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What this paper is about

» We look at a certain type of implementation attacks against elliptic
curves, known as “invalid curve attacks”
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What this paper is about

» We look at a certain type of implementation attacks against elliptic
curves, known as “invalid curve attacks”

» Known to apply to curves in Weierstrass form, as well as a few
other (Hessian curves, Huff's model, etc.)

» However, no attack of that type known so far against Edwards
curves (when using the more common addition law), Jacobi
intersections, Jacobi quartics...

» Our main contribution: showing that there is still something you
can do to break (sloppy implementations of) those curve models as
well

» On the flip side: the attack can be repurposed as a cheap fault
attack countermeasure in some settings
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A basic model for invalid curve attacks

» Imagine a cryptographic device doing scalar multiplications on a
prescribed elliptic curve E
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If you follow the rules: cannot learn much about s
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So you cheat: send a point P outside of E
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A basic model for invalid curve attacks

Imagine a cryptographic device doing scalar multiplications on a
prescribed elliptic curve E

You send it a point P on E, and it outputs s - P for some secret
scalar s

v

v

v

If you follow the rules: cannot learn much about s

v

So you cheat: send a point P outside of E
What happens then?

v
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Sending an invalid point

rrcudtive BED by T

» If the device is properly designed, it might check and reject your
input (point validation)
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» If the device is properly designed, it might check and reject your
input (point validation)

» You might even think most implementations would do so; that
would be optimistic
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Sending an invalid point A

» If the device is properly designed, it might check and reject your
input (point validation)

» You might even think most implementations would do so; that
would be optimistic

» Without point validation: the device runs the same sequence of
operations as for a point on E, and returns the result
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Sending an invalid point A

» If the device is properly designed, it might check and reject your
input (point validation)

» You might even think most implementations would do so; that
would be optimistic

» Without point validation: the device runs the same sequence of
operations as for a point on E, and returns the result

» What you get depends on the precise way the arithmetic on E is
implemented
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Example: short Weierstrass/affine 5

_ . . - - .
» Say the device does its scalar multiplications

* using double-and-add
« on the short Weierstrass curve E: y2 = x3 + ax+ b
« using the affine coordinate addition law (x1, y1) + (x2, y2) = (X3, ¥3):

X3:)\2—x1—xz y3=)\(X1—X3)—)/1

where

\ {(3xf +3)/(21)  if (x1.31) = (x2. y2) (doubling)
(y1 —y2)/(x1 — x2) otherwise
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Example: short Weierstrass/affine A

_ . . - - .
» Say the device does its scalar multiplications

* using double-and-add
« on the short Weierstrass curve E: y2 = x3 + ax+ b
« using the affine coordinate addition law (x1, y1) + (x2, y2) = (X3, ¥3):

X3:)\2—x1—xz y3=)\(X1—X3)—)/1

where

\ = {(3X12 +a)/(2y) if (x1,y1) = (%2, y2) (doubling)
(y1 —y2)/(x1 — x2) otherwise

» Key observation (Biehl et al.): the addition and doubling formulas
depend only on curve parameter a. Identical for all curves of the
form E: y?> = x3 + ax + b.
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Example: short Weierstrass/affine

rrcudtive BED by T

» The invalid point P that you sent is on one of the curves E
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Example: short Weierstrass/affine

» The invalid point P that you sent is on one of the curves E

» So the sequence of operations carried out by the device exactly ends
up being a scalar multiplication on that curve: it outputs s- P on E
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Example: short Weierstrass/affine

» The invalid point P that you sent is on one of the curves E

» So the sequence of operations carried out by the device exactly ends
up being a scalar multiplication on that curve: it outputs s- P on E
» If the curve E is weak (almost all curves are!), you can recover

plenty of information on s: e.g. you get s mod ¢ for any small
divisor ¢ of the order
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How general is this?

» The description above captures the gist of Antipa et al.’s invalid
curve attack (PKC 2003)
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How general is this?

» The description above captures the gist of Antipa et al.’s invalid
curve attack (PKC 2003)

» Also works with other coordinate systems (projective coordinates,
etc.), and doesn't really depend on the scalar multiplication
algorithm

» Not just Weierstrass: applies as long as the arithmetic is
independent of at least one curve parameter (Hessian curves, Huff
curves)

» However, the (preferred) addition and doubling formulas for
Edwards curves and a few others depend on all curve parameters.
What about them?

@ NTT Copyright ©2014 NTT corp. All Rights Reserved.



Edwards curves and invalid points

T
» The (complete) addition law on the twisted Edwards curve

E: ax?> + y? =1+ dx?y? is given by:

(Xl )’1) + (X2 _y2) = ( X1Y2 + Y1x2 Yiyo — axXiXo
| | 1+ dX1X2Y1Y2’ 1 —dxyx)ys

)
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(Xl Y1)—|—(X2 _y2) = ( X1y2+y1X2 Yiyo — axXiXo )
| | 1+ dX1X2Y1Y2’ 1 —dxyx)ys

» If you send an invalid point P, the computations won't make sense:
P lies on different twisted Edwards curves, but none with the same
arithmetic formulas
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Edwards curves and invalid points

T
» The (complete) addition law on the twisted Edwards curve
E: ax?> + y? =1+ dx?y? is given by:

X1y +yixe  Yiye — axix )

X1, + X2, = ’
(x1, 1) + (%2 y2) (1_|_dxlx2y1y2 1 — dxixayrys

» If you send an invalid point P, the computations won't make sense:
P lies on different twisted Edwards curves, but none with the same
arithmetic formulas

» The device will output something, but it won't be the scalar
multiplication by s in some group anymore: hard to exploit

» In fact, Antipa et al. suggest using arithmetic depending on all
curve parameters as a possible countermeasure against invalid curve
attacks
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Our main observation

» What | just said about computations not being in a group: true for
almost all invalid points P. ..
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Our main observation
T
» What | just said about computations not being in a group: true for
almost all invalid points P. ..

» ...but there are exceptions: take points of the form (0, y).
Applying the formula naively we get:

O-y2+y1-0  y1yp—a-0
1+d-0-y1o" 1 —d-0-y1y»

(0,y1) +(0,52) = ( ) = (0., y1y»)
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Our main observation
| e
» What | just said about computations not being in a group: true for
almost all invalid points P. ..

» ...but there are exceptions: take points of the form (0, y).
Applying the formula naively we get:

O-y2+y1-0  y1yp—a-0
0 0 = = (0
(0,y1) +(0,52) (1+d-0-y1y2’1—d-0-y1y2 (0, y152)

» It easily follows that if you send (0, y) to the device, it will output
(0,5°)
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What | just said about computations not being in a group: true for
almost all invalid points P. ..

... but there are exceptions: take points of the form (0, y).
Applying the formula naively we get:

O-y2+y1-0  y1yp—a-0
0 0 = = (0
(0,y1) +(0,52) (1+d-0-y1y2’1—d-0-y1y2 (0, y152)

It easily follows that if you send (0, y) to the device, it will output
(0,5°)

And so you can recover s by solving a discrete log problem in the
multiplicative group of the base field: comparatively very easy!



Does this trick generalize?

» After making that observation, we looked at all other models of
elliptic curves we could find
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to the twisted multiplicative group
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» After making that observation, we looked at all other models of
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» In all cases, similar special invalid points for which the original
addition law becomes multiplication in a group isomorphic to I, or
to the twisted multiplicative group

» So the attack seems to apply basically to all curve models
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Does this trick generalize?

» After making that observation, we looked at all other models of
elliptic curves we could find

» In all cases, similar special invalid points for which the original
addition law becomes multiplication in a group isomorphic to I, or
to the twisted multiplicative group

» So the attack seems to apply basically to all curve models

» Like the Antipa et al. attack, mostly unaffected by different
coordinate systems or scalar multiplication algorithms
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Degenerate curve attacks B

» In the Edwards curve setting, the set of points (0,y) (i.e. the axis
x = 0) can be seen as the “limit" of the curves E, 4 when a — oo,
so it should still have a natural group law, which must necessarily

be a form of the multiplicative group
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» In the Edwards curve setting, the set of points (0,y) (i.e. the axis
x = 0) can be seen as the “limit" of the curves E, 4 when a — oo,
so it should still have a natural group law, which must necessarily
be a form of the multiplicative group

» However, the group laws in the family are all different, so no a
priori reason why the law on the limit should be the same as the
addition law you started with

» But the terms that depend on the curve parameters all cancel out
at the limit, so you end up being fine somehow
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Degenerate curve attacks

In the Edwards curve setting, the set of points (0, y) (i.e. the axis

x = 0) can be seen as the “limit" of the curves E, 4 when a — oo,

so it should still have a natural group law, which must necessarily
be a form of the multiplicative group

However, the group laws in the family are all different, so no a
priori reason why the law on the limit should be the same as the
addition law you started with

But the terms that depend on the curve parameters all cancel out
at the limit, so you end up being fine somehow

More generally, the set of special invalid points that let you attack
are where your curve families degenerate, hence the name
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Is this a realistic threat?
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» Regarding concrete impact, mainly two aspects to consider
» Are implementers of Edwards curves as likely to mess up point
validation?

* Not by a long shot
* The main implementations are by notoriously competent people
* Specifications being written mandate compressed representations for

points on the wire, thwarting the attack
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Is this a realistic threat?

» Regarding concrete impact, mainly two aspects to consider

» Are implementers of Edwards curves as likely to mess up point
validation?
* Not by a long shot
* The main implementations are by notoriously competent people
* Specifications being written mandate compressed representations for
points on the wire, thwarting the attack
» |Is the model of a device computing scalar multiplications realistic?
» Not very but close to static DH key exchange
* More realistic model: don't get the output point, only a hash
e Addressed in the paper. Recovering all of s possible but more costly
than Antipa et al., because only one group to play with
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A constructive application

» Quick idea of our constructive use of this attack

» Common trick to protect against fault injection in a device doing
computations over FP:

1.
2.
3.

© N1T

choose a small auxiliary prime r, and compute mod p - r
redo the computation mod r

if the two results coincide mod r, decide there was no fault and
output the result mod p
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» Common trick to protect against fault injection in a device doing
computations over FP:

1. choose a small auxiliary prime r, and compute mod p - r
2. redo the computation mod r

3. if the two results coincide mod r, decide there was no fault and
output the result mod p

» In the case of ECC, free to choose the elliptic curve over FF, that
you will combine using CRT to get a curve over Z/prZ

® NTT Copyright ©2014 NTT corp. All Rights Reserved.

13



A constructive application

v

Quick idea of our constructive use of this attack

» Common trick to protect against fault injection in a device doing
computations over FP:
1. choose a small auxiliary prime r, and compute mod p - r
2. redo the computation mod r
3. if the two results coincide mod r, decide there was no fault and
output the result mod p

v

In the case of ECC, free to choose the elliptic curve over IF, that
you will combine using CRT to get a curve over Z/prZ

v

Our suggestion: use a degenerate curve instead!

e Step 2 above becomes a simple base field exponentiation: much
faster
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Conclusion and perspectives

» We introduced a new attack that applies surprisingly broadly, and
fully breaks unprotected ECC implementations with a single invalid
point

* Antipa et al.’s suggestion that alternate addition laws could protect
from invalid curve attacks seems incorrect

® NTT Copyright ©2014 NTT corp. All Rights Reserved. 14



Conclusion and perspectives

» We introduced a new attack that applies surprisingly broadly, and
fully breaks unprotected ECC implementations with a single invalid
point

* Antipa et al.’s suggestion that alternate addition laws could protect
from invalid curve attacks seems incorrect

» You should validate your points even when using Edwards curves!

* though if you were clueful enough to use Edwards curves, you
probably already did

@ NTT Copyright ©2014 NTT corp. All Rights Reserved. 14



Conclusion and perspectives

» We introduced a new attack that applies surprisingly broadly, and
fully breaks unprotected ECC implementations with a single invalid
point

* Antipa et al.’s suggestion that alternate addition laws could protect
from invalid curve attacks seems incorrect

» You should validate your points even when using Edwards curves!

* though if you were clueful enough to use Edwards curves, you
probably already did

» Can be used constructively for fault detection

® NTT Copyright ©2014 NTT corp. All Rights Reserved. 14



Conclusion and perspectives

v

We introduced a new attack that applies surprisingly broadly, and
fully breaks unprotected ECC implementations with a single invalid
point
* Antipa et al.’s suggestion that alternate addition laws could protect
from invalid curve attacks seems incorrect

v

You should validate your points even when using Edwards curves!

* though if you were clueful enough to use Edwards curves, you
probably already did

v

Can be used constructively for fault detection

v

Question: can we prove that this will work for any elliptic curve
model?
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Thank you!
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