier V_{PCP} over π

With help of untrusted prover [GS’89, GVW’01, HMX’10]
Rely on non-adaptivity of V_{PCP}
Naïve Approach

Theorem: Any language L with an efficient statistical ZK PCP has a statistical zero-knowledge single-prover proof system (i.e. $L \in \text{SZK}$)

Given φ: want to find out $\varphi \in L$ or $\varphi \notin L$

- Run $\text{SIM}(\varphi)$ to generate view of Verifier
- Decide based on view

✓: If $\varphi \in L$ we will get $\text{view} = \text{accept}$ by ZK

➢: If $\varphi \notin L$ might also generate $\text{view} = \text{accept}$
Our Approach

Theorem: Any language \(L \) with an efficient statistical ZK PCP has a statistical zero-knowledge single-prover proof system (i.e. \(L \in SZK \)).

Idea: Naïve approach with a few more “checks” in \(SZK \):

- Run \(SIM(\varphi) \) to generate \(\text{view} \) of Verifier
- \(\text{view} = (r, q_1, a_1, \ldots, q_n, a_n) \)
- \(r = \) randomness, \(q_i = i^{\text{th}} \) query, \(a_i = i^{\text{th}} \) answer
Our Approach

Idea: Naïve approach with a few more “checks” in SZK

- Run $SIM(\varphi)$ to generate view of Verifier
- $\text{view} = (r, q_1, a_1, ..., q_n, a_n)$
- $r =$ randomness, $q_i =$ i’th query, $a_i =$ i’th answer
Our Approach

Idea: Naïve approach with a few more “checks” in SZK

- Run $SIM(\varphi)$ to generate view of Verifier
- $view = (r, q_1, a_1, ..., q_n, a_n)$
- $r = \text{random} \rightarrow view$ of each answer
- Let $q_i = \text{question}$ and $a_i = \text{its answer}$

Main Observation:
If $H(a \mid q) \approx \text{small}$ \Rightarrow answers in view close to some PCP \Rightarrow Soundness

Completeness? By running k copies of V_{PCP} make $H(a \mid q) \approx \frac{\text{poly}(n)}{k}$

$\text{poly}(n)$: # random bits of efficient algorithm computing PCP π
Putting Things Together

Let malicious V^k be k executions of honest verifier V_{PCP}

- Run $SIM(\varphi)$ to generate $(\text{view}_1, \ldots, \text{view}_k)$ of Verifier
- $\text{view}_k = (r, q_1, a_1, \ldots, q_n, a_n)$
- $r =$ randomness, $q_i =$ i’th query, $a_i =$ i’th answer
- Let $q = q_i$ for unknown random $i \leftarrow [n]$ and a its answer

Check that:

1. view_k is accept.
2. $H(a \mid \text{view}_1, \ldots \text{view}_{k-1}, q) \approx \text{small}$
3. $H(r \mid \text{view}_1, \ldots \text{view}_{k-1}) \approx \text{large}$

$O(1)$ checks in SZK can also be done in SZK [Vadhan’99]
Summary

Theorem: No efficient statistical ZK PCP for **NP** unless polynomial-time hierarchy collapses -- removing the non-adaptivity barrier of [IMS’12]

Open: Characterize languages with efficient ZK PCPs.
Conjecture: All of **SZK** (sufficient to make compiler of [GOVW] efficient)

Open: Number of messages (2 or 3 or 4) needed in addition to an efficient PCP (hardware token) to get statistical zero-knowledge for **NP**
Thank You!