

Randomness-Dependent Message Security

Eleanor Birrell Kai-Min Chung Rafael Pass Sidharth Telang

Public key Encryption

• Goal:

Encryption scheme (Gen, Enc, Dec)
Formal security: CPA/CCA

CPA security

CPA security

m₀, m₁ do not depend on sk or r

m₀, m₁ do not depend on sk or r

m₀, m₁ do not depend on sk or r

- but key dependent messages (KDM) are useful!
 practically and theoretically ABBC, CKVW10, G09,
 BRS02,CL01, BPS08, BHHO08 etc.
 - Intensely studied, lots of work...

m₀, m₁ do not depend on sk or r

- randomness dependent messages (RDM)
 - implicit in MS09, HLW12, BBNRSSY09
 - explicit in HO10
 - much less studied

Why RDM?

1) RDM happens! (involuntary attack)

Why RDM?

1) RDM happens! (involuntary attack)

Why RDM?

2) RDM is useful! (voluntary attack)

e.g.

- MS09, HLW12: 1-bit CCA2 => many-bit CCA2
- HO10: lossy encryption => inj. OW. TDF.

RDM security [HO10]

security against any RDM function

"weak" RDM security

Hedged Encryption [BBNRSSY09] => weak RDM security

RDM security

2-circular RDM security

k-circular RDM security

k-circular RDM security

Question: Can we get circular RDM, or even RDM security i.e. security against any RDM function?

Our results

"Full" RDM security

i.e. security against any RDM function

- Impossible in standard model
- => circular RDM impossible too

$$f_0(r) = b'$$
 such that
 $Enc_{pk}(b';r)$ "signals" 0

$$f_1(r) = b'$$
 such that
 $Enc_{pk}(b';r)$ "signals" 1

$$f_0(r) = b'$$
 such that
 $Enc_{pk}(b';r)'s 1^{st}$ bit is 0

$$f_1(r) = b'$$
 such that
 $Enc_{pk}(b';r)'s 1^{st}$ bit is 1

$$f_0(r) = b'$$
 such that
 $Enc_{pk}(b';r)'s \stackrel{1}{4}^{st}$ bit is 0

$$f_1(r) = b'$$
 such that
 $Enc_{pk}(b';r)'s \stackrel{1}{1}^{st} bit is 1$

Use randomness extractor to get signal bit

Question: Can we get **bounded** RDM security?

i.e. security against *a priori* bounded size RDM functions?

Our results

Bounded circular RDM security

• **Theorem 1**: for any poly *s*, exists transformation s.t.

transformation: Enc(m; preprocess(r))

r needs to be "long"
 We also show: black-box barriers for proving RDM security if r is shorter than m

Our results

Bounded circular RDM security with "short" randomness

Theorem 2: For any poly s,
 exists scheme that is circular secure against size s
 RDM functions
 with arbitrary message and randomness length assuming lossy trapdoor function [PW08]

Thm1: Bounded circular RDM security from CPA/CCA

Thm1: Bounded circular RDM security from CPA/CCA

View RDM as indirect randomness leakage

• Idea:

```
use CPA secure (Gen,Enc,Dec) and r "long" enough Enc_{pk}(m\;;\;preprocess(r)\;)
```

preprocess: randomness extraction

 f_b : s-bounded leakage function $r|f_b(r)$: s-"bounded leaked source" $Enc_{pk}(m; extr(seed,r))$

 Seeded extractors don't work require seed and source independence!

 f_b : s-bounded leakage function $r|f_b(r)$: s-"bounded leaked source" $Enc_{pk}(m; extr(r))$

 need deterministic extraction that works for all s-bounded leaked sources


```
f_b: s-bounded leakage function r|f_b(r): s-"bounded leaked source" Enc_{pk}(m; extr(r))
```

 need deterministic extraction that works for all s-bounded leaked sources

```
We show: Deterministic extraction Lemma
for bounded leaked sources
w.h.p h \leftarrow t-wise ind. hash,
for all s-bounded leaked sources with high
min-entropy
f_h(r),h(r) \approx f_h(r),U
```

We show: Deterministic extraction Lemma for bounded leaked sources

w.h.p h ← t-wise ind. hash,
for all s-bounded leaked sources with high
min-entropy

 $f_b(r),h(r) \approx f_b(r),U$

TV00: Deterministic extraction Lemma for bounded samplable sources

w.h.p h ← t-wise ind. hash,
for all s-bounded samplable sources X with
high min-entropy

 $h(X) \approx U$

Bounded circular RDM security

For any poly s

any CPA secure Enc

circular secure against size s
RDM functions

Enc(m ; hash_{t-wise indep}(r))

 In paper: black-box barriers for proving RDM security on a falsifiable assumption if r is shorter than m Bounded circular RDM security with "short" randomness?

Thm2: Bounded circular RDM security with **arbitrary** message and randomness length from lossy trapdoor function (LTDF)

Hedged Encryption [BBNRSSY09]

secure w.r.t. RDM functions don't depend on pk

from lossy trapdoor functions (LTDF)

crooked LHL [DS08]
For all sources X
with high min-entropy
and functions with
small range f
f(h(X)) ≈ f(U)

works only when X and h are independent

We show: Crooked det. ext. for bounded leaked sources

w.h.p $h \leftarrow$ t-wise ind. hash,

for all bounded leaked sources X with high min-entropy and functions with small range f

$$f(h(X)) \approx f(U)$$

open problem
Almost t-wise doesn't suffice

Instead we modify scheme so that we don't need permutation

=> can use standard polynomial construction, invert with Berlekamp algorithm

RDM (why? it happens and it's useful)

"Full" RDM security

i.e. security w.r.t. all RDM functions

- Impossible in standard model (rules out circular)
 - Secure construction in "ultra-weak" RO model

(i.e. reduction neither programs oracle nor sees queries to it)

"Bounded" circular RDM security

i.e. security w.r.t. RDM functions of *a priori* bounded size

- From lossy trapdoor functions
- From CPA/CCA secure schemes
- construction with "long" randomness
- barriers for secure constructions with "short" randomness