On the Circular Security of Bit Encryption

Ron Rothblum Weizmann Institute

Circular Security

An encryption scheme is circular secure if it is "safe" to encrypt the decryption-key.

Def: [CL01,BRS02] a public-key scheme is circular secure if for every PPT *A*, $|\Pr[A^{Enc_e(d)}(e) = 1] - \Pr[A^{Enc_e(0^{|d|})}(e) = 1]|$ is negligible.

Circular Security

Q: Is it in general safe to encrypt your own key?

A: For some schemes (e.g. [BHHO08,ACPS09]) yes but in general **No!**

Circular Security

Easy counterexample: given semantically secure private-key encryption (*Enc*, *Dec*):

$$Enc'_{k}(m)$$
: if $k = m$ output k
else output $Enc_{k}(m)$

Can be extended to public-key.

Public Key Example

The encryption algorithm can test if the message *m* functions as a "good" decryption-key by using it to decrypt many random messages.

Circular Security of Bit Encryption

Since general case is false, focus on interesting special case of *bit-encryption*.

Why bit-encryption?

Messages are encrypted bit-by-bit: $Enc_e(\sigma_1, ..., \sigma_t) = Enc_e(\sigma_1), ..., Enc_e(\sigma_t)$

- 1. Most candidate FHE are bit-encryption whose semantic-security relies on their circular security (which is not understood).
- 2. Seems most natural way to foil the previous counterexample and get circular security for "free".

Bit-Encryption Conjecture

Conjecture: [Folklore]

Every semantically-secure bit-encryption scheme is circular secure.

Focus of this work is showing obstacles to proving the conjecture.

Our Results

- A scheme that is circular <u>insecure</u> but is semantically secure based on multilinear maps.
- 2. Cannot prove the conjecture via a blackbox reduction.
- 3. Equivalence of different security notions for circular security of bit-encryption.

Our Results

- A scheme that is circular <u>insecure</u> but is semantically secure based on multilinear maps.
- 2. Cannot prove the conjecture via a blackbox reduction.
- Equivalence of different security notions for circular security of bitencryption.

Our Assumption

An extension of an assumption made on groups with bilinear maps to groups with multilinear maps.

Multilinear Maps

Let G_1, \ldots, G_ℓ and G_T be cyclic groups of prime order p.

An ℓ -linear map is a (non-degenerate) function $e: G_1 \times \cdots \times G_\ell \to G_T$ such that for every $i \in [\ell]$ $e(g_1, \dots, g_i^a, \dots, g_\ell) = e(g_1, \dots, g_\ell)^a$ where $g_1 \in G_1, \dots, g_\ell \in G_\ell$ and $a \in \{0, \dots, p-1\}$.

Multilinear Maps

There exist trivial multilinear maps <u>unconditionally</u> but for crypto, need computational problems such as discrete-log to be hard.

Do there exist multilinear groups on which discrete-log (and friends) are hard? [BS03]

(Silly) Example

Consider
$$G_1 = \cdots = G_\ell = Z_p^+$$
.

Exponentiation in these groups corresponds to multiplication modulo p.

Consider:

$$e(x_1, \dots, x_\ell) = \prod_{i \in [\ell]} x_i \mod p$$

But discrete-log is easy in these groups!

SXDH Assumption [BGMM05, ACHM05]

There exists a bilinear (aka 2-linear) map where DDH is hard in both G_1 and G_2 .

DDH in group G: $(g, g^a, g^b, g^{ab}) \stackrel{c}{=} (g, g^a, g^b, g^c)$

For gen g \in G and a, b, c $\in_R \{0, \dots, p-1\}$

Exist concrete candidates (elliptic curves) on which SXDH is conjectured to hold.

Previously used for counterexample for 2-cycle security of general encryption [ABBC10, CGH12].

ℓ-multilinear SXDH Assumption

There exists an ℓ -multilinear map where DDH is hard in all groups G_1, \ldots, G_ℓ .

Until recently, no concrete cand $\ell = 3$.

p is the group order *n* is the security
parameter

[GGH13] give a lattice-based candidate (approximate) ℓ -linear map for $\ell < \frac{\log p}{n^2}$.

Approximate is fine for us but ℓ is not large enough.

Theorem

If the ℓ -linear SXDH assumption holds for $\ell > 2 \log p$ then there exists a semantically secure bit-encryption scheme that is not circular secure.

⇒ Either the bit-encryption conjecture is false or the SXDH assumption is easy on **all** *ℓ*-multilinear groups.

Our construction is based on ℓ parallel encryptions of an El-Gamal variant + a twist that breaks **circular security** but not **semantic security**.

El-Gamal Variant

Fix group G of order p for which DDH is hard and generator g.

Key Generation:

1. $x_0, x_1 \in_R Z_p$ 2. $u_0 = q^{x_0}$ and $u_1 = q^{x_1}$ 3. Public-key is (u_0, u_1) and private-key is (x_0, x_1) Encrypt(σ): 1. $r \in_R Z_p$ 2. Output $(q^r, (u_{\sigma})^r)$ Decrypt(c,d): 1. If $c^{x_0} = d$ output 0 else output 1

Our Scheme

Fix $G_1, ..., G_\ell$ of order p for which DDH is hard and gens $g_1, ..., g_\ell$. Key Generation:

1.
$$X = \begin{bmatrix} X[0,1] & X[0,2] & \dots & X[0,\ell] \\ X[1,1] & X[1,2] & \dots & X[1,\ell] \end{bmatrix} \in_R Z_p^{2 \times \ell}$$

2. $U = \begin{bmatrix} g_1^{X[0,1]} & g_2^{X[0,2]} & \dots & g_\ell^{X[0,\ell]} \\ g_1^{X[1,1]} & g_2^{X[1,2]} & \dots & g_\ell^{X[1,\ell]} \end{bmatrix}$

3. Public-key is U and private-key is X.

Encrypt(σ):

1. $r_1, ..., r_{\ell} \in_R Z_p$ 2. Output $((g^{r_1}, (U[\sigma, 1])^{r_1}), ..., (g^{r_{\ell}}, (U[\sigma, \ell])^{r_{\ell}})$

Our Scheme

Fix G_1, \ldots, G_ℓ of order p for which DDH is hard and gens g_1, \ldots, g_ℓ . Key Generation:

1.
$$X = \begin{bmatrix} X[0,1] & X[0,2] & \dots & X[0,\ell] \\ X[1,1] & X[1,2] & \dots & X[1,\ell] \end{bmatrix} \in_R Z_p^{2 \times \ell}$$

2. $U = \begin{bmatrix} g_1^{X[0,1]} & g_2^{X[0,2]} & \dots & g_\ell^{X[0,\ell]} \\ g_1^{X[1,1]} & g_2^{X[1,2]} & \dots & g_\ell^{X[1,\ell]} \end{bmatrix}$

3. Select $s \in_R \{0,1\}^{\ell}$ and set $\alpha = \sum_{i \in [\ell]} X[s_i, i] \mod p$ 4. Public-key is (U, α) and private-key is (X, s)Encrypt (σ) :

> 1. $r_1, ..., r_{\ell} \in_R Z_p$ 2. Output $((g^{r_1}, (U[\sigma, 1])^{r_1}), ..., (g^{r_{\ell}}, (U[\sigma, \ell])^{r_{\ell}})$

Get encryptions of bits $b_1, ..., b_\ell$ which are either $s_1, ..., s_\ell$ or all 0's.

$$y_1 \stackrel{\text{\tiny def}}{=} e\left(g_1^{X[b_1,1]\cdot r_{1,1}}, g_2^{r_{2,2}}, \dots, g_{\ell}^{r_{\ell,\ell}}\right)$$

 $y_i \stackrel{\text{\tiny def}}{=} e\left(g_1^{r_{1,1}}, \dots, g_i^{X[b_i, i] \cdot r_{i,i}}, \dots, g_\ell^{r_{\ell,\ell}}\right)$

If we multiply the y_i 's we obtain:

$$\prod_{i \in [\ell]} y_i = \prod_{i \in [\ell]} e(g_1^{r_{1,1}}, g_2^{r_{2,2}}, \dots, g_{\ell}^{r_{\ell,\ell}})^{X[b_i, i]}$$

If
$$b_i = s_i$$
 then

$$\prod_{i \in [\ell]} y_i = e(g_1^{r_{1,1}}, g_2^{r_{2,2}}, \dots, g_{\ell}^{r_{\ell,\ell}})^{\sum_{i \in [\ell]} X[s_i,i]}$$
With overwhelming
probability

$$\prod_{i \in [\ell]} y_i = e(g_1^{r_{1,1}}, g_2^{r_{2,2}}, \dots, g_{\ell}^{r_{\ell,\ell}})^{\sum_{i \in [\ell]} X[0,i]}$$

 \Rightarrow a distinguisher!

Our Results

- A scheme that is circular <u>insecure</u> but is semantically secure based on multilinear maps.
- 2. Cannot prove the conjecture via a blackbox reduction.
- Equivalence of different security notions for circular security of bitencryption.

Blackbox Impossibility Result

No blackbox reduction from circular-security of bit-encryption scheme to semantic-security (or even CCA security) of the <u>same</u> scheme.

Blackbox access to encryption-scheme and adversary.

Incomparable to [HH09] KDM blackbox separation.

[HH09] KDM Blackbox Impossibility

Two results:

1. No fully blackbox reduction from TDP to KDM security that contains a class of poly(n)-wise independent hash functions.

2. No fully blackbox reduction from essentially any crypto primitive to KDM security if reduction uses the KDM function as a blackbox.

A Blackbox Reduction

Our Results

- A scheme that is circular <u>insecure</u> but is semantically secure based on multilinear maps.
- 2. Cannot prove the conjecture via a blackbox reduction.
- 3. Equivalence of different security notions for circular security of bit-encryption.

Circular Security Definitions

Def 1: [CL01, BRS02] a public-key scheme is circular secure if for every PPT *A*, $|\Pr[A^{Enc_e(d)}(e) = 1] - \Pr[A^{Enc_e(0^{|d|})}(e) = 1]|$

is negligible.

<u>Def 2</u>: a public-key scheme is circular secure wrt key-recovery if for every PPT A, $Pr[A^{Enc_e(d)}(e) = d]$

is negligible.

Equivalence Result

For bit encryption:

Circular-security **distinguisher** ⇒ circular-security **key-recovery.**

<u>Corollary 1</u>: a key-recovery adversary for the previous counterexample.

<u>Corollary 2:</u> for current candidate FHE, breaking semantic-security ⇒ key-recovery (because oracle can be implemented for free).

Open Problems

- 1. Show a circular-security attack against any known bitencryption scheme.
- 2. Prove circular security or show an attack on any of the candidate FHE.
- 3. Extend [GGH13] for $\ell > 2 \log p$ or construct a counterexample under a nicer assumption (ideally from the existence of semantically secure encryption).

Thank you!