Concurrent Zero Knowledge in the Bounded Player Model

Vipul Goyal – Microsoft Research, India

Abhishek Jain – MIT and Boston University

Rafail Ostrovsky – UCLA

Silas Richelson – UCLA

Ivan Visconti – University of Salerno, Italy

Introductions

Meet

• (P, V) is **zero knowledge** if: there exists which can emulate in sinteraction with P.

Concurrent Zero Knowledge

• (P, V) is **concurrent zero knowledge** [DNS98] if ZK holds when V* may run many instances of protocol concurrently.

cZK in the Plain Model

- cZK exists in the plain model [RK99].
- Nearly logarithmic round complexity [KP01], [PRS02].
- Black box cZK requires almost logarithmically many rounds [R00], [CKPR01].
- Impossibility of cMPC [CF01], [CKL03], [L03], [L04]

 Open Problem: Is cZK possible in sublogarithmically many rounds?

Constant Round cZK in Other Models

- Timing Models [DNS98]
- Super Polytime Simulation [P03]
- Common Reference String [BSMP91]
- Bare Public Key [CGGM00], [SV12]
- Bounded Concurrency [B01]

 Constant Round cMPC exists in most of the above models.

Our Model – Bounded Player Model

- A bounded number of players will ever engage in the protocol.
 - Each player may play unbounded number of sessions.
- Relaxation of bounded concurrency model.
- Improvements over Bare Public Key model.
 - ➤ No preprocessing phase.
 - ➤ Non-blackbox simulation needed for cZK with sublogarithmically many rounds.
- cMPC impossible.
 - Evidence that BP model is close to plain model.

Main Theorem

- Assuming standard complexity theoretic assumptions there exists a cZK argument in the BPM.
 - \triangleright Slightly super-constant round complexity ($\omega(1)$)
 - ➤ Straight-line non-blackbox simulator.

Building the Protocol (Informal)

Building the Protocol (Informal)

Barak's Protocol – A Building Block

- Non-blackbox simulator obtains trapdoor by sending z, a commitment to a machine Π which predicts r.
- Achieves bounded concurrency. Our model allows for unbounded concurrency (bound is on number of players).

Our Starting Idea

 Can we bound the number of non-blackbox simulations required to learn each player's identity?

 Then we could use bound on total number of players to reduce to case of bounded concurrency.

The Preamble (informal)

We need to devise a way for the simulator to learn the secret key.

• Unfair coin flipping protocol obtaining $\sigma = \sigma_P + \sigma_V$

> P never decommits.

- P proves that σ_p is fair using Barak's protocol.
- V sends encryption of sk under public key σ.
- Proves correctness of ξ using WI.

The Preamble (informal)

Soundness:

- Soundness of (P_B, V_B) forces P* to send same value in (3) that he committed to in (1).
- Public key used by V to encrypt is random and so P* cannot know corresponding private key.
- Semantic security means P* learns nothing about secret key.

The Preamble (informal)

Zero Knowledge:

 Simulator can use trapdoor in Barak's protocol to prove a false theorem to V*.

Simulator:

- Send Com(0ⁿ)
- Run **Gen** obtaining key pair (σ, τ)
- Send $\sigma_p = \sigma + \sigma_V$.
- Use trapdoor to prove false theorem in (P_B, V_B) .
- Receive ξ , verify correctness and recover $sk = \mathbf{Dec}_{\tau}(\xi)$.

Main Problem

Problem: Adversarial verifier can interleave sessions.

We encounter the same issue as someone attempting to extend (P_B, V_B) to the setting of unbounded concurrency.

A Sample Simulation

Where to Cheat?

• At least $\omega(1)$ preamble blocks are needed per session.

• Theorem (Main Technical Lemma):

 $\omega(1)$ preamble blocks are sufficient.

We will:

- Construct distribution on {preamble blocks} describing where SIM will cheat.
- ➤ Prove that SIM will have to cheat at most a bounded polynomial number of times per player.

The Distribution

• Fix $k = \omega(1)$. Consider the protocol with k preamble blocks.

• Note the uniform distribution: $p_i = \frac{1}{k}$ does not work (V* always picks first preamble block).

• We use instead: $p_i = \varepsilon n^i$, where ε is such that $\sum_i p_i = 1$.

Proof Intuition of MTL (1/2)

 Recall we must bound the number of nonblackbox simulations required to learn sk.

In light of the terminology:

It suffices to show that V^* cannot win p(n) times without losing.

Proof Intuition of MTL (2/2)

- We bound Prob(V* wins) in terms of Prob(V* loses). \triangleright P(W) \leq 2n P(L).
- We bound P(W) in terms of n.

$$>P(W) \le \left(1 - \frac{1}{2n+1}\right)$$

Given n³ sessions, can bound Prob(V* wins all).

>P(V* wins all) ≤
$$\left(1 - \frac{1}{2n+1}\right)^{n^3} \le e^{-n}$$
.
> succeeds with high probability.

Conclusion

- We define the bounded player model.
 - >A natural model can bound players, not sessions.
 - Seemingly closer to the plain model than other existing models.
- We construct a cZK protocol in the BP model.
 - ➤ Sublogarithmic round complexity.
 - ➤ Straight line non-blackbox simulator.
- We construct a PDF with appealing properties.
 - ➤ Possible applications elsewhere.

Questions?