
Degenerate Curve Attacks
Extending Invalid Curve Attacks to
Edwards Curves and Other Models

Samuel Neves Mehdi Tibouchi

PKC 2016

1



What this paper is about

I We look at a certain type of implementation attacks against elliptic
curves, known as “invalid curve attacks”

I Known to apply to curves in Weierstrass form, as well as a few
other (Hessian curves, Huff’s model, etc.)

I However, no attack of that type known so far against Edwards
curves (when using the more common addition law), Jacobi
intersections, Jacobi quartics...

I Our main contribution: showing that there is still something you
can do to break (sloppy implementations of) those curve models as
well

I On the flip side: the attack can be repurposed as a cheap fault
attack countermeasure in some settings

2



What this paper is about

I We look at a certain type of implementation attacks against elliptic
curves, known as “invalid curve attacks”

I Known to apply to curves in Weierstrass form, as well as a few
other (Hessian curves, Huff’s model, etc.)

I However, no attack of that type known so far against Edwards
curves (when using the more common addition law), Jacobi
intersections, Jacobi quartics...

I Our main contribution: showing that there is still something you
can do to break (sloppy implementations of) those curve models as
well

I On the flip side: the attack can be repurposed as a cheap fault
attack countermeasure in some settings

2



What this paper is about

I We look at a certain type of implementation attacks against elliptic
curves, known as “invalid curve attacks”

I Known to apply to curves in Weierstrass form, as well as a few
other (Hessian curves, Huff’s model, etc.)

I However, no attack of that type known so far against Edwards
curves (when using the more common addition law), Jacobi
intersections, Jacobi quartics...

I Our main contribution: showing that there is still something you
can do to break (sloppy implementations of) those curve models as
well

I On the flip side: the attack can be repurposed as a cheap fault
attack countermeasure in some settings

2



What this paper is about

I We look at a certain type of implementation attacks against elliptic
curves, known as “invalid curve attacks”

I Known to apply to curves in Weierstrass form, as well as a few
other (Hessian curves, Huff’s model, etc.)

I However, no attack of that type known so far against Edwards
curves (when using the more common addition law), Jacobi
intersections, Jacobi quartics...

I Our main contribution: showing that there is still something you
can do to break (sloppy implementations of) those curve models as
well

I On the flip side: the attack can be repurposed as a cheap fault
attack countermeasure in some settings

2



What this paper is about

I We look at a certain type of implementation attacks against elliptic
curves, known as “invalid curve attacks”

I Known to apply to curves in Weierstrass form, as well as a few
other (Hessian curves, Huff’s model, etc.)

I However, no attack of that type known so far against Edwards
curves (when using the more common addition law), Jacobi
intersections, Jacobi quartics...

I Our main contribution: showing that there is still something you
can do to break (sloppy implementations of) those curve models as
well

I On the flip side: the attack can be repurposed as a cheap fault
attack countermeasure in some settings

2



A basic model for invalid curve attacks

I Imagine a cryptographic device doing scalar multiplications on a
prescribed elliptic curve E

I You send it a point P on E , and it outputs s · P for some secret
scalar s

I If you follow the rules: cannot learn much about s

I So you cheat: send a point P̃ outside of E

I What happens then?

3



A basic model for invalid curve attacks

I Imagine a cryptographic device doing scalar multiplications on a
prescribed elliptic curve E

I You send it a point P on E , and it outputs s · P for some secret
scalar s

I If you follow the rules: cannot learn much about s

I So you cheat: send a point P̃ outside of E

I What happens then?

3



A basic model for invalid curve attacks

I Imagine a cryptographic device doing scalar multiplications on a
prescribed elliptic curve E

I You send it a point P on E , and it outputs s · P for some secret
scalar s

I If you follow the rules: cannot learn much about s

I So you cheat: send a point P̃ outside of E

I What happens then?

3



A basic model for invalid curve attacks

I Imagine a cryptographic device doing scalar multiplications on a
prescribed elliptic curve E

I You send it a point P on E , and it outputs s · P for some secret
scalar s

I If you follow the rules: cannot learn much about s

I So you cheat: send a point P̃ outside of E

I What happens then?

3



A basic model for invalid curve attacks

I Imagine a cryptographic device doing scalar multiplications on a
prescribed elliptic curve E

I You send it a point P on E , and it outputs s · P for some secret
scalar s

I If you follow the rules: cannot learn much about s

I So you cheat: send a point P̃ outside of E

I What happens then?

3



Sending an invalid point

I If the device is properly designed, it might check and reject your
input (point validation)

I You might even think most implementations would do so; that
would be optimistic

I Without point validation: the device runs the same sequence of
operations as for a point on E , and returns the result

I What you get depends on the precise way the arithmetic on E is
implemented

4



Sending an invalid point

I If the device is properly designed, it might check and reject your
input (point validation)

I You might even think most implementations would do so; that
would be optimistic

I Without point validation: the device runs the same sequence of
operations as for a point on E , and returns the result

I What you get depends on the precise way the arithmetic on E is
implemented

4



Sending an invalid point

I If the device is properly designed, it might check and reject your
input (point validation)

I You might even think most implementations would do so; that
would be optimistic

I Without point validation: the device runs the same sequence of
operations as for a point on E , and returns the result

I What you get depends on the precise way the arithmetic on E is
implemented

4



Sending an invalid point

I If the device is properly designed, it might check and reject your
input (point validation)

I You might even think most implementations would do so; that
would be optimistic

I Without point validation: the device runs the same sequence of
operations as for a point on E , and returns the result

I What you get depends on the precise way the arithmetic on E is
implemented

4



Example: short Weierstrass/affine

I Say the device does its scalar multiplications
• using double-and-add
• on the short Weierstrass curve E : y2 = x3 + ax + b
• using the affine coordinate addition law (x1, y1) + (x2, y2) = (x3, y3):

x3 = λ2 − x1 − x2 y3 = λ(x1 − x3)− y1

where

λ =

{
(3x21 + a)/(2y1) if (x1, y1) = (x2, y2) (doubling)

(y1 − y2)/(x1 − x2) otherwise

I Key observation (Biehl et al.): the addition and doubling formulas
depend only on curve parameter a. Identical for all curves of the
form Ẽ : y 2 = x3 + ax + b̃.

5



Example: short Weierstrass/affine

I Say the device does its scalar multiplications
• using double-and-add
• on the short Weierstrass curve E : y2 = x3 + ax + b
• using the affine coordinate addition law (x1, y1) + (x2, y2) = (x3, y3):

x3 = λ2 − x1 − x2 y3 = λ(x1 − x3)− y1

where

λ =

{
(3x21 + a)/(2y1) if (x1, y1) = (x2, y2) (doubling)

(y1 − y2)/(x1 − x2) otherwise

I Key observation (Biehl et al.): the addition and doubling formulas
depend only on curve parameter a. Identical for all curves of the
form Ẽ : y 2 = x3 + ax + b̃.

5



Example: short Weierstrass/affine

I The invalid point P̃ that you sent is on one of the curves Ẽ

I So the sequence of operations carried out by the device exactly ends
up being a scalar multiplication on that curve: it outputs s · P̃ on Ẽ

I If the curve Ẽ is weak (almost all curves are!), you can recover
plenty of information on s: e.g. you get s mod ` for any small
divisor ` of the order

6



Example: short Weierstrass/affine

I The invalid point P̃ that you sent is on one of the curves Ẽ

I So the sequence of operations carried out by the device exactly ends
up being a scalar multiplication on that curve: it outputs s · P̃ on Ẽ

I If the curve Ẽ is weak (almost all curves are!), you can recover
plenty of information on s: e.g. you get s mod ` for any small
divisor ` of the order

6



Example: short Weierstrass/affine

I The invalid point P̃ that you sent is on one of the curves Ẽ

I So the sequence of operations carried out by the device exactly ends
up being a scalar multiplication on that curve: it outputs s · P̃ on Ẽ

I If the curve Ẽ is weak (almost all curves are!), you can recover
plenty of information on s: e.g. you get s mod ` for any small
divisor ` of the order

6



How general is this?

I The description above captures the gist of Antipa et al.’s invalid
curve attack (PKC 2003)

I Also works with other coordinate systems (projective coordinates,
etc.), and doesn’t really depend on the scalar multiplication
algorithm

I Not just Weierstrass: applies as long as the arithmetic is
independent of at least one curve parameter (Hessian curves, Huff
curves)

I However, the (preferred) addition and doubling formulas for
Edwards curves and a few others depend on all curve parameters.
What about them?

7



How general is this?

I The description above captures the gist of Antipa et al.’s invalid
curve attack (PKC 2003)

I Also works with other coordinate systems (projective coordinates,
etc.), and doesn’t really depend on the scalar multiplication
algorithm

I Not just Weierstrass: applies as long as the arithmetic is
independent of at least one curve parameter (Hessian curves, Huff
curves)

I However, the (preferred) addition and doubling formulas for
Edwards curves and a few others depend on all curve parameters.
What about them?

7



How general is this?

I The description above captures the gist of Antipa et al.’s invalid
curve attack (PKC 2003)

I Also works with other coordinate systems (projective coordinates,
etc.), and doesn’t really depend on the scalar multiplication
algorithm

I Not just Weierstrass: applies as long as the arithmetic is
independent of at least one curve parameter (Hessian curves, Huff
curves)

I However, the (preferred) addition and doubling formulas for
Edwards curves and a few others depend on all curve parameters.
What about them?

7



How general is this?

I The description above captures the gist of Antipa et al.’s invalid
curve attack (PKC 2003)

I Also works with other coordinate systems (projective coordinates,
etc.), and doesn’t really depend on the scalar multiplication
algorithm

I Not just Weierstrass: applies as long as the arithmetic is
independent of at least one curve parameter (Hessian curves, Huff
curves)

I However, the (preferred) addition and doubling formulas for
Edwards curves and a few others depend on all curve parameters.
What about them?

7



Edwards curves and invalid points

I The (complete) addition law on the twisted Edwards curve
E : ax2 + y 2 = 1 + dx2y 2 is given by:

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)

I If you send an invalid point P̃ , the computations won’t make sense:
P̃ lies on different twisted Edwards curves, but none with the same
arithmetic formulas

I The device will output something, but it won’t be the scalar
multiplication by s in some group anymore: hard to exploit

I In fact, Antipa et al. suggest using arithmetic depending on all
curve parameters as a possible countermeasure against invalid curve
attacks

8



Edwards curves and invalid points

I The (complete) addition law on the twisted Edwards curve
E : ax2 + y 2 = 1 + dx2y 2 is given by:

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)
I If you send an invalid point P̃ , the computations won’t make sense:

P̃ lies on different twisted Edwards curves, but none with the same
arithmetic formulas

I The device will output something, but it won’t be the scalar
multiplication by s in some group anymore: hard to exploit

I In fact, Antipa et al. suggest using arithmetic depending on all
curve parameters as a possible countermeasure against invalid curve
attacks

8



Edwards curves and invalid points

I The (complete) addition law on the twisted Edwards curve
E : ax2 + y 2 = 1 + dx2y 2 is given by:

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)
I If you send an invalid point P̃ , the computations won’t make sense:

P̃ lies on different twisted Edwards curves, but none with the same
arithmetic formulas

I The device will output something, but it won’t be the scalar
multiplication by s in some group anymore: hard to exploit

I In fact, Antipa et al. suggest using arithmetic depending on all
curve parameters as a possible countermeasure against invalid curve
attacks

8



Edwards curves and invalid points

I The (complete) addition law on the twisted Edwards curve
E : ax2 + y 2 = 1 + dx2y 2 is given by:

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)
I If you send an invalid point P̃ , the computations won’t make sense:

P̃ lies on different twisted Edwards curves, but none with the same
arithmetic formulas

I The device will output something, but it won’t be the scalar
multiplication by s in some group anymore: hard to exploit

I In fact, Antipa et al. suggest using arithmetic depending on all
curve parameters as a possible countermeasure against invalid curve
attacks

8



Our main observation

I What I just said about computations not being in a group: true for
almost all invalid points P̃ . . .

I . . . but there are exceptions: take points of the form (0, y).
Applying the formula naively we get:

(0, y1) + (0, y2) =

(
0 · y2 + y1 · 0

1 + d · 0 · y1y2
,

y1y2 − a · 0
1− d · 0 · y1y2

)
= (0, y1y2)

I It easily follows that if you send (0, y) to the device, it will output
(0, y s)

I And so you can recover s by solving a discrete log problem in the
multiplicative group of the base field: comparatively very easy!

9



Our main observation

I What I just said about computations not being in a group: true for
almost all invalid points P̃ . . .

I . . . but there are exceptions: take points of the form (0, y).
Applying the formula naively we get:

(0, y1) + (0, y2) =

(
0 · y2 + y1 · 0

1 + d · 0 · y1y2
,

y1y2 − a · 0
1− d · 0 · y1y2

)
= (0, y1y2)

I It easily follows that if you send (0, y) to the device, it will output
(0, y s)

I And so you can recover s by solving a discrete log problem in the
multiplicative group of the base field: comparatively very easy!

9



Our main observation

I What I just said about computations not being in a group: true for
almost all invalid points P̃ . . .

I . . . but there are exceptions: take points of the form (0, y).
Applying the formula naively we get:

(0, y1) + (0, y2) =

(
0 · y2 + y1 · 0

1 + d · 0 · y1y2
,

y1y2 − a · 0
1− d · 0 · y1y2

)
= (0, y1y2)

I It easily follows that if you send (0, y) to the device, it will output
(0, y s)

I And so you can recover s by solving a discrete log problem in the
multiplicative group of the base field: comparatively very easy!

9



Our main observation

I What I just said about computations not being in a group: true for
almost all invalid points P̃ . . .

I . . . but there are exceptions: take points of the form (0, y).
Applying the formula naively we get:

(0, y1) + (0, y2) =

(
0 · y2 + y1 · 0

1 + d · 0 · y1y2
,

y1y2 − a · 0
1− d · 0 · y1y2

)
= (0, y1y2)

I It easily follows that if you send (0, y) to the device, it will output
(0, y s)

I And so you can recover s by solving a discrete log problem in the
multiplicative group of the base field: comparatively very easy!

9



Does this trick generalize?

I After making that observation, we looked at all other models of
elliptic curves we could find

I In all cases, similar special invalid points for which the original
addition law becomes multiplication in a group isomorphic to F∗

p or
to the twisted multiplicative group

I So the attack seems to apply basically to all curve models

I Like the Antipa et al. attack, mostly unaffected by different
coordinate systems or scalar multiplication algorithms

10



Does this trick generalize?

I After making that observation, we looked at all other models of
elliptic curves we could find

I In all cases, similar special invalid points for which the original
addition law becomes multiplication in a group isomorphic to F∗

p or
to the twisted multiplicative group

I So the attack seems to apply basically to all curve models

I Like the Antipa et al. attack, mostly unaffected by different
coordinate systems or scalar multiplication algorithms

10



Does this trick generalize?

I After making that observation, we looked at all other models of
elliptic curves we could find

I In all cases, similar special invalid points for which the original
addition law becomes multiplication in a group isomorphic to F∗

p or
to the twisted multiplicative group

I So the attack seems to apply basically to all curve models

I Like the Antipa et al. attack, mostly unaffected by different
coordinate systems or scalar multiplication algorithms

10



Does this trick generalize?

I After making that observation, we looked at all other models of
elliptic curves we could find

I In all cases, similar special invalid points for which the original
addition law becomes multiplication in a group isomorphic to F∗

p or
to the twisted multiplicative group

I So the attack seems to apply basically to all curve models

I Like the Antipa et al. attack, mostly unaffected by different
coordinate systems or scalar multiplication algorithms

10



Degenerate curve attacks

I In the Edwards curve setting, the set of points (0, y) (i.e. the axis
x = 0) can be seen as the “limit” of the curves Ea,d when a→∞,
so it should still have a natural group law, which must necessarily
be a form of the multiplicative group

I However, the group laws in the family are all different, so no a
priori reason why the law on the limit should be the same as the
addition law you started with

I But the terms that depend on the curve parameters all cancel out
at the limit, so you end up being fine somehow

I More generally, the set of special invalid points that let you attack
are where your curve families degenerate, hence the name

11



Degenerate curve attacks

I In the Edwards curve setting, the set of points (0, y) (i.e. the axis
x = 0) can be seen as the “limit” of the curves Ea,d when a→∞,
so it should still have a natural group law, which must necessarily
be a form of the multiplicative group

I However, the group laws in the family are all different, so no a
priori reason why the law on the limit should be the same as the
addition law you started with

I But the terms that depend on the curve parameters all cancel out
at the limit, so you end up being fine somehow

I More generally, the set of special invalid points that let you attack
are where your curve families degenerate, hence the name

11



Degenerate curve attacks

I In the Edwards curve setting, the set of points (0, y) (i.e. the axis
x = 0) can be seen as the “limit” of the curves Ea,d when a→∞,
so it should still have a natural group law, which must necessarily
be a form of the multiplicative group

I However, the group laws in the family are all different, so no a
priori reason why the law on the limit should be the same as the
addition law you started with

I But the terms that depend on the curve parameters all cancel out
at the limit, so you end up being fine somehow

I More generally, the set of special invalid points that let you attack
are where your curve families degenerate, hence the name

11



Degenerate curve attacks

I In the Edwards curve setting, the set of points (0, y) (i.e. the axis
x = 0) can be seen as the “limit” of the curves Ea,d when a→∞,
so it should still have a natural group law, which must necessarily
be a form of the multiplicative group

I However, the group laws in the family are all different, so no a
priori reason why the law on the limit should be the same as the
addition law you started with

I But the terms that depend on the curve parameters all cancel out
at the limit, so you end up being fine somehow

I More generally, the set of special invalid points that let you attack
are where your curve families degenerate, hence the name

11



Is this a realistic threat?

I Regarding concrete impact, mainly two aspects to consider

I Are implementers of Edwards curves as likely to mess up point
validation?

• Not by a long shot
• The main implementations are by notoriously competent people
• Specifications being written mandate compressed representations for

points on the wire, thwarting the attack

I Is the model of a device computing scalar multiplications realistic?
• Not very but close to static DH key exchange
• More realistic model: don’t get the output point, only a hash
• Addressed in the paper. Recovering all of s possible but more costly

than Antipa et al., because only one group to play with

12



Is this a realistic threat?

I Regarding concrete impact, mainly two aspects to consider

I Are implementers of Edwards curves as likely to mess up point
validation?

• Not by a long shot
• The main implementations are by notoriously competent people
• Specifications being written mandate compressed representations for

points on the wire, thwarting the attack

I Is the model of a device computing scalar multiplications realistic?
• Not very but close to static DH key exchange
• More realistic model: don’t get the output point, only a hash
• Addressed in the paper. Recovering all of s possible but more costly

than Antipa et al., because only one group to play with

12



Is this a realistic threat?

I Regarding concrete impact, mainly two aspects to consider

I Are implementers of Edwards curves as likely to mess up point
validation?

• Not by a long shot
• The main implementations are by notoriously competent people
• Specifications being written mandate compressed representations for

points on the wire, thwarting the attack

I Is the model of a device computing scalar multiplications realistic?
• Not very but close to static DH key exchange
• More realistic model: don’t get the output point, only a hash
• Addressed in the paper. Recovering all of s possible but more costly

than Antipa et al., because only one group to play with

12



A constructive application

I Quick idea of our constructive use of this attack

I Common trick to protect against fault injection in a device doing
computations over Fp:

1. choose a small auxiliary prime r , and compute mod p · r
2. redo the computation mod r
3. if the two results coincide mod r , decide there was no fault and

output the result mod p

I In the case of ECC, free to choose the elliptic curve over Fr that
you will combine using CRT to get a curve over Z/prZ

I Our suggestion: use a degenerate curve instead!
• Step 2 above becomes a simple base field exponentiation: much

faster

13



A constructive application

I Quick idea of our constructive use of this attack

I Common trick to protect against fault injection in a device doing
computations over Fp:

1. choose a small auxiliary prime r , and compute mod p · r
2. redo the computation mod r
3. if the two results coincide mod r , decide there was no fault and

output the result mod p

I In the case of ECC, free to choose the elliptic curve over Fr that
you will combine using CRT to get a curve over Z/prZ

I Our suggestion: use a degenerate curve instead!
• Step 2 above becomes a simple base field exponentiation: much

faster

13



A constructive application

I Quick idea of our constructive use of this attack

I Common trick to protect against fault injection in a device doing
computations over Fp:

1. choose a small auxiliary prime r , and compute mod p · r
2. redo the computation mod r
3. if the two results coincide mod r , decide there was no fault and

output the result mod p

I In the case of ECC, free to choose the elliptic curve over Fr that
you will combine using CRT to get a curve over Z/prZ

I Our suggestion: use a degenerate curve instead!
• Step 2 above becomes a simple base field exponentiation: much

faster

13



A constructive application

I Quick idea of our constructive use of this attack

I Common trick to protect against fault injection in a device doing
computations over Fp:

1. choose a small auxiliary prime r , and compute mod p · r
2. redo the computation mod r
3. if the two results coincide mod r , decide there was no fault and

output the result mod p

I In the case of ECC, free to choose the elliptic curve over Fr that
you will combine using CRT to get a curve over Z/prZ

I Our suggestion: use a degenerate curve instead!
• Step 2 above becomes a simple base field exponentiation: much

faster

13



Conclusion and perspectives

I We introduced a new attack that applies surprisingly broadly, and
fully breaks unprotected ECC implementations with a single invalid
point

• Antipa et al.’s suggestion that alternate addition laws could protect
from invalid curve attacks seems incorrect

I You should validate your points even when using Edwards curves!
• though if you were clueful enough to use Edwards curves, you

probably already did

I Can be used constructively for fault detection

I Question: can we prove that this will work for any elliptic curve
model?

14



Conclusion and perspectives

I We introduced a new attack that applies surprisingly broadly, and
fully breaks unprotected ECC implementations with a single invalid
point

• Antipa et al.’s suggestion that alternate addition laws could protect
from invalid curve attacks seems incorrect

I You should validate your points even when using Edwards curves!
• though if you were clueful enough to use Edwards curves, you

probably already did

I Can be used constructively for fault detection

I Question: can we prove that this will work for any elliptic curve
model?

14



Conclusion and perspectives

I We introduced a new attack that applies surprisingly broadly, and
fully breaks unprotected ECC implementations with a single invalid
point

• Antipa et al.’s suggestion that alternate addition laws could protect
from invalid curve attacks seems incorrect

I You should validate your points even when using Edwards curves!
• though if you were clueful enough to use Edwards curves, you

probably already did

I Can be used constructively for fault detection

I Question: can we prove that this will work for any elliptic curve
model?

14



Conclusion and perspectives

I We introduced a new attack that applies surprisingly broadly, and
fully breaks unprotected ECC implementations with a single invalid
point

• Antipa et al.’s suggestion that alternate addition laws could protect
from invalid curve attacks seems incorrect

I You should validate your points even when using Edwards curves!
• though if you were clueful enough to use Edwards curves, you

probably already did

I Can be used constructively for fault detection

I Question: can we prove that this will work for any elliptic curve
model?

14



Thank you!


	Appendix

