Implementing Resettable UC-
functionalities with Untrusted
Tamperproof Hardware-Tokens

NA
1IVIU

@Y

ioN

\ 7

+ivsat
Livadl

[KatzO7] introduced tamper-
proof hardware as a setup-
assumption

Allows for UC-secure protocols
which are not possible in the
plain model

lindAavantianm ~am laAa claifirAA £
IHILESIadCLioll Cdll D STHiLeu 11ofllli
one party to the token, making
protocols non-interactive*

Stateful token: OT is possible

[

£
|

*for the sender

I

l liadwvi ~ -
Ll clid

+AA +4+A A1 rAlvara
Ul LC U 1| LLad il IUUvvd

e
|

e

Steq resetia

e What happens if the token is
resettable?

e We know we can make most
protocols resettably secure with
standard techniques (e.g.
[CGGMO0])

e Use some general purpose MPC-
compiler (e.g. CLOS02) to get UC-
security for MPC

We get non-interactive resettable
UC-secure MPC

CRS suffices for this!

MNiivr DAaciil+e

Uur nesuits

 Open Question: How to implement a CRS with
untrusted resettable tamper-proof hardware?

e Qur Results:

— CRS with a single resettable token and an
interactive initialization phase

— Non-interactive protocol for a resettable CRS with
two resettable tokens

— Impossibility result for non-interactive protocols
with a single resettable token

+aAd \AArl,
LC U |

Df\l"\ 7\ F
N\NCIiadlC VVU

UC-secure 2PC using stateless hardware
e [CGSO8]

— Assuming OT in the plain model
— Requires interaction

e [GIS+10]
— Several tokens for interactive case
— Non-interactive protocol with semi-honest sender

* CRS protocol similar to ours independently presented
by [CKS+11], but not the non-interactive case

—
Q)
-5
f"|'.

)

oq

Y,
O
=)

—t

N

e Blum coin toss

Alice Bob
x € {0,1}¢ %’

¢ =com(x;r)

* com(x;r) = c?

z=xDy

Il an

en

\AZJ

O\ VVIL

~ A racatrFAalhlAa +A
11 UIIT JTOTCLLAVICT LU

e Basic idea: Blum coin toss using the resettable
token as the commitment

* Problem: Token must reveal the coins of Alice
only after Bob sent his coins to Alice

* Solution: Lock the token with a password

Alice Bob
x € {01 @

¢ =com(x;r)

xT

D com(x;7) = ¢?

z=x@Dy

Cived Twvig
11Ol 11 y
Alice Bob
a €{0,1}*
y €{0,1}% b, &P
\,.> x € {0,1}*
ars=x@y-—

\F(a) —p7—©

T a correct?

y=y"? /

crs=xDy

a correct?

Alice Bob

T e {0,1}*

Y, a

crs=xDy

=p7 %

wandthh Arna racatyFahlAa +ALLANA
CRS VVILIT UIITC 1TCOoOCLLAVIT LURNCI I

e Problem:

— Not simulatable

— We want to extract the secret from the token
without knowing the password a

* Solution: Use a resettably-sound zero
knowledge argument of knowledge

Second Try
Alice Bob
a €{0,1}*
y €{0,1}* b, &P
\,.> x € {0,1}%
ars=x@y-—

rs-ZK argument of knowledge
L = {b|3a € {0,1}*: b = F(a)}

|y accepts?

rDC wasi+thh AnA racat+FAalhlAa +ALAN
CIiI\D VWVILII UIIT 1COCLLAVIT LUNCII

e What do we have:
— we can implement a CRS with a resettable token
— we only need a one-time initialization phase

— it is UC-secure (we will come to this later)

— But: Token has to be convinced that the CRS is
valid

* Solution: We use a signature on the CRS and
can just let the token verify the signature

Cirnal DrAatAa~al
Filfidl rroLltuCOl
Alice Bob
a €{0,1}*
y € {0,1}* v
T x € {0,1}*

crs=x®y/a

o = Signggi(crs)- V%7

F(a) = b? —_—

T
, V accepts?
y
y = y’? /
crs=xDy

crs, g

> Verify,(crs, o)

roYvl 1UcCd

* Goal: Simulator has to be able to arbitrarily choose the CRS

* Corrupted Receiver:
— Simulator has joint view of sender and token
— Simulator is not a priori commited to its coins
— Sets y = x € crs after receiving Bobs coins

* Corrupted Sender:
— Simulator simulates protocol out of order

— Simulator first constructs a malicious verifier V* for the rs-ZK
AoK using the source code of the token

— Uses the non-black-box simulator on V*and b to obtain y
— Then sets x = y @ crs and proceeds normally

@Y

ens

I,

T DC i+lh FvarA racAartFAahlA A
IO VVILII LVWOUD 1CTCOoOCTCLLAlICT LU

 We replace the sender with another resettable token

 Problem:
— Previous approach fails here

— Once the receiver learns g, it can learn y and then reset the
token

— CRS can be chosen by the adversary!

e Solution:
— Replace the sender-coins with a pseudorandom function
— The receiver has to commit to its input

— The Token no longer sends a password but signs the
commitment

— Signature is used to unlock the second token instead of
password

%

rDC want+lh FrarA racAar+F~RIlA +ALLANA
CI\ND VVILII LVWU 1CTCOCLLADDIC LUNCI IO
Sender
&
&
l vk
Token 1 Bob Token 2
' x € {0,1}*
Vi accepts? . %61 €= com(x;r)

y =prf(c)

0 = Signggk(c) Y, a
, accepts:

, y' =prf(c)

y=y"? —

crs=xDy

~ racatyrFrarhlAa +ALANnA
VWU 1CTCOCLLANVIT LUNLCIIO

Sender

&
o
vk

Token 1 rs-ZK argument of knowledge
Ly = {(x,0)|3r € {0,1}*:¢c = com(x; 1)}

Vi accepts? . %61 €= com (L

y =prf(c)
o = Signgg(c) —¥?

2 H
, y' =prf(c)

y=y"? —

crs=xDy

rs-ZK argument of knowledge

L, = {(vk,c)|3c : Verify,(c,0) = 1}

L\|-I-\:
IJIHIL

DAaciil+
V ReSult

||p

 Non-interactively implementing a point
function with a single resettable token is not
possible!

e A successful simulator for a corrupted token

directly yields a cheating strategy in the real
world

e Even if more than one token is used, non-

black-box techniques have to be used (which
is expexted)

1 1 ¥y N VA

C ~
SJUIlIllllild

v\ 7
|

Yy

 We presented two protocols for CRS-
generation based on a Blum coin toss

— with a single resettable token and an interactive
initialization phase

— non-interactively with two resettable tokens

— Optimal w.r.t. communication complexity and # of
tokens

 Non-interactively creating a CRS with a single
resettable token is not possible

Thank You!

