Bootstrapping BGV ciphertexts with a wider choice of $p \ {\rm and} \ q$

Emmanuela Orsini, Joop van de Pol, Nigel Smart

Department of Computer Science University of Bristol

PKC 2015

Emmanuela Orsini

Bootstrapping BGV ciphertexts

PKC 2015 1 / 20

Emmanuela Orsini

Bootstrapping BGV ciphertexts

PKC 2015 2 / 20

In the cloud

- Private outsourcing of computation
- Near-optimal private outsourcing of storage (single-server PIR) [G09, BV11b]
- ◊ Verifiable outsourcing (delegation) [GGP11, CKV11, KKR13]
- ◊ Private machine learning in the cloud [GLN12, HW13]

In the cloud

- Private outsourcing of computation
- Near-optimal private outsourcing of storage (single-server PIR) [G09, BV11b]
- ◊ Verifiable outsourcing (delegation) [GGP11, CKV11, KKR13]
- ◊ Private machine learning in the cloud [GLN12, HW13]

Secure Multiparty Computation

- Low-communication multiparty computation [AJLTVW12, LTV12, CLOPS13]
- ♦ More efficient MPC [BDOZ11, DPSZ12, DKLPSS12]

In the cloud

- Private outsourcing of computation
- Near-optimal private outsourcing of storage (single-server PIR) [G09, BV11b]
- ◊ Verifiable outsourcing (delegation) [GGP11, CKV11, KKR13]
- ◊ Private machine learning in the cloud [GLN12, HW13]

Secure Multiparty Computation

- Low-communication multiparty computation
 [AJLTVW12,LTV12,CLOPS13]
- ♦ More efficient MPC [BDOZ11, DPSZ12, DKLPSS12]

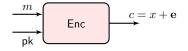
• Primitives

Succinct argument systems

[GLR11, DFH11, BCCT11, BC12, BCCT12, BCGT13,...]

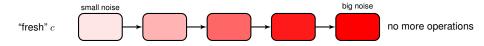
- ♦ General functional encryption [GKPVZ12]
- ◊ Indistinguishability obfuscation for all circuits [GGHRSW13] University of

How to construct an FHE scheme - Step I



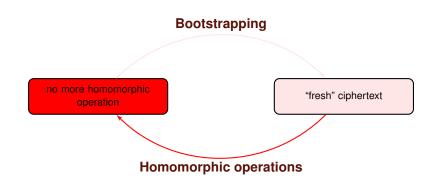
The ciphertext contains an error term \mathbf{e} (noise)

- The noise increases with every homomorphic operation
- A correct decryption is guaranteed if the final noise magnitude is below a certain limit



 Somewhat Homomorphic Encryption Scheme : support a limited number of additions and multiplications

Bootstrapping - Step 2



- The bootstrapping step takes as input a ciphertext with a large noise and outputs a "fresh" ciphertext of the same plaintext
- It is the only known way of obtaining unbounded FHE

 Homomorphically computes the SHE decryption function on encrypted secret key

$$c \qquad sk \longrightarrow Eval_f \left(\mathsf{Dec}(\,\cdot\,, c) \right) \longrightarrow c$$

 Homomorphically computes the SHE decryption function on encrypted secret key

$$c \qquad sk \longrightarrow Eval_f \left(\mathsf{Dec}(\,\cdot\,, c) \right) \longrightarrow c$$

• Still the main bottleneck in FHE

Emmanuela Orsini

Bootstrapping BGV ciphertexts

PKC 2015 5 / 20

 Homomorphically computes the SHE decryption function on encrypted secret key

$$c \qquad sk \longrightarrow Eval_f \left(\mathsf{Dec}(\,\cdot\,, c) \right) \longrightarrow c$$

• Still the main bottleneck in FHE

• GOAL: Efficiency! Minimize depth *d* of decryption circuit

 Homomorphically computes the SHE decryption function on encrypted secret key

$$c \qquad sk \longrightarrow Eval_f \left(\mathsf{Dec}(\,\cdot\,, c) \right) \longrightarrow c$$

• Still the main bottleneck in FHE

- GOAL: Efficiency! Minimize depth *d* of decryption circuit
- Intensive research area
 [AP13, BV14, AP14, HS14, HAO15, HS15, DM15]
 [AP13, BV14, BV14, HAO15, HS15, DM15]
 [AP13, BV14, HA015, HS15, BV14, HAO15, HS15, DM15]
 [AP14, HS14, HA015, HS15, BV14, HA015, HS15, HS15,

We present a new bootstrapping technique with:

э.

We present a new bootstrapping technique with:

Small depth growth

We present a new bootstrapping technique with:

- Small depth growth
- Large choice of the parameters of the scheme

We present a new bootstrapping technique with:

- Small depth growth
- Large choice of the parameters of the scheme

Main tools:

Matrix representation of rings

We present a new bootstrapping technique with:

- Small depth growth
- Large choice of the parameters of the scheme

Main tools:

- Matrix representation of rings
- o Batch Computation

We present a new bootstrapping technique with:

- Small depth growth
- Large choice of the parameters of the scheme

Main tools:

- Matrix representation of rings
- o Batch Computation
- Ring-switching technique

The BGV ring-LWE-based somewhat homomorphic encryption scheme

We consider the BGV SHE scheme [BGV12]

The BGV ring-LWE-based somewhat homomorphic encryption scheme

We consider the BGV SHE scheme [BGV12]

• We use two rings (at some point we perform a ring-switching)

$$\diamond R = Z[X]/\Phi_m(X)$$

$$\diamond \deg \Phi_m(X) = N$$

$$\diamond \mathsf{sk}^{(R)}$$

S is a subring of R (m'|m)

 $\diamond \ S = Z[X]/\Phi_{m'}(X)$

$$\diamond \ \deg \Phi_{m'}(X) = n$$
$$\diamond \ \mathsf{sk}^{(S)}$$

- 4 ∃ →

The BGV ring-LWE-based somewhat homomorphic encryption scheme

We consider the BGV SHE scheme [BGV12]

• We use two rings (at some point we perform a ring-switching)

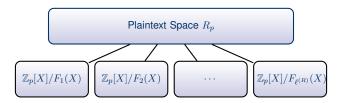
$$\begin{aligned} \diamond \ R &= Z[X]/\Phi_m(X) & \diamond \ S &= Z[X]/\Phi_{m'}(X) \\ \diamond \ \deg \Phi_m(X) &= N & \diamond \ \deg \Phi_{m'}(X) &= n \\ \diamond \ \mathsf{sk}^{(R)} & \diamond \ \mathsf{sk}^{(S)} \end{aligned}$$

S is a subring of R (m'|m)

• The scheme is parametrized by a sequence of decreasing moduli $q_L > q_{L-1} > \cdots > q_0 = q$, such that $Q = q_L = \prod_{i=0}^{L} p_i$.

Fresh ciphertexts are defined in R_Q .

Batch computation [SV11]

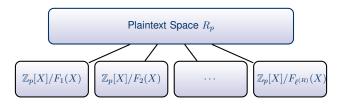


• Let p be a prime, coprime with m, and $R_p=R/pR=\mathbb{Z}_p[X]/\Phi_m(X)$ • We have $\ell^{(R)}$ isomorphisms

$$\psi_i: \mathbb{Z}_p[X]/F_i(X) \to \mathbb{F}_{p^{d^{(R)}}}, \quad i = 1, \dots, \ell^{(R)},$$

 \Rightarrow we can represent $\ell^{(R)}$ plaintext elements of $\mathbb{F}_{p^{d^{(R)}}}$ as a single element in $R_p.$

Batch computation [SV11]



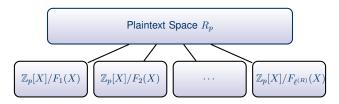
• Let p be a prime, coprime with m, and $R_p=R/pR=\mathbb{Z}_p[X]/\Phi_m(X)$ • We have $\ell^{(R)}$ isomorphisms

$$\psi_i : \mathbb{Z}_p[X]/F_i(X) \to \mathbb{F}_{p^{d(R)}}, \quad i = 1, \dots, \ell^{(R)},$$

 \Rightarrow we can represent $\ell^{(R)}$ plaintext elements of $\mathbb{F}_{p^{d^{(R)}}}$ as a single element in $R_p.$

• S_p splits into $\ell^{(S)}$ slots

Batch computation [SV11]



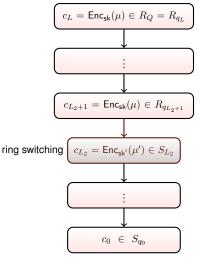
• Let p be a prime, coprime with m, and $R_p = R/pR = \mathbb{Z}_p[X]/\Phi_m(X)$ • We have $\ell^{(R)}$ isomorphisms

$$\psi_i: \mathbb{Z}_p[X]/F_i(X) \to \mathbb{F}_{p^{d^{(R)}}}, \quad i = 1, \dots, \ell^{(R)},$$

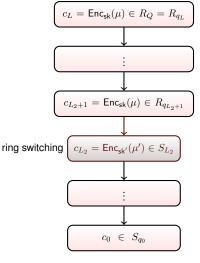
 \Rightarrow we can represent $\ell^{(R)}$ plaintext elements of $\mathbb{F}_{p^{d^{(R)}}}$ as a single element in $R_p.$

- S_p splits into $\ell^{(S)}$ slots
- By the CRT, addition and multiplication correspond to SIMD operations on the slots ⇒ we can process ℓ^(R) input values at once.

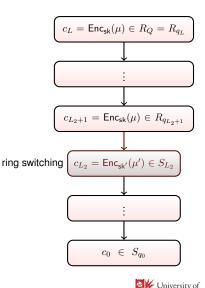
 We encrypt at level L and perform homomorphic operations down to level zero with a single ring switching to improve efficiency



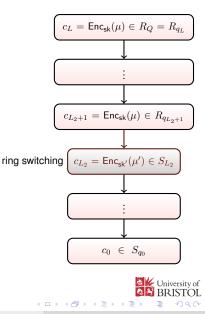
- We encrypt at level L and perform homomorphic operations down to level zero with a single ring switching to improve efficiency
- $\star\,$ The ciphertexts before ring switching are associated to $\ell^{(R)}$ plaintext slots



- We encrypt at level L and perform homomorphic operations down to level zero with a single ring switching to improve efficiency
- $\star\,$ The ciphertexts before ring switching are associated to $\ell^{(R)}$ plaintext slots
- \star With the ring switching the input ciphertext becomes associated with $\ell^{(R)}/\ell^{(S)}$ distinct ciphertexts associated to $\ell^{(S)}$ plaintext slots



- We encrypt at level L and perform homomorphic operations down to level zero with a single ring switching to improve efficiency
- $\star\,$ The ciphertexts before ring switching are associated to $\ell^{(R)}$ plaintext slots
- \star With the ring switching the input ciphertext becomes associated with $\ell^{(R)}/\ell^{(S)}$ distinct ciphertexts associated to $\ell^{(S)}$ plaintext slots
- ♦ Bootstrap a number $(\ell^{(R)}/n)$ of ciphertexts in S_q in one shot.



• The ciphertexts are elements $c = (c_0, c_1) \in R_q^2$

- The ciphertexts are elements $c = (c_0, c_1) \in R_q^2$
- The decryption is an evaluation of a linear function *D* (dependent on *c*)

$$D_C(x) = \begin{pmatrix} (c_0 + x \cdot c_1) \mod q \end{pmatrix}$$

on the secret key sk mod q, followed by a reduction $\mod p$.

- The ciphertexts are elements $c = (c_0, c_1) \in R_q^2$
- The decryption is an evaluation of a linear function *D* (dependent on *c*)

$$D_C(\mathsf{sk}) = \begin{pmatrix} (c_0 + \mathsf{sk} \cdot c_1) \mod q \end{pmatrix}$$

on the secret key sk mod q, followed by a reduction $\mod p$.

- The ciphertexts are elements $c = (c_0, c_1) \in R_q^2$
- The decryption is an evaluation of a linear function *D* (dependent on *c*)

$$D_C(\mathsf{sk}) = \begin{pmatrix} (c_0 + \mathsf{sk} \cdot c_1) \mod q \end{pmatrix}$$

on the secret key sk mod q, followed by a reduction $\mod p$.

Bootstrapping: homomorphic evaluation decryption circuit:

- The ciphertexts are elements $c = (c_0, c_1) \in R_q^2$
- The decryption is an evaluation of a linear function *D* (dependent on *c*)

$$D_C(\mathsf{sk}) = \begin{pmatrix} (c_0 + \mathsf{sk} \cdot c_1) \mod q \end{pmatrix}$$

on the secret key sk mod q, followed by a reduction $\mod p$.

Bootstrapping: homomorphic evaluation decryption circuit:

 $\star\,$ Given an encryption of the secret key sk, we can homomorphically evaluate D

- The ciphertexts are elements $c = (c_0, c_1) \in R_q^2$
- The decryption is an evaluation of a linear function *D* (dependent on *c*)

$$D_C(\mathsf{sk}) = \begin{pmatrix} (c_0 + \mathsf{sk} \cdot c_1) \mod q \end{pmatrix}$$

on the secret key sk mod q, followed by a reduction $\mod p$.

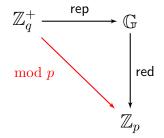
Bootstrapping: homomorphic evaluation decryption circuit:

- $\star\,$ Given an encryption of the secret key sk, we can homomorphically evaluate D
- \star Homomorphic evaluation of the $\mod p$ map

< □ > < 同 > < 回 > < 回

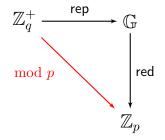
Three main problems:

Homomorphically evaluate the mod p-map



Three main problems:

Homomorphically evaluate the mod p-map



Encode the sk and then using, a dec-eval function, create a set of ciphertexts encrypting the required input to red.

Packed ciphertexts

Overview of our technique

- Find a suitable representation of S_q as an algebraic group over \mathbb{F}_p
- SIMD evaluation of dec-eval over G
- SIMD evaluation of red
- Repacking ciphertexts

Overview of our technique

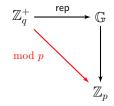
- Find a suitable representation of S_q as an algebraic group over \mathbb{F}_p
- 2 SIMD evaluation of dec-eval over $\mathbb G$
- SIMD evaluation of red
- Repacking ciphertexts

We give two different instantiations:

- Polynomial representation
- Elliptic curve based version

Step 1: Polynomial representation (1)

Find an \mathbb{F}_p -representation \mathbb{G} for \mathbb{Z}_q^+ :



Emmanuela Orsini

Bootstrapping BGV ciphertexts

PKC 2015 13 / 20

Step 1: Polynomial representation (1)

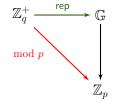
Find an \mathbb{F}_p -representation \mathbb{G} for \mathbb{Z}_q^+ :

By the CRT we have a group embedding

$$\mathsf{rep}: \left\{ \begin{array}{cc} \mathbb{Z}_q^+ & \longrightarrow \mathbb{G} = \prod_{i=1}^t \mathbb{F}_{p^{k_i}}^* \\ a & \longmapsto (g_1^{a_1}, \dots, g_t^{a_t}) \end{array} \right.$$

for some k_i , where $a_i = a \pmod{e_i}$, $q = \prod_{i=1}^t e_i$

◇ One add in Z_q⁺ translates into $M = \frac{1}{2} \sum_{i=1}^{t} k_i \cdot (k_i + 1) \text{ mult in } \mathbb{F}_p;$ each element in G requires $E = \sum_{i=1}^{t} k_i$ elements in \mathbb{F}_p to represent it.



PKC 2015 13 / 20

Step 1: Polynomial representation (1)

Find an \mathbb{F}_p -representation \mathbb{G} for \mathbb{Z}_q^+ :

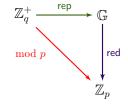
By the CRT we have a group embedding

$$\mathsf{rep}: \left\{ \begin{array}{cc} \mathbb{Z}_q^+ & \longrightarrow \mathbb{G} = \prod_{i=1}^t \mathbb{F}_{p^{k_i}}^* \\ a & \longmapsto (g_1^{a_1}, \dots, g_t^{a_t}) \end{array} \right.$$

for some k_i , where $a_i = a \pmod{e_i}$, $q = \prod_{i=1}^t e_i$

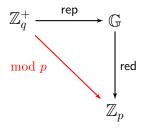
◇ One add in Z_q⁺ translates into $M = \frac{1}{2} \sum_{i=1}^{t} k_i \cdot (k_i + 1) \text{ mult in } \mathbb{F}_p;$ each element in G requires $E = \sum_{i=1}^{t} k_i$ elements in \mathbb{F}_p to represent it.

A reduction $\mathbb{G} \to \mathbb{Z}_p$ can be defined by *algebraically* from the coefficient representation of \mathbb{G} to \mathbb{F}_p . (Step 3)



Step 1: Polynomial representation - Extending maps

• Let $\tau = \operatorname{red} \circ \operatorname{rep}$



Emmanuela Orsini

Bootstrapping BGV ciphertexts

PKC 2015 14 / 20

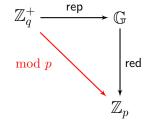
Step 1: Polynomial representation - Extending maps

- Let $\tau = \operatorname{red} \circ \operatorname{rep}$
- By linearity we extend the maps:

$$\hat{\mathsf{rep}}: (S_q^+) \longrightarrow \mathbb{G}^n$$

and

$$\hat{\tau}: (S_q^+) \longrightarrow \mathbb{F}_p^n$$



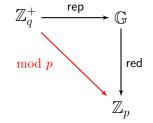
Step 1: Polynomial representation - Extending maps

- Let $\tau = \operatorname{red} \circ \operatorname{rep}$
- By linearity we extend the maps:

$$\hat{\mathsf{rep}}: (S_q^+) \longrightarrow \mathbb{G}^n$$

and

$$\hat{\tau}: (S_q^+) \longrightarrow \mathbb{F}_p^n$$



• We want to bootstrap $\ell(R)/n$ ciphertexts, hence we define

$$\overline{\operatorname{rep}}: (S_q^+)^{\ell(R)/n} \longrightarrow \mathbb{G}^{\ell(R)}$$

and

$$\overline{\tau}: (S_q^+)^{\ell(R)/n} \longrightarrow \mathbb{F}_p^{\ell(R)}$$

red is the SIMD evaluation of red on the image of $\overline{\text{rep}}$ in $\mathbb{G}^{\ell^{(R)}}_{\mathbb{N}}$ University of BRISTON

We can then rewrite the decryption equation of our $\ell^{(R)}/n$ ciphertexts:

We can then rewrite the decryption equation of our $\ell^{(R)}/n$ ciphertexts:

$$\left(\left(c_0^{(j)} + \mathsf{sk}^{(S)} \cdot c_1^{(j)} \pmod{q}\right) \left(\mod{p}\right)\right)_{j=1}^{\ell^{(R)}/n}$$

• • • • • • • • • • • • •

We can then rewrite the decryption equation of our $\ell^{(R)}/n$ ciphertexts:

$$\begin{split} & \left(\left(c_0^{(j)} + \mathsf{sk}^{(S)} \cdot c_1^{(j)} \pmod{q} \right) \right) (\mod{p}) \right)_{j=1}^{\ell^{(R)}/n} \\ &= \quad \overline{\mathsf{red}} \left(\overline{\mathsf{rep}} \left(c_0^{(1)} + \mathsf{sk}^{(S)} \cdot c_1^{(1)}, \dots, c_0^{(\ell^{(R)}/n)} + \mathsf{sk}^{(S)} \cdot c_1^{(\ell^{(R)}/n)} \right) \right) \end{split}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

We can then rewrite the decryption equation of our $\ell^{(R)}/n$ ciphertexts:

$$\begin{split} & \left(\left(c_0^{(j)} + \mathsf{sk}^{(S)} \cdot c_1^{(j)} \pmod{q} \right) \right) (\mod{p}) \right)_{j=1}^{\ell^{(R)}/n} \\ &= \quad \overline{\mathsf{red}} \left(\overline{\mathsf{rep}} \left(c_0^{(1)} + \mathsf{sk}^{(S)} \cdot c_1^{(1)}, \dots, c_0^{(\ell^{(R)}/n)} + \mathsf{sk}^{(S)} \cdot c_1^{(\ell^{(R)}/n)} \right) \right) \\ &= \quad \overline{\mathsf{red}} \left(\overline{\mathsf{rep}} \left(\mathbf{x} \right) \right), \end{split}$$

where \mathbf{x} is the vector consisting of S_q elements

$$c_0^{(j)} + \mathsf{sk}^{(S)} \cdot c_1^{(j)}, \; j = 1, \dots, \ell^{(R)}/n$$

A D N A B N A B N

We can then rewrite the decryption equation of our $\ell^{(R)}/n$ ciphertexts:

$$\begin{split} & \left(\left(c_0^{(j)} + \mathsf{sk}^{(S)} \cdot c_1^{(j)} \pmod{q} \right) \right) (\mod{p}) \right)_{j=1}^{\ell^{(R)}/n} \\ &= \quad \overline{\mathsf{red}} \left(\overline{\mathsf{rep}} \left(c_0^{(1)} + \mathsf{sk}^{(S)} \cdot c_1^{(1)}, \dots, c_0^{(\ell^{(R)}/n)} + \mathsf{sk}^{(S)} \cdot c_1^{(\ell^{(R)}/n)} \right) \right) \\ &= \quad \overline{\mathsf{red}} \left(\overline{\mathsf{rep}} \left(\mathbf{x} \right) \right), \end{split}$$

where \mathbf{x} is the vector consisting of S_q elements

$$c_0^{(j)} + \mathsf{sk}^{(S)} \cdot c_1^{(j)}, \; j = 1, \dots, \ell^{(R)}/n$$

 \star At this point red is just an algebraic function

Emmanuela Orsini

PKC 2015 15 / 20

We can then rewrite the decryption equation of our $\ell^{(R)}/n$ ciphertexts:

$$\begin{split} & \left(\left(c_0^{(j)} + \mathsf{sk}^{(S)} \cdot c_1^{(j)} \pmod{q} \right) \right) (\mod{p}) \right)_{j=1}^{\ell^{(R)}/n} \\ &= \quad \overline{\mathsf{red}} \left(\overline{\mathsf{rep}} \left(c_0^{(1)} + \mathsf{sk}^{(S)} \cdot c_1^{(1)}, \dots, c_0^{(\ell^{(R)}/n)} + \mathsf{sk}^{(S)} \cdot c_1^{(\ell^{(R)}/n)} \right) \right) \\ &= \quad \overline{\mathsf{red}} \left(\overline{\mathsf{rep}} \left(\mathbf{x} \right) \right), \end{split}$$

where \mathbf{x} is the vector consisting of S_q elements

$$c_0^{(j)} + \mathsf{sk}^{(S)} \cdot c_1^{(j)}, \; j = 1, \dots, \ell^{(R)}/n$$

- \star At this point red is just an algebraic function
- $\star\,$ We need to homomorphically evaluate $\overline{\text{rep}}(\mathbf{x})$

Emmanuela Orsini

$$\overline{\mathsf{rep}}\left(c_0^{(1)} + \mathsf{sk}^{(S)} \cdot c_1^{(1)}, \dots, c_0^{(\ell^{(R)}/n)} + \mathsf{sk}^{(S)} \cdot c_1^{(\ell^{(R)}/n)}\right)$$

MATRIX REPRESENTATION

♦ We can associate an element $b \in S_q$ to an $n \times n$ matrix \mathbf{M}_b over \mathbb{Z}_q such that the vector

$$\mathbf{c} = \mathbf{M}_b \cdot \mathbf{a}$$

is the coefficient vector of c where $c = a \cdot b$.

$$\overline{\mathsf{rep}}\left(c_0^{(1)} + \mathsf{sk}^{(S)} \cdot c_1^{(1)}, \dots, c_0^{(\ell^{(R)}/n)} + \mathsf{sk}^{(S)} \cdot c_1^{(\ell^{(R)}/n)}\right)$$

MATRIX REPRESENTATION

♦ We can associate an element $b \in S_q$ to an $n \times n$ matrix \mathbf{M}_b over \mathbb{Z}_q such that the vector

$$\mathbf{c} = \mathbf{M}_b \cdot \mathbf{a}$$

is the coefficient vector of c where $c = a \cdot b$.

•
$$c_1^{(j)} \to \mathbf{M}_{c_1^{(j)}}, j = 1, \dots, \ell^{(R)}/n$$

$$\overline{\mathsf{rep}}\left(c_0^{(1)} + \mathsf{sk}^{(S)} \cdot c_1^{(1)}, \dots, c_0^{(\ell^{(R)}/n)} + \mathsf{sk}^{(S)} \cdot c_1^{(\ell^{(R)}/n)}\right)$$

•
$$\mathbf{M}_{c_1^{(j)}} = \sum_{k=0}^{\lceil \log q / \log p \rceil} p^k \cdot \mathbf{M}_1^{(j,k)}, \quad j = 1, \dots, \ell^{(R)} / n$$

Emmanuela Orsini

Bootstrapping BGV ciphertexts

PKC 2015 17 / 20

$$\overline{\mathsf{rep}}\left(c_0^{(1)} + \mathsf{sk}^{(S)} \cdot c_1^{(1)}, \dots, c_0^{(\ell^{(R)}/n)} + \mathsf{sk}^{(S)} \cdot c_1^{(\ell^{(R)}/n)}\right)$$

•
$$\mathbf{M}_{c_1^{(j)}} = \sum_{k=0}^{\lceil \log q / \log p \rceil} p^k \cdot \mathbf{M}_1^{(j,k)}, \quad j = 1, \dots, \ell^{(R)} / n$$

• Setting
$$\sum_j \mathbf{M}_1^{(j,k)} = \mathbf{M}_1^{(k)}$$

$$\overline{\operatorname{rep}}\left(c_0^{(1)},\ldots,c_0^{(\ell^{(R)}/n)}\right)\cdot\prod_{k=0}^{\lceil \log q/\log p\rceil}\overline{\operatorname{rep}}\left(p^k\cdot\underline{\mathsf{sk}}^{(S)},\ldots,p^k\cdot\underline{\mathsf{sk}}^{(S)}\right)^{\mathbf{M}_1^{(k)}}$$

$$\overline{\mathsf{rep}}\left(c_0^{(1)} + \mathsf{sk}^{(S)} \cdot c_1^{(1)}, \dots, c_0^{(\ell^{(R)}/n)} + \mathsf{sk}^{(S)} \cdot c_1^{(\ell^{(R)}/n)}\right)$$

•
$$\mathbf{M}_{c_1^{(j)}} = \sum_{k=0}^{\lceil \log q / \log p \rceil} p^k \cdot \mathbf{M}_1^{(j,k)}, \quad j = 1, \dots, \ell^{(R)} / n$$

• Setting
$$\sum_{j} \mathbf{M}_{1}^{(j,k)} = \mathbf{M}_{1}^{(k)}$$

$$\overline{\operatorname{rep}}\left(c_0^{(1)},\ldots,c_0^{(\ell^{(R)}/n)}\right)\cdot\prod_{k=0}^{\lceil\log q/\log p\rceil}\overline{\operatorname{rep}}\left(p^k\cdot\underline{\mathsf{sk}}^{(S)},\ldots,p^k\cdot\underline{\mathsf{sk}}^{(S)}\right)^{\mathbf{M}_1^{(k)}}$$

 $\diamond \operatorname{Enc}(\overline{\operatorname{rep}}(p^k \cdot \underline{\operatorname{sk}}^{(S)}, \dots, p^k \cdot \underline{\operatorname{sk}}^{(S)})), \text{ for } k = 0, \dots, \lceil \log q / \log p \rceil$

PKC 2015 17 / 20

Step 4: Repacking

 $\ell^{(R)}$ slots encoding the coefficients of the ciphertexts we are bootstrapping

 We need to extract these coefficients to produce a ciphertext (or a set of ciphertexts) which encode the same data.

Step 4: Repacking

 $\ell^{(R)}$ slots encoding the coefficients of the ciphertexts we are bootstrapping

- We need to extract these coefficients to produce a ciphertext (or a set of ciphertexts) which encode the same data.
- Different ways to perform this task:
 - Technique from [AP13]
 - Otherwise the Full Replication algorithm from [HS14].

Step 4: Repacking

 $\ell^{(R)}$ slots encoding the coefficients of the ciphertexts we are bootstrapping

- We need to extract these coefficients to produce a ciphertext (or a set of ciphertexts) which encode the same data.
- Different ways to perform this task:
 - Technique from [AP13]
 - Otherwise the Full Replication algorithm from [HS14].

Note that we could produce

- $\diamond \ \ell^{(R)}/n$ ciphertexts each of which encodes one of the original plaintexts
- a single ciphertext which encodes all of them.

Emmanuela Orsini

Bootstrapping BGV ciphertexts

PKC 2015 18 / 20

- $\star\,$ A new bootstrapping technique based on the \mathbb{F}_p -representation of the additive group $(\mathbb{Z}_q,+)$
 - Polynomial instantiation
 - Elliptic curve based version

- $\star\,$ A new bootstrapping technique based on the \mathbb{F}_p -representation of the additive group $(\mathbb{Z}_q,+)$
 - Polynomial instantiation
 - Elliptic curve based version
- ★ Using a polynomial representation:

- $\star\,$ A new bootstrapping technique based on the \mathbb{F}_p -representation of the additive group $(\mathbb{Z}_q,+)$
 - Polynomial instantiation
 - Elliptic curve based version
- ★ Using a polynomial representation:
 - ♦ Step 2: Homomorphically evaluate $\overline{\text{rep}}(\mathbf{x})$ → multiplicative depth $O(\log_2(\ell^{(R)}))$

- $\star\,$ A new bootstrapping technique based on the \mathbb{F}_p -representation of the additive group $(\mathbb{Z}_q,+)$
 - Polynomial instantiation
 - Elliptic curve based version
- * Using a polynomial representation:
 - ♦ Step 2: Homomorphically evaluate $\overline{\text{rep}}(\mathbf{x})$ → multiplicative depth $O(\log_2(\ell^{(R)}))$
 - ♦ Step 3: SIMD evaluation of $\overline{\text{red}}$ → $O(\log_2 p + \log_2 \log_2 q)$

- $\star\,$ A new bootstrapping technique based on the \mathbb{F}_p -representation of the additive group $(\mathbb{Z}_q,+)$
 - Polynomial instantiation
 - Elliptic curve based version
- ★ Using a polynomial representation:
 - ♦ Step 2: Homomorphically evaluate $\overline{\text{rep}}(\mathbf{x})$ → multiplicative depth $O(\log_2(\ell^{(R)}))$
 - ♦ Step 3: SIMD evaluation of $\overline{\text{red}}$ → $O(\log_2 p + \log_2 \log_2 q)$
 - ♦ Step 4: Repacking step $\rightarrow O(\log_2 \log_2 \ell^{(R)})$

- $\star\,$ A new bootstrapping technique based on the \mathbb{F}_p -representation of the additive group $(\mathbb{Z}_q,+)$
 - Polynomial instantiation
 - Elliptic curve based version
- * Using a polynomial representation:
 - ♦ Step 2: Homomorphically evaluate $\overline{\text{rep}}(\mathbf{x})$ → multiplicative depth $O(\log_2(\ell^{(R)}))$
 - ♦ Step 3: SIMD evaluation of $\overline{\text{red}}$ → $O(\log_2 p + \log_2 \log_2 q)$
 - ♦ Step 4: Repacking step $\rightarrow O(\log_2 \log_2 \ell^{(R)})$

- $\star\,$ A new bootstrapping technique based on the \mathbb{F}_p -representation of the additive group $(\mathbb{Z}_q,+)$
 - Polynomial instantiation
 - Elliptic curve based version
- * Using a polynomial representation:
 - ♦ Step 2: Homomorphically evaluate $\overline{\text{rep}}(\mathbf{x})$ → multiplicative depth $O(\log_2(\ell^{(R)}))$
 - ♦ Step 3: SIMD evaluation of $\overline{\text{red}}$ → $O(\log_2 p + \log_2 \log_2 q)$
 - ♦ Step 4: Repacking step $\rightarrow O(\log_2 \log_2 \ell^{(R)})$

THANK YOU!

Emmanuela Orsini

Bootstrapping BGV ciphertexts

PKC 2015 20 / 20