Revisiting Lower & Upper Bounds for Selective Decommitments

Rafail Ostrovsky Vanishree Rao Alessandra Scafuro Ivan Visconti UCLA UCLA UCLA University of Salerno

Binding

Hiding

Binding

hybrid argument

binding for multiple receivers

Hiding

Binding against Multiple Receivers

 $R_1 R_2 R_1$

5*

time

Binding against Multiple Receivers

time

binding

hybrid argument

binding for multiple receivers

hiding

hybrid argument

hiding for multiple senders

Hiding against Multiple Senders

 S_1 S_2

 S_n

Hiding against Multiple Senders

 S_1 S_2

Hiding no longer follows from hybrid argument

[Dwork-Naor-Reingold-Stockmeyer-99]

Hiding no longer follows from hybrid argument

[Dwork-Naor-Reingold-Stockmeyer-99]

 $S_1 S_2$

 S_n

Selective Opening Attack (SOA)!

R*

Hiding no longer follows from hybrid argument

Definition of SOA Security

Definition of SOA Security

indistinguishable from real-world transcript

simulator uses R* in a BB manner;

- simulator uses R* in a BB manner;
- comm. scheme uses any underlying primitive (eg. OWP) in a BB manner.

- simulator uses R* in a BB manner;
- comm. scheme uses any underlying primitive (eg. OWP) in a BB manner.
- We focus on only this notion.

 S_1 S_2

 S_n

 S_1 S_2

 S_n

[Dwork-Naor-Reingold-Stockmeyer-99]

 S_1

52

 S_n

 S_1 S_2

 S_n

 S_1 S_2

 S_n

 S_n

[Xiao-11]

 S_1 S_1

 S_n

Concurrent-with-barrier SOA Composition

 S_1 S_2 S_r

Concurrent-with-barrier SOA Composition

 S_1 S_2 S_1

Concurrent-with-barrier SOA Composition

 S_1 S_2

 S_n

R*

[Bellare-Hofheinz-Yilek-09, Hofheinz-11]

 S_1

52

 S_n

Nomenclature

(x,y) - scheme

Nor

Nomenclature

(x,y) - scheme

Commitment Phase: x rounds

Nomenclature

(x,y) - scheme

- Commitment Phase: x rounds
- Decommitment Phase: y rounds

Nomenclature

(x,y) - scheme

- Commitment Phase: x rounds
- Decommitment Phase: y rounds

One round

Significance of SOA-security

Significance of SOA-security

Commitment schemes are often used as subprotocols in larger protocol, where only some commitments are opened;

Significance of SOA-security

- Commitment schemes are often used as subprotocols in larger protocol, where only some commitments are opened;
- Security of larger protocol relies on hiding of unopened commitments.

<u>History - Rich Literature</u>

- SOA-security for com. schemes (including indistinguishability based security):
- · [Dwork-Naor-Reingold-Stockmeyer-99, Gennaro-Micali-06, Bellare-Hofheinz-Yilek-09, Hemenway-Libert-Ostrovsky-Vergnaud-09, Hofheinz-11, Xiao-11, Bellare-Dowsley-Waters-Yilek-12, Goyal-Lee-Ostrovsky-Visconti-12, Xiao-12,...]
- SOA-security for public-key encryption schemes:
- · [Bellare-Hofheinz-Yilek-09, Fehr-Hofheinz-Kiltz-Wee-10, Bellare-Dowsley-Waters-Yilek-12, Böhl-Hofheinz-Kraschewski-12,...]
- SOA-security for identity-based encryption schemes:
- [Bellare-Waters-Yilek-11,...]

[Bellare-Hofheinz-Yilek-09, Hofheinz-11]

constructed non-constant round Conc.-with-barrier-SOA scheme, NBB use of OWP

- constructed non-constant round Conc.-with-barrier-SOA scheme, NBB use of OWP
- also showed it is impossibile to construct non-interactive SOA-scheme, BB use of any primitive, even for parallel composition, even if simulator uses adversary in a NBB manner

- constructed non-constant round Conc.-with-barrier-SOA scheme, NBB use of OWP
- · also showed it is impossibile to construct non-interactive SOA-scheme, BB use of any primitive, even for parallel composition, even if simulator uses adversary in a NBB manner
- Immediate question: feasibility of BB SOA-schemes, their round-optimality?

- constructed non-constant round Conc.-with-barrier-SOA scheme, NBB use of OWP
- ·also showed it is impossibile to construct non-interactive SOA-scheme, BB use of any primitive, even for parallel composition, even if simulator uses adversary in a NBB manner
- Immediate question: feasibility of BB SOA-schemes, their round-optimality?

- constructed non-constant round Conc.-with-barrier-SOA scheme, NBB use of OWP
- ·also showed it is impossibile to construct non-interactive SOA-scheme, BB use of any primitive, even for parallel composition, even if simulator uses adversary in a NBB manner
- Immediate question: feasibility of BB SOA-schemes, their round-optimality?

[Bellare-Hofheinz-Yilek-09, Hofheinz-11]

- constructed non-constant round Conc.-with-barrier-SOA scheme, NBB use of OWP
- ·also showed it is impossibile to construct non-interactive SOA-scheme, BB use of any primitive, even for parallel composition, even if simulator uses adversary in a NBB manner
- Immediate question: feasibility of BB SOA-schemes, their round-optimality?

(3,1)

[Bellare-Hofheinz-Yilek-09, Hofheinz-11]

- constructed non-constant round Conc.-with-barrier-SOA scheme, NBB use of OWP
- ·also showed it is impossibile to construct non-interactive SOA-scheme, BB use of any primitive, even for parallel composition, even if simulator uses adversary in a NBB manner
- Immediate question: feasibility of BB SOA-schemes, their round-optimality?

(3,1)

(2,1)-scheme is impossible [Xiao11]

[Lindell-03]

has to rewind; more oracle queries for what bit values to open to. Distinguishable!

66	
1	
8	
8	
8	
8	
8	
E	

Our Results vs. [Xiao11]

_	
Proof of binding	
hinding	
omanig	
_	

After our results were archived,
[Xiao12] showed different proof of hiding for (t+3,1)-scheme

Our Results vs. [Xiao11]

000000000000000000000000000000000000000	
0.000	

Our Results vs. [Xiao11]

BB access to OWP

BB access to OWP

Binding

BB access to OWP

Binding

-SOA-Hiding

BB access to OWP

Binding

-SOA-Hiding

implies non-interactive com. scheme

BB access to OWP

✓ Sinding

SOA-Hiding

implies non-interactive com. scheme

S(b)

R

Com(b)

Open to b

BB access to OWP

✓ Sinding

SOA-Hiding

S(b)

Com₀(b) Com₁(b)

R

BB access to OWP Sinding SOA-Hiding

BB access to OWP

Sinding

SOA-Hiding

Com₀(b)

BB access to OWP

SOA-Hiding

BB access to OWP

SOA-Hiding

0

BB access to OWP

SOA-Hiding

0

 $Com_0(1)$ $Com_1(0)$

Coin-flipping

1

BB access to OWP

SOA-Hiding

0

Coin-flipping

1

Open Com₁(0)

BB access to OWP

SOA-Hiding

1

Coin-flipping

Open Com₀(1)

BB access to OWP

✓ Sinding

√;OA-Hiding

BB access to OWP

XBinding

✓ ¡OA-Hiding

BB access to OWP

XBinding

✓ ¡OA-Hiding

BB access to OWP

XBinding

√;OA-Hiding

BB access to OWP

XBinding

✓ ¡OA-Hiding

S(b)

 $Com_{10}(b)$, $Com_{20}(b)$,..., $Com_{n0}(b)$ $Com_{11}(b)$, $Com_{21}(b)$,..., $Com_{n1}(b)$

R

Coin-flipping

Open Com_v(b)

BB access to OWP

XBinding

✓ ¡OA-Hiding

S(b)

```
Com_{10}(b), Com_{20}(b),..., Com_{n0}(b)

Com_{11}(b), Com_{21}(b),..., Com_{n1}(b)
```

R

Coin-flipping

10.....1

Open Com_v(b)

BB access to OWP

XBinding

✓ ¡OA-Hiding

S(b)

```
Com_{10}(b), Com_{20}(b),..., Com_{n0}(b)

Com_{11}(b), Com_{21}(b),..., Com_{n1}(b)
```

R

Coin-flipping

10.....1

Open₁₀(b), Open₂₀(b),..., Open_{n0}(b) Open₁₁(b), Open₂₁(b),..., Open_{n1}(b)

BB access to OWP

XBinding

✓ ¡OA-Hiding

BB access to OWP

✓ ¡OA-Hiding

 $Com_{10}(1)$, $Com_{20}(0)$,..., $Com_{n0}(1)$ $Com_{11}(0)$, $Com_{21}(1)$,..., $Com_{n1}(0)$

?

Coin-flipping

??....?

Open₁₀(1), Open₂₀(0),..., Open_{n0}(1) Open₁₁(0), Open₂₁(1)..., Open_{n1}(0)

BB access to OWP coin-flipping outcome

√ ¦inding

✓ ¡OA-Hiding

S(b)

```
Com_{10}(b), Com_{20}(b),..., Com_{n0}(b)
Com_{11}(b), Com_{21}(b),..., Com_{n1}(b)
```

R

Coin-flipping

10.....1

Open₁₀(b), Open₂₀(b),..., Open_{n0}(b) Open₁₁(b), Open₂₁(b),..., Open_{n1}(b)

```
BB access to OWP coin-flipping outcome or its complement
```

```
√ Sinding
```

✓ ;OA-Hiding

```
S(b)
```

```
Com_{10}(b), Com_{20}(b),..., Com_{n0}(b)
Com_{11}(b), Com_{21}(b),..., Com_{n1}(b)
```

R

```
Coin-flipping
```



```
Com_{10}(1), Com_{20}(0),..., Com_{n0}(1)

Com_{11}(0), Com_{21}(1),..., Com_{n1}(0)
```


Coin-flipping

10.....1

0

```
Open<sub>10</sub>(1), Open<sub>20</sub>(0),..., Open<sub>n0</sub>(1)
Open<sub>11</sub>(0), Open<sub>21</sub>(1)..., Open<sub>n1</sub>(0)
```


Coin-flipping

10.....1

1

During simulation, for sessions newly started in rewound threads, no new oracle queries, due to barrier!!

- During simulation, for sessions newly started in rewound threads, no new oracle queries, due to barrier!!
- Fully conc. impossibility arguments do not apply.

Conclusions

Round-optimal, fully BB SOA-secure schemes

Conclusions

- Round-optimal, fully BB SOA-secure schemes
- Point out issues in [Xiao11], significantly changed state-ofthe-art

Thank You!