Using Task-Structured PIOAs to Analyze Cryptographic Protocols

Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, Olivier Pereira and Roberto Segala

March 5, 2006
Nondeterminism in models for protocols:
- in concurrency: keep it as much as you can!
 - generality: allows more implementations
 - clarity: no unnecessary constraints
 - used in IOAs, PIOAs, ...
- in crypto: get rid of it!
 - we want computational indistinguishability, functional behaviors, ...

One of our goals:
- Reconcile nondeterministic and probabilistic choices in a crypto setting
PIOAs

PIOAs are kinds of interacting, abstract, automata:
- state variables
- actions (input, output, internal)
- transitions: \((state \times action) \rightarrow Disc(states) \cup \perp\)

Internal nondeterminism for output and internal actions
- not algorithmically resolved
- not resolved in the analyzed systems

High-level nondeterminism algorithmically resolved (by Adv)
How do we resolve the low-level (internal) nondeterminism?
Task-PIOAs

Task-PIOAs are PIOAs with tasks: equivalence classes on actions (ex: send message 1, select key, ...)

- given a task, at most one possible (probabilistic) action

Task schedulers resolve low-level nondeterminism and give probabilistic executions

- task schedulers do not give extra power to Adv
Conclusion

We hope task-PIOAs provide a framework for:

- More general, expressive, specifications
- More general, systematic, security proofs

Case-study on a simple OT protocol [GMW87]
Security

Implementation relation for task-PIOAs:

- $A \leq B$ means:
 - \forall env. E and \forall task scheduler for $A \parallel E$, \exists task scheduler for $B \parallel E$ s.t. E cannot distinguish A from B

UC-style security:

- Protocol P realizes specification F iff
 - \forall task-PIOA A, \exists task-PIOA S: $P \parallel A \leq F \parallel S$
Proving Security

Two tools:

1. Sound simulation relation for \leq_0:
 - on probability distributions on execution fragments
 - \forall task T, $\exists T_1, \ldots, T_n$ s.t.
 $\epsilon_1 R \epsilon_2 \Rightarrow apply(\epsilon_1, T) E(R) apply(\epsilon_2, T_1, \ldots, T_n)$
 - only available for perfectly indistinguishable systems

2. Composability of $\leq_{neg,pt}$:
 - Express computational assumptions as $C_1 \leq_{neg,pt} C_2$
 Ex: hard-core predicate B for f:
 C_1 outputs $f, f(x), B(x)$ and C_2 outputs $f, f(x), b$
 - Composability:
 $C_1 \leq_{neg,pt} C_2 \Rightarrow C_1 || lfc \leq_{neg,pt} C_2 || lfc$