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Circular Security

An encryption scheme is circular secure if it is
“safe” to encrypt the decryption-key.

Def: |CLO1,BRSO2] a public-key scheme is
circular secure if for every PPT A4,

| Pr[AEnce(d) (e) = 1] _ Pr:AEnCB(Oldl)(e) — 1]
Is negligible.




Circular Security

Q: Is it in general safe to encrypt your own
key?

A: For some schemes (e.g. [BHHO08,ACPS09])
ves but in general No!



Circular Security

Easy counterexample: given semantically
secure private-key encryption (Enc, Dec):

Enc,(m): if k = moutputk
else output Ency(m)

Can be extended to public-key.
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The encryption algorithm can test if the
message m functions as a “good” decryption-key
by using it to decrypt many random messages.



Circular Security of Bit Encryption

Since general case is false, focus on interesting
special case of bit-encryption.

W hy b it-enc ry pt ion ? Messages are encrypted bit-by-bit:

Enc,(oy,...,0.) = Enc,(0y), ..., Enc, (o)

1. Most candidate FHE are bit-encryption whose
semantic-security relies on their circular
security (which is not understood).

2. Seems most natural way to foil the previous
counterexample and get circular security for
“free”



Bit-Encryption Conjecture

Conjecture: [Folklore]

Every semantically-secure bit-encryption
scheme is circular secure.

Focus of this work is showing obstacles to
proving the conjecture.



Our Results

A scheme that is circular insecure but
Is semantically secure based on
multilinear maps.

Cannot prove the conjecture via a
blackbox reduction.

Equivalence of different security
notions for circular security of bit-
encryption.



Our Results
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Our Assumption

An extension of an assumption made on
groups with bilinear maps to groups with
multilinear maps.



Multilinear Maps

Let G4, ..., Gy and G be cyclic groups of prime
order p.

An €-linear map is a (hon-degenerate) function
e:Gy XX Gp— Gp
such that for every i € |?]

a _ a
e(gy, - 9i - 92) =e(gq ) 9y)
where g4 € G4,...,gp € Gpand a € {0, ...,p — 1}



Multilinear Maps

There exist trivial multilinear maps
unconditionally but for crypto, need

computational problems such as discrete-log to
be hard.

Do there exist multilinear groups on which
discrete-log (and friends) are hard?
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Consider Gy = -+ = G, = Z.

Exponentiation in these groups corresponds to
multiplication modulo p.

Consider:

e(xb I x-f) — 1_[ Xi mod p
ie[£]
But discrete-log is easy in these groups!



SXDH Assumption [BGMMO5, ACHMOS5]

There exists a bilinear (aka 2-linear) map where
DDH-is.hard in both G and G,.

DDH in group G:
C
(99592 922)=(a. 5% 9% 95

Forgeng € G anda,b,c €5 {0, ...,p — 1}

Exist concrete candidates (elliptic curves) on which
SXDH is conjectured to hold.

Previously used for counterexample for 2-cycle
security of general encryption [ABBC10, CGH12].



£-multilinear SXDH Assumption

There exists an £-multilinear map where DDH is
hard in all groups G4, .., Gy.

p is the group order
n is the security
parameter

Until recently, no concrete canc
£ = 3.

(GGH13] give a lattice-based candidateé
(approximate) £-linear map for £ < 1282,

n

Approximate is fine for us but £ is not large enough.



Theorem

If the £-linear SXDH assumption holds for
£ > 2 log p then there exists a semantically secure
bit-encryption scheme that is not circular secure.

= Either the bit-encryption conjecture is false or
the SXDH assumption is easy on all £-multilinear
groups.

Our construction is based on ¢ parallel encryptions
of an El-Gamal variant + a twist that breaks circular
security but not semantic security.



El-Gamal Variant

Fix group G of order p for which DDH is hard and generator g.

Key Generation:
1.x0,x1 €ER Zy
2. Uy = g*°and u; = g
3. Public-key is (ug, u1) and private-key is (xg, x1)
Encrypt(o):
1.7 €g Zy
2. Output (g", (uy)")
Decrypt(c,d):
1. If c*° = d output O else output 1



Our Scheme
Fix G4, ..., Gp of order p for which DDH is hard and gens g4, ..., gy.

Key Generation:

X10,1
B 10,1]  X|0,2] X10,¢] e 72t
1. X = R “p
X[1,1]  X[1,2] X[1,¢]
— - g0l gxlozl o xDod -
R i gf[l 1] 95[1,2] g?’[u’] _

3. Public-key is U and private-key is X.

Encrypt(o):
1. 1, .-, Tp ER Zp
2. Output (g, (U[o, 1D™),...,(g"¢, (U[o, £])7%)



Our Scheme

Fix G4, ..., Gp of order p for which DDH is hard and gens g4, ..., gy.
Key Generation:

B X10,1]  X]0,2] X0, ¢ c  7axe
1. X = R “p
X[1,1]  X[1,2] X[1,¢]
— - g0l gxlozl o xDod -
R i gf[l 1] 95[1,2] g?’[u’] _

3. Select s € {0,1} and set a = ;¢ X[s;,i] mod p

4. Public-key is (U, «) and private-key is (X, s)
Encrypt(o):

1.71,..,7p €Eg £y

2. Output ((g™, (U[a, 1])"™),...,(g"¢, (U[o,£])")



Circular Security Attack

Get encryptions of bits by, ..., by which are
either s¢, ..., sp or all O’s.

g, (U[by, 1] g3 (U[by, 2722 - gy (Uby, DT

Enc(by):

9,22, (U[by, 2])"2 g,%", (U[by, €72

Enc(b,):

Enc(by): 91 Ulbg, 1] g5, Uy, €))7t



Circular Security Attack

g (U[by, 1])"1
9, (Ulby, 2])">>

g ULy, £y



Circular Security Attack

X[by,1]r114  T22 Ly

v Ze (g g 0,")



Circular Security Attack

g, ( gf[bl,u)"lrl
g;"z,z (gé([bzlz])rz,z

T11 X[byilri; T{’,{’)

yidz""e(gl’,...,gl v 9y



Circular Security Attack

If we multiply the y;’s we obtain:

X[b;i]
y; = l_[ 3(91 Tzz TM) [
LE[£] €[]

|f bi = §j then
Zie X[ i!.]
| [ =etal gpe e gpey™aa™™

rett] With overwhelming
If bi = (0 then probability

; X|0,
y; e( 91"1,1’ ggz 2 T{’,{’)ZEE[{’] [0,i]
ic[?]

= a distinguisher!



Our Results

A scheme that is circular insecure but
Is semantically secure based on
multilinear maps.

Cannot prove the conjecture via a
blackbox reduction.

Equivalence of different security
notions for circular security of bit-
encryption.



Blackbox Impossibility Result

No blackbox reduction from circular-security of
bit-encryption scheme to semantic-security (or
even CCA security) of the same scheme.

Blackbox access to encryption-scheme and
adversary.

Incomparable to [HHO9] KDM blackbox
separation.
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Two results:

1. No fully blackbox reduction from TDP to KDM
security that contains a class of poly(n)-wise
independent hash functions.

2. No fully blackbox reduction from essentially
any crypto primitive to KDM security if reduction
uses the KDM function as a blackbox.



Encryption
Scheme Circular Security

Adversary

Challenger

b €r {0,1
(e,d) « KeyGen Ee(b)

. Reduction
< (Semantic Security
Adversary)

1
Pr[c = b] > > + 1/poly



Our Results

A scheme that is circular insecure but
Is semantically secure based on
multilinear maps.

Cannot prove the conjecture via a
blackbox reduction.

Equivalence of different security
notions for circular security of bit-
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Circular Security Definitions

Def 1: [CLO1,BRSO2] a public-key scheme is circular
secure if for every PPT 4,

IPr[AEnCe(d)(e) — 1] . PF[AEHCE(OIdl)(e) _ 1]|
is negligible.

Def 2: a public-key scheme is circular secure wrt
key-recovery if for every PPT A,

PrAfnce(d)(e) = d]

is negligible.



Equivalence Result

For bit encryption:

Circular-security distinguisher = circular-security
key-recovery.

Corollary 1: a key-recovery adversary for the
previous counterexample.

Corollary 2: for current candidate FHE, breaking
semantic-security = key-recovery (because oracle
can be implemented for free).




Open Problems

1. Show a circular-security attack against any known bit-
encryption scheme.

2. Prove circular security or show an attack on any of the
candidate FHE.

3. Extend [GGH13] for £ > 2 log p or construct a
counterexample under a nicer assumption (ideally
from the existence of semantically secure encryption).



Thank you!
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