

Degenerate Curve Attacks Extending Invalid Curve Attacks to Edwards Curves and Other Models

Samuel Neves Mehdi Tibouchi

PKC 2016

We look at a certain type of implementation attacks against elliptic curves, known as "invalid curve attacks"

- We look at a certain type of implementation attacks against elliptic curves, known as "invalid curve attacks"
- Known to apply to curves in Weierstrass form, as well as a few other (Hessian curves, Huff's model, etc.)

- We look at a certain type of implementation attacks against elliptic curves, known as "invalid curve attacks"
- Known to apply to curves in Weierstrass form, as well as a few other (Hessian curves, Huff's model, etc.)
- However, no attack of that type known so far against Edwards curves (when using the more common addition law), Jacobi intersections, Jacobi quartics...

- We look at a certain type of implementation attacks against elliptic curves, known as "invalid curve attacks"
- Known to apply to curves in Weierstrass form, as well as a few other (Hessian curves, Huff's model, etc.)
- However, no attack of that type known so far against Edwards curves (when using the more common addition law), Jacobi intersections, Jacobi quartics...
- Our main contribution: showing that there is still something you can do to break (sloppy implementations of) those curve models as well

- We look at a certain type of implementation attacks against elliptic curves, known as "invalid curve attacks"
- Known to apply to curves in Weierstrass form, as well as a few other (Hessian curves, Huff's model, etc.)
- However, no attack of that type known so far against Edwards curves (when using the more common addition law), Jacobi intersections, Jacobi quartics...
- Our main contribution: showing that there is still something you can do to break (sloppy implementations of) those curve models as well
- On the flip side: the attack can be repurposed as a cheap fault attack countermeasure in some settings

 Imagine a cryptographic device doing scalar multiplications on a prescribed elliptic curve E

- Imagine a cryptographic device doing scalar multiplications on a prescribed elliptic curve E
- You send it a point P on E, and it outputs s · P for some secret scalar s

- Imagine a cryptographic device doing scalar multiplications on a prescribed elliptic curve E
- You send it a point P on E, and it outputs s · P for some secret scalar s
- ▶ If you follow the rules: cannot learn much about *s*

- Imagine a cryptographic device doing scalar multiplications on a prescribed elliptic curve E
- You send it a point P on E, and it outputs s · P for some secret scalar s
- If you follow the rules: cannot learn much about s
- So you cheat: send a point \widetilde{P} outside of E

- Imagine a cryptographic device doing scalar multiplications on a prescribed elliptic curve E
- You send it a point P on E, and it outputs s · P for some secret scalar s
- If you follow the rules: cannot learn much about s
- So you cheat: send a point \widetilde{P} outside of E
- What happens then?

 If the device is properly designed, it might check and reject your input (point validation)

- If the device is properly designed, it might check and reject your input (point validation)
- You might even think most implementations would do so; that would be optimistic

- If the device is properly designed, it might check and reject your input (point validation)
- You might even think most implementations would do so; that would be optimistic
- Without point validation: the device runs the same sequence of operations as for a point on *E*, and returns the result

- If the device is properly designed, it might check and reject your input (point validation)
- You might even think most implementations would do so; that would be optimistic
- Without point validation: the device runs the same sequence of operations as for a point on *E*, and returns the result
- What you get depends on the precise way the arithmetic on E is implemented

Example: short Weierstrass/affine

- Say the device does its scalar multiplications
 - using double-and-add
 - on the short Weierstrass curve $E: y^2 = x^3 + ax + b$
 - using the affine coordinate addition law $(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$:

$$x_3 = \lambda^2 - x_1 - x_2$$
 $y_3 = \lambda(x_1 - x_3) - y_1$

where

$$\lambda = \begin{cases} (3x_1^2 + a)/(2y_1) & \text{if } (x_1, y_1) = (x_2, y_2) \text{ (doubling)} \\ (y_1 - y_2)/(x_1 - x_2) & \text{otherwise} \end{cases}$$

Example: short Weierstrass/affine

- Say the device does its scalar multiplications
 - using double-and-add
 - on the short Weierstrass curve $E: y^2 = x^3 + ax + b$
 - using the affine coordinate addition law $(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$:

$$x_3 = \lambda^2 - x_1 - x_2$$
 $y_3 = \lambda(x_1 - x_3) - y_1$

where

$$\lambda = \begin{cases} (3x_1^2 + a)/(2y_1) & \text{if } (x_1, y_1) = (x_2, y_2) \text{ (doubling)} \\ (y_1 - y_2)/(x_1 - x_2) & \text{otherwise} \end{cases}$$

► Key observation (Biehl et al.): the addition and doubling formulas depend only on curve parameter *a*. Identical for all curves of the form *E* : y² = x³ + ax + *b*.

• The invalid point \widetilde{P} that you sent is on one of the curves \widetilde{E}

- The invalid point \widetilde{P} that you sent is on one of the curves \widetilde{E}
- ► So the sequence of operations carried out by the device exactly ends up being a scalar multiplication on that curve: it outputs s · P̃ on Ẽ

- The invalid point \widetilde{P} that you sent is on one of the curves \widetilde{E}
- ► So the sequence of operations carried out by the device exactly ends up being a scalar multiplication on that curve: it outputs s · P̃ on Ẽ
- If the curve *E* is weak (almost all curves are!), you can recover plenty of information on s: e.g. you get s mod ℓ for any small divisor ℓ of the order

 The description above captures the gist of Antipa et al.'s invalid curve attack (PKC 2003)

- The description above captures the gist of Antipa et al.'s invalid curve attack (PKC 2003)
- Also works with other coordinate systems (projective coordinates, etc.), and doesn't really depend on the scalar multiplication algorithm

- The description above captures the gist of Antipa et al.'s invalid curve attack (PKC 2003)
- Also works with other coordinate systems (projective coordinates, etc.), and doesn't really depend on the scalar multiplication algorithm
- Not just Weierstrass: applies as long as the arithmetic is independent of at least one curve parameter (Hessian curves, Huff curves)

- The description above captures the gist of Antipa et al.'s invalid curve attack (PKC 2003)
- Also works with other coordinate systems (projective coordinates, etc.), and doesn't really depend on the scalar multiplication algorithm
- Not just Weierstrass: applies as long as the arithmetic is independent of at least one curve parameter (Hessian curves, Huff curves)
- However, the (preferred) addition and doubling formulas for Edwards curves and a few others depend on all curve parameters. What about them?

Edwards curves and invalid points

The (complete) addition law on the twisted Edwards curve E: ax² + y² = 1 + dx²y² is given by:

$$(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - ax_1x_2}{1 - dx_1x_2y_1y_2}\right)$$

Edwards curves and invalid points

• The (complete) addition law on the twisted Edwards curve $E: ax^2 + y^2 = 1 + dx^2y^2$ is given by:

$$(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - ax_1x_2}{1 - dx_1x_2y_1y_2}\right)$$

If you send an invalid point *P*, the computations won't make sense:
 P lies on different twisted Edwards curves, but none with the same arithmetic formulas

• The (complete) addition law on the twisted Edwards curve $E: ax^2 + y^2 = 1 + dx^2y^2$ is given by:

$$(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - ax_1x_2}{1 - dx_1x_2y_1y_2}\right)$$

- If you send an invalid point *P*, the computations won't make sense:
 P lies on different twisted Edwards curves, but none with the same arithmetic formulas
- The device will output something, but it won't be the scalar multiplication by s in some group anymore: hard to exploit

• The (complete) addition law on the twisted Edwards curve $E: ax^2 + y^2 = 1 + dx^2y^2$ is given by:

$$(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - ax_1x_2}{1 - dx_1x_2y_1y_2}\right)$$

- If you send an invalid point *P*, the computations won't make sense:
 P lies on different twisted Edwards curves, but none with the same arithmetic formulas
- The device will output something, but it won't be the scalar multiplication by s in some group anymore: hard to exploit
- In fact, Antipa et al. suggest using arithmetic depending on all curve parameters as a possible countermeasure against invalid curve attacks

► What I just said about computations not being in a group: true for almost all invalid points *P*...

- ► What I just said about computations not being in a group: true for almost all invalid points *P*...
- ... but there are exceptions: take points of the form (0, y).
 Applying the formula naively we get:

$$(0, y_1) + (0, y_2) = \left(\frac{0 \cdot y_2 + y_1 \cdot 0}{1 + d \cdot 0 \cdot y_1 y_2}, \frac{y_1 y_2 - a \cdot 0}{1 - d \cdot 0 \cdot y_1 y_2}\right) = (0, y_1 y_2)$$

- ► What I just said about computations not being in a group: true for almost all invalid points *P*...
- ... but there are exceptions: take points of the form (0, y).
 Applying the formula naively we get:

$$(0, y_1) + (0, y_2) = \left(\frac{0 \cdot y_2 + y_1 \cdot 0}{1 + d \cdot 0 \cdot y_1 y_2}, \frac{y_1 y_2 - a \cdot 0}{1 - d \cdot 0 \cdot y_1 y_2}\right) = (0, y_1 y_2)$$

It easily follows that if you send (0, y) to the device, it will output (0, y^s)

- ► What I just said about computations not being in a group: true for almost all invalid points *P*...
- ► ... but there are exceptions: take points of the form (0, y). Applying the formula naively we get:

$$(0, y_1) + (0, y_2) = \left(\frac{0 \cdot y_2 + y_1 \cdot 0}{1 + d \cdot 0 \cdot y_1 y_2}, \frac{y_1 y_2 - a \cdot 0}{1 - d \cdot 0 \cdot y_1 y_2}\right) = (0, y_1 y_2)$$

- It easily follows that if you send (0, y) to the device, it will output (0, y^s)
- And so you can recover s by solving a discrete log problem in the multiplicative group of the base field: comparatively very easy!

 After making that observation, we looked at all other models of elliptic curves we could find

- After making that observation, we looked at all other models of elliptic curves we could find
- In all cases, similar special invalid points for which the original addition law becomes multiplication in a group isomorphic to 𝔽^{*}_p or to the twisted multiplicative group

- After making that observation, we looked at all other models of elliptic curves we could find
- In all cases, similar special invalid points for which the original addition law becomes multiplication in a group isomorphic to 𝔽^{*}_p or to the twisted multiplicative group
- ► So the attack seems to apply basically to all curve models

- After making that observation, we looked at all other models of elliptic curves we could find
- In all cases, similar special invalid points for which the original addition law becomes multiplication in a group isomorphic to 𝔽^{*}_p or to the twisted multiplicative group
- So the attack seems to apply basically to all curve models
- Like the Antipa et al. attack, mostly unaffected by different coordinate systems or scalar multiplication algorithms

In the Edwards curve setting, the set of points (0, y) (i.e. the axis x = 0) can be seen as the "limit" of the curves E_{a,d} when a → ∞, so it should still have a natural group law, which must necessarily be a form of the multiplicative group

- In the Edwards curve setting, the set of points (0, y) (i.e. the axis x = 0) can be seen as the "limit" of the curves E_{a,d} when a → ∞, so it should still have a natural group law, which must necessarily be a form of the multiplicative group
- However, the group laws in the family are all different, so no a priori reason why the law on the limit should be the same as the addition law you started with

- In the Edwards curve setting, the set of points (0, y) (i.e. the axis x = 0) can be seen as the "limit" of the curves E_{a,d} when a → ∞, so it should still have a natural group law, which must necessarily be a form of the multiplicative group
- However, the group laws in the family are all different, so no a priori reason why the law on the limit should be the same as the addition law you started with
- But the terms that depend on the curve parameters all cancel out at the limit, so you end up being fine somehow

- In the Edwards curve setting, the set of points (0, y) (i.e. the axis x = 0) can be seen as the "limit" of the curves E_{a,d} when a → ∞, so it should still have a natural group law, which must necessarily be a form of the multiplicative group
- However, the group laws in the family are all different, so no a priori reason why the law on the limit should be the same as the addition law you started with
- But the terms that depend on the curve parameters all cancel out at the limit, so you end up being fine somehow
- More generally, the set of special invalid points that let you attack are where your curve families degenerate, hence the name

Regarding concrete impact, mainly two aspects to consider

Is this a realistic threat?

- Innovative REC by NTT
- ► Regarding concrete impact, mainly two aspects to consider
- Are implementers of Edwards curves as likely to mess up point validation?
 - Not by a long shot
 - The main implementations are by notoriously competent people
 - Specifications being written mandate compressed representations for points on the wire, thwarting the attack

- ► Regarding concrete impact, mainly two aspects to consider
- Are implementers of Edwards curves as likely to mess up point validation?
 - Not by a long shot
 - The main implementations are by notoriously competent people
 - Specifications being written mandate compressed representations for points on the wire, thwarting the attack
- Is the model of a device computing scalar multiplications realistic?
 - Not very but close to static DH key exchange
 - · More realistic model: don't get the output point, only a hash
 - Addressed in the paper. Recovering all of *s* possible but more costly than Antipa et al., because only one group to play with

Quick idea of our constructive use of this attack

A constructive application

- Quick idea of our constructive use of this attack
- Common trick to protect against fault injection in a device doing computations over F_p:
 - 1. choose a small auxiliary prime r, and compute mod $p \cdot r$
 - 2. redo the computation mod r
 - 3. if the two results coincide mod r, decide there was no fault and output the result mod p

A constructive application

- Quick idea of our constructive use of this attack
- ► Common trick to protect against fault injection in a device doing computations over 𝔽_p:
 - 1. choose a small auxiliary prime r, and compute mod $p \cdot r$
 - 2. redo the computation mod r
 - 3. if the two results coincide mod r, decide there was no fault and output the result mod p
- In the case of ECC, free to choose the elliptic curve over 𝔽_r that you will combine using CRT to get a curve over ℤ/prℤ

A constructive application

Innovative RED by NTT

- Quick idea of our constructive use of this attack
- ► Common trick to protect against fault injection in a device doing computations over 𝔽_p:
 - 1. choose a small auxiliary prime r, and compute mod $p \cdot r$
 - 2. redo the computation mod r
 - 3. if the two results coincide mod r, decide there was no fault and output the result mod p
- In the case of ECC, free to choose the elliptic curve over 𝔽_r that you will combine using CRT to get a curve over ℤ/prℤ
- Our suggestion: use a degenerate curve instead!
 - Step 2 above becomes a simple base field exponentiation: much faster

- We introduced a new attack that applies surprisingly broadly, and fully breaks unprotected ECC implementations with a single invalid point
 - Antipa et al.'s suggestion that alternate addition laws could protect from invalid curve attacks seems incorrect

- We introduced a new attack that applies surprisingly broadly, and fully breaks unprotected ECC implementations with a single invalid point
 - Antipa et al.'s suggestion that alternate addition laws could protect from invalid curve attacks seems incorrect
- > You should validate your points even when using Edwards curves!
 - though if you were clueful enough to use Edwards curves, you probably already did

- We introduced a new attack that applies surprisingly broadly, and fully breaks unprotected ECC implementations with a single invalid point
 - Antipa et al.'s suggestion that alternate addition laws could protect from invalid curve attacks seems incorrect
- > You should validate your points even when using Edwards curves!
 - though if you were clueful enough to use Edwards curves, you probably already did
- Can be used constructively for fault detection

- We introduced a new attack that applies surprisingly broadly, and fully breaks unprotected ECC implementations with a single invalid point
 - Antipa et al.'s suggestion that alternate addition laws could protect from invalid curve attacks seems incorrect
- > You should validate your points even when using Edwards curves!
 - though if you were clueful enough to use Edwards curves, you probably already did
- Can be used constructively for fault detection
- Question: can we prove that this will work for any elliptic curve model?

Thank you!

Copyright ©2014 NTT corp. All Rights Reserved.