A Full Characterization of Functions that Imply Fair Coin Tossing and Ramifications to Fairness

Gilad Asharov

Bar-Ilan University

Bar-Ilan University

Bar-Ilan University

Yehuda Lindell

IBM Research

Tal Rabin

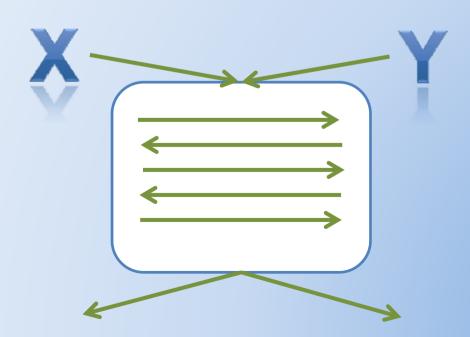
TCC 2013

Secure Multiparty Computation

- A set of parties with private inputs wish to compute some joint function of their inputs
- Parties wish to preserve some security properties. E.g., privacy and correctness
- Security must be preserved in the face of adversarial behavior by some of the participants, or by an external party

Fairness

- The adversary receives an output if and only if the honest party receives an output
 - In some sense, parties receive outputs simultaneously



Coin-Tossing

The coin-tossing functionality:

$$f(\lambda,\lambda)=(U,U)$$

(U is the uniform distribution over $\{0,1\}$)

- both parties agree on the same uniform bit
- no party can bias the result
- In 1986, Cleve showed that it is impossible to construct a fair coin-tossing protocol
 - Intuitively, no simultaneous exchange, so one party always has more information about the result, and can abort and bias the result

Fairness for Other Functionalities

- Gordon, Hazay, Katz and Lindell [STOC08] showed that there exist some non-trivial functions that can be computed with complete fairness!
 - Any protocol with no embedded XOR (essentially the less-than functionality)
 - Some specific functionalities with embedded XOR

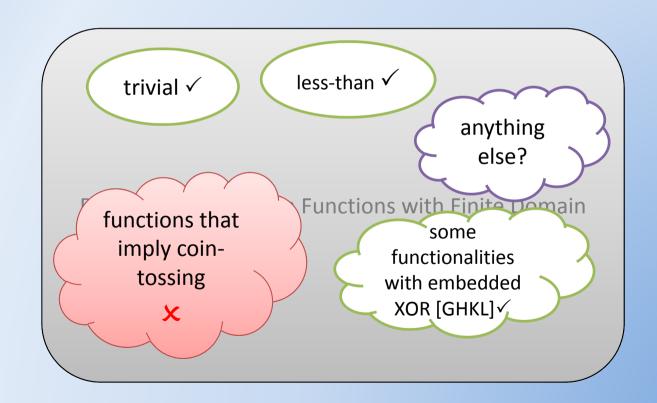
Characterizing Fairness

A fundamental question:

What functions can and cannot be securely computed with complete fairness?

 The only known impossibility result for fairness today is still that of Cleve

What Do We Know About the World?



Characterizing Fairness

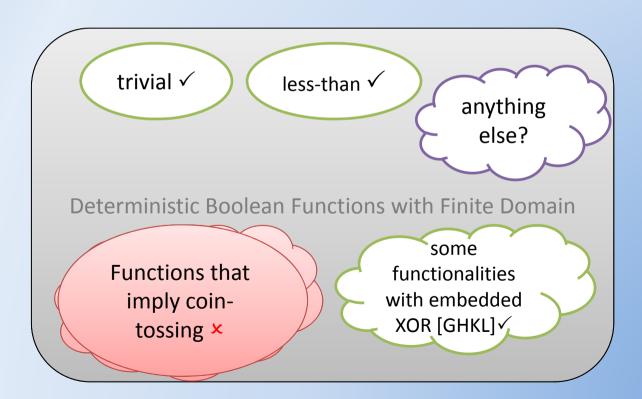
- Which Boolean functions with finite domain can be computed with complete fairness?
- Can we characterize the functions via a property such that:
 - If the function satisfies the property:
 it can be computed fairly
 - If the function does not satisfy the property:
 it cannot be computed fairly

Our Main Result

- We give a simple *property* (a criterion) such that
- If the function satisfies the property –
 it implies coin-tossing
 - Thus, it cannot be computed with complete fairness
- If the function does not satisfy the property –
 it does not imply coin-tossing*
 - We know exactly what Cleve's impossibility rules out
 - Proving impossibility for other functions requires a new proof (cannot be reduced to Cleve)

What Do We Know About the World?

Bæffærrecourr\Woorkk



	y ₁	y ₂
X_1	0	1
X_2	1	0
X ₃	1	1

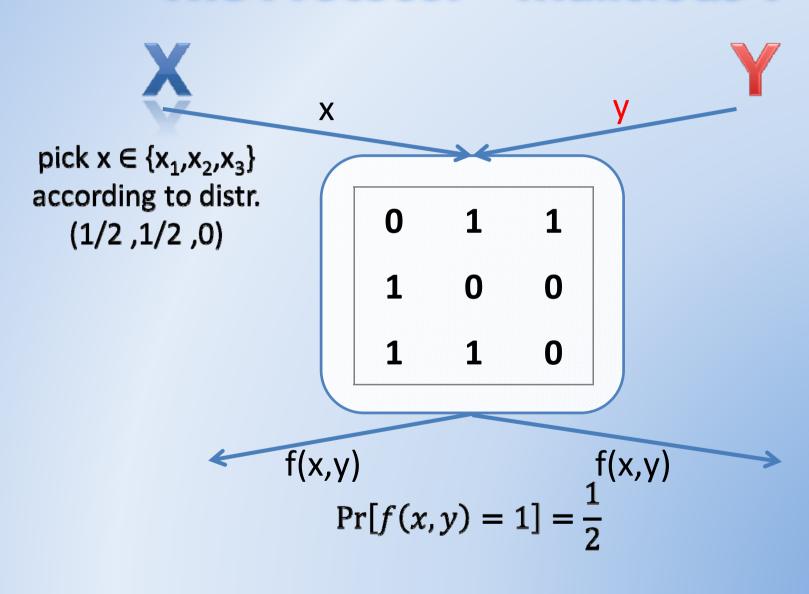
	y ₁	y ₂	y ₃
X_1	0	1	1
X_2	1	0	0
X ₃	1	1	0

	y ₁	y ₂	y ₃
X_1	0	1	1
X_2	1	0	0
X ₃	1	1	0

		y ₁	y ₂	y ₃
1/2	X ₁	0	1	1
1/2	X ₂	1	0	0
0	X ₃	1	1	0

		y ₁	y ₂	y ₃
1/2	X ₁	0	1	1
1/2	x ₂	1	0	0
0	X ₃	1	1	0
		1/2	1/2	1/2

The Protocol – Malicious Y



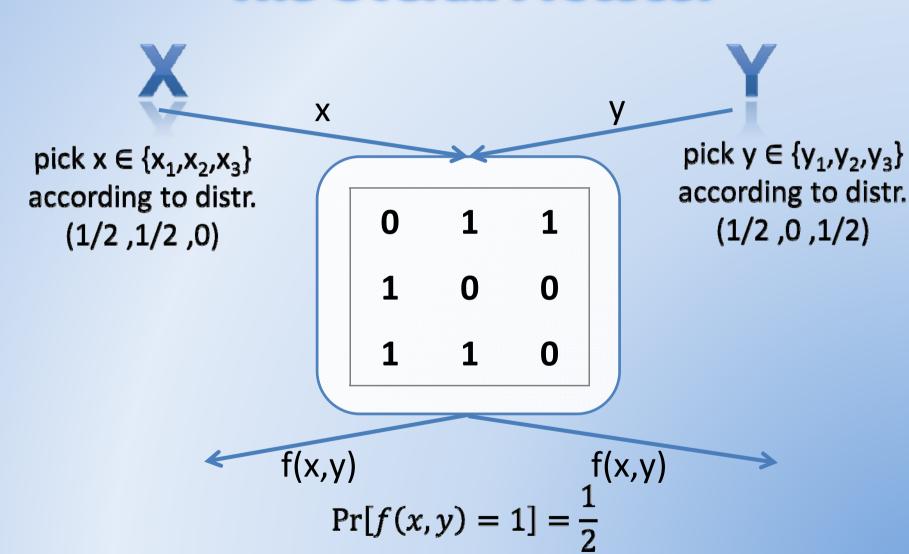
What About Party Y?

	y ₁	y ₂	y ₃
x_{1}	0	1	1
X_2	1	0	0
X ₃	1	1	0

What About Party Y?

		1/2	0	1/2
		y ₁	y ₂	y ₃
1/2	X_1	0	1	1
1/2	X ₂	1	0	0
1/2	X ₃	1	1	0

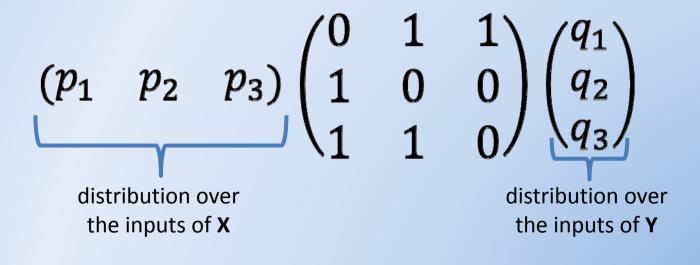
The Overall Protocol



Another Point of View

	y ₁	y ₂	y ₃
X_1	0	1	1
X_2	1	0	0
X ₃	1	1	0

Another Point of View



 $= \Pr[output = 1]$

Another Point of View

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \\ q_3 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \\ q_3 \end{pmatrix} = \frac{1}{2}$$

$$(p_1 \quad p_2 \quad p_3) \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1/2 \\ 0 \\ 1/2 \end{pmatrix} = (p_1 \quad p_2 \quad p_3) \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \end{pmatrix} = \frac{1}{2}$$

Generalizing the Above: Definitions

f is δ_1 -left balanced

if there exists a probability vector $\boldsymbol{p}=(p_1,\dots,p_m),\, 0\leq \delta_1\leq 1$ such that: $\boldsymbol{p}\cdot M_f=\delta_1\cdot \mathbf{1}_\ell$

f is δ_2 -right balanced

if there exists a probability vector $\mathbf{q}=(q_1,\dots,q_\ell),\, 0\leq \delta_2\leq 1$ such that: $M_f\cdot\mathbf{q}^T=\delta_2\cdot\mathbf{1}_m^T$

f is δ -balanced

if f is δ -left balanced and δ -right balanced

Our Main Theorem

• If f is δ -balanced for some $0<\delta<1$, then it **implies** coin-tossing

• If f is not δ -balanced for any $0 < \delta < 1$, then it **does not imply** coin-tossing*

Implying Coin-Tossing

Theorem

If f is δ -balanced for some $0<\delta<1$, then it **implies** cointossing

Proof:

f is δ **-balanced** \Rightarrow coin tossing for δ -coin

Apply von-Neumann's method to toss a fair-coin

The Impossibility Result

Theorem

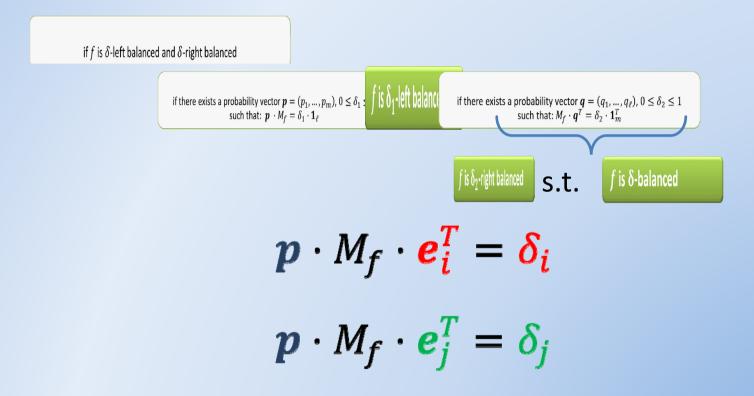
If f is not δ -balanced for any $0<\delta<1$, then it does not imply coin tossing*

- We show that there does not exist a fair coin-tossing protocol in the f-hybrid model
 - For any coin-tossing protocol in the f-hybrid model, there exists an (inefficient) adversary that can bias the result
- Unlike Cleve the parties have some simultaneous exchange.
 Thus, a completely different argument is needed

Impossibility in the OT-hybrid model

- The adversary is inefficient
 - It computes the distributions over all possible random coins of an honest X
 - This computation can be approximated given an \mathcal{NP} -oracle
- We do not know how to construct an efficient adversary
- Impossibility still holds if the parties have an ideal OT
 - Embedded OR implies OT [Kilian 91]
 - A function that doesn't contain an embedded OR is 1/2balanced

Impossibility of a Single Invocation Non-Left-Balanced Function

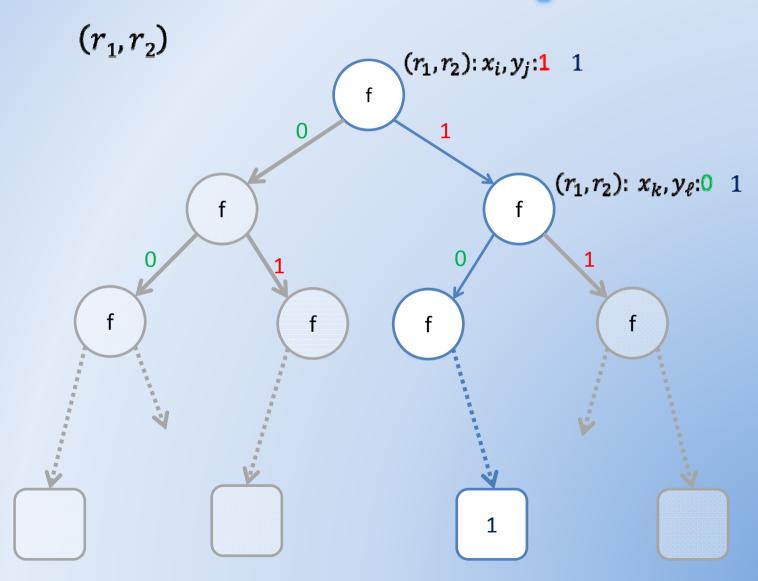


A malicious **Y** can always bias the probability to get 1 in a single invocation!

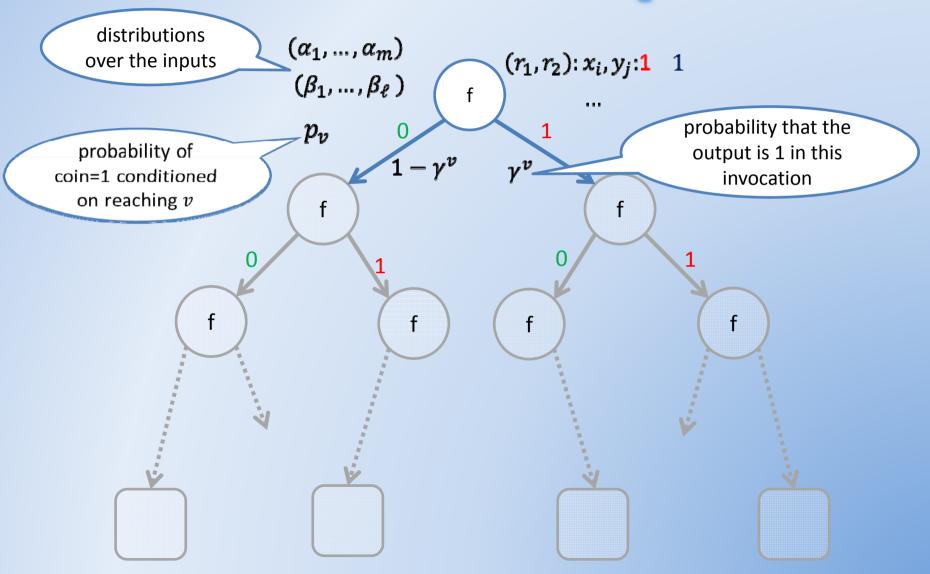
The Protocol Transcript Tree

We can assume that the protocol consists only of invocations of f

The Protocol Transcript Tree

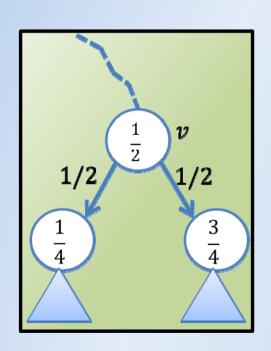


The Protocol Transcript Tree



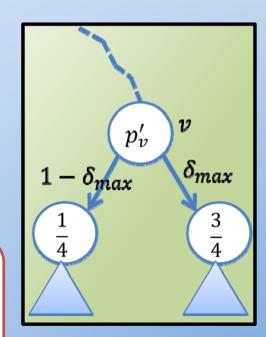
Attacking the Protocol

The adversary acts honestly but searches for a "jump" between probabilities in parent and children



instead using $oldsymbol{eta}^{oldsymbol{v}}$, use $oldsymbol{e}_i$ or $oldsymbol{e}_j$

We show that in any execution, such a "jump" exists



In The Paper

- We also study the case of a fail-stop adversary
 - Follows the protocol specifications but may abort prematurely
- Unclear how to model fail-stop in the ideal world
 - Is the simulator allowed to change the corrupted party's input?
- We consider two possible definitions and study fairness in both cases

Conclusion

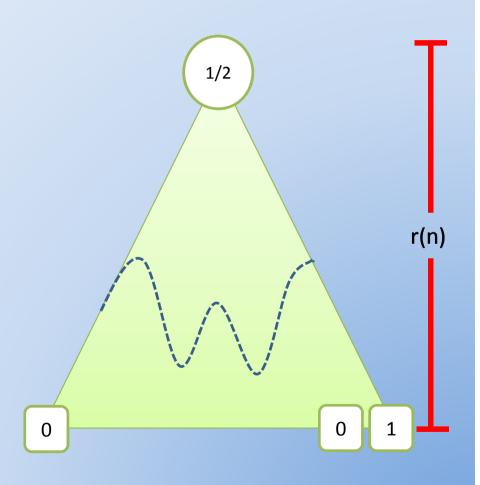
- We give a simple property (a criterion) s.t.:
 - If the function satisfies the property, it implies coin-tossing
 - If the function does not satisfy the property,
 it does not imply coin-tossing
- We consider the same question for fail-stop adversary
- This is an important step forward towards understanding fair secure computation

Thank You!!

An Execution

Every path (execution) from root to leaf has such a "jump":

- The probability in the root is 1/2
- The probability in each
 leaf is either 0 or 1



End of Proof Sketch