Implementing Resettable UCfunctionalities with Untrusted Tamperproof Hardware-Tokens

Nico Döttling, Thilo Mie, Jörn Müller-Quade & <u>Tobias Nilges</u>
Karlsruhe Institute of Technology

Motivation

- [Katz07] introduced tamperproof hardware as a setupassumption
- Allows for UC-secure protocols which are not possible in the plain model
- Interaction can be shifted from one party to the token, making protocols non-interactive*
- Stateful token: OT is possible

^{*}for the sender

Untrusted resettable hardware

- What happens if the token is resettable?
- We know we can make most protocols resettably secure with standard techniques (e.g. [CGGM00])
- Use some general purpose MPCcompiler (e.g. CLOS02) to get UCsecurity for MPC

We get non-interactive resettable UC-secure MPC

CRS suffices for this!

Our Results

- Open Question: How to implement a CRS with untrusted resettable tamper-proof hardware?
- Our Results:
 - CRS with a single resettable token and an interactive initialization phase
 - Non-interactive protocol for a resettable CRS with two resettable tokens
 - Impossibility result for non-interactive protocols with a single resettable token

Related Work

UC-secure 2PC using stateless hardware

- [CGS08]
 - Assuming OT in the plain model
 - Requires interaction
- [GIS+10]
 - Several tokens for interactive case
 - Non-interactive protocol with semi-honest sender
- CRS protocol similar to ours independently presented by [CKS+11], but not the non-interactive case

Starting Point

Blum coin toss

CRS with one resettable token

- Basic idea: Blum coin toss using the resettable token as the commitment
- Problem: Token must reveal the coins of Alice only after Bob sent his coins to Alice
- Solution: Lock the token with a password

First Try

Token (y)

a correct?

First Try

First Try

Token (y)

a correct?

CRS with one resettable token

Problem:

- Not simulatable
- We want to extract the secret from the token without knowing the password a
- Solution: Use a resettably-sound zero knowledge argument of knowledge

Second Try

Second Try

CRS with one resettable token

- What do we have:
 - we can implement a CRS with a resettable token
 - we only need a one-time initialization phase
 - it is UC-secure (we will come to this later)
 - But: Token has to be convinced that the CRS is valid
- Solution: We use a signature on the CRS and can just let the token verify the signature

Final Protocol

Proof Idea

- Goal: Simulator has to be able to arbitrarily choose the CRS
- Corrupted Receiver:
 - Simulator has joint view of sender and token
 - Simulator is not a priori committed to its coins
 - Sets $y = x \oplus crs$ after receiving Bobs coins
- Corrupted Sender:
 - Simulator simulates protocol out of order
 - Simulator first constructs a malicious verifier V^* for the rs-ZK
 AoK using the source code of the token
 - Uses the non-black-box simulator on V^* and b to obtain y
 - Then sets $x = y \oplus crs$ and proceeds normally

CRS with two resettable tokens

We replace the sender with another resettable token

Problem:

- Previous approach fails here
- Once the receiver learns a, it can learn y and then reset the token
- CRS can be chosen by the adversary!

• Solution:

- Replace the sender-coins with a pseudorandom function
- The receiver has to commit to its input
- The Token no longer sends a password but signs the commitment
- Signature is used to unlock the second token instead of password

CRS with two resettable tokens

CRS with two resettable tokens

Impossibility Result

- Non-interactively implementing a point function with a single resettable token is not possible!
- A successful simulator for a corrupted token directly yields a cheating strategy in the real world
- Even if more than one token is used, nonblack-box techniques have to be used (which is expexted)

Summary

- We presented two protocols for CRSgeneration based on a Blum coin toss
 - with a single resettable token and an interactive initialization phase
 - non-interactively with two resettable tokens
 - Optimal w.r.t. communication complexity and # of tokens
- Non-interactively creating a CRS with a single resettable token is not possible

Thank You!