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Motivation

In the cloud
� Private outsourcing of computation
� Near-optimal private outsourcing of storage (single-server PIR)
[G09,BV11b]

� Verifiable outsourcing (delegation) [GGP11,CKV11,KKR13]
� Private machine learning in the cloud [GLN12,HW13]

Secure Multiparty Computation
� Low-communication multiparty computation
[AJLTVW12,LTV12,CLOPS13]

� More efficient MPC [BDOZ11,DPSZ12,DKLPSS12]

Primitives
� Succinct argument systems
[GLR11,DFH11,BCCT11,BC12,BCCT12,BCGT13,. . .]

� General functional encryption [GKPVZ12]
� Indistinguishability obfuscation for all circuits [GGHRSW13]
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How to construct an FHE scheme - Step I

Enc

m

pk

c = x+ e The ciphertext contains an error
term e (noise)

The noise increases with every homomorphic operation
A correct decryption is guaranteed if the final noise magnitude is
below a certain limit

“fresh” c

small noise big noise

no more operations

Somewhat Homomorphic Encryption Scheme : support a
limited number of additions and multiplications
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Bootstrapping - Step 2

no more homomorphic
operation “fresh” ciphertext

Bootstrapping

Homomorphic operations

The bootstrapping step takes as input a ciphertext with a large
noise and outputs a “fresh” ciphertext of the same plaintext
It is the only known way of obtaining unbounded FHE
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Bootstrapping

� Homomorphically computes the SHE decryption function on
encrypted secret key

c sk Evalf

(
Dec( · , c)

)
c

Still the main bottleneck in FHE

GOAL: Efficiency! Minimize depth d of decryption circuit

Intensive research area
[AP13, BV14, AP14, HS14, HAO15, HS15, DM15]

Emmanuela Orsini Bootstrapping BGV ciphertexts PKC 2015 5 / 20



Bootstrapping

� Homomorphically computes the SHE decryption function on
encrypted secret key

c sk Evalf

(
Dec( · , c)

)
c

Still the main bottleneck in FHE

GOAL: Efficiency! Minimize depth d of decryption circuit

Intensive research area
[AP13, BV14, AP14, HS14, HAO15, HS15, DM15]

Emmanuela Orsini Bootstrapping BGV ciphertexts PKC 2015 5 / 20



Bootstrapping

� Homomorphically computes the SHE decryption function on
encrypted secret key

c sk Evalf

(
Dec( · , c)

)
c

Still the main bottleneck in FHE

GOAL: Efficiency! Minimize depth d of decryption circuit

Intensive research area
[AP13, BV14, AP14, HS14, HAO15, HS15, DM15]

Emmanuela Orsini Bootstrapping BGV ciphertexts PKC 2015 5 / 20



Bootstrapping

� Homomorphically computes the SHE decryption function on
encrypted secret key

c sk Evalf

(
Dec( · , c)

)
c

Still the main bottleneck in FHE

GOAL: Efficiency! Minimize depth d of decryption circuit

Intensive research area
[AP13, BV14, AP14, HS14, HAO15, HS15, DM15]

Emmanuela Orsini Bootstrapping BGV ciphertexts PKC 2015 5 / 20



Our result

We present a new bootstrapping technique with:

Small depth growth

Large choice of the parameters of the scheme

Main tools:

� Matrix representation of rings

� Batch Computation

� Ring-switching technique
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The BGV ring-LWE-based somewhat homomorphic
encryption scheme

We consider the BGV SHE scheme [BGV12]

We use two rings (at some point we perform a ring-switching)

� R = Z[X]/Φm(X)

� deg Φm(X) = N

� sk(R)

� S = Z[X]/Φm′(X)

� deg Φm′(X) = n

� sk(S)

S is a subring of R (m′|m)

The scheme is parametrized by a sequence of decreasing moduli
qL > qL−1 > · · · > q0 = q, such that Q = qL =

∏L
i=0 pi.

Fresh ciphertexts are defined in RQ.
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Batch computation [SV11]

Plaintext Space Rp

Zp[X]/F1(X) Zp[X]/F2(X) · · · Zp[X]/F`(R)(X)

Let p be a prime, coprime with m, and Rp = R/pR = Zp[X]/Φm(X)

We have `(R) isomorphisms

ψi : Zp[X]/Fi(X)→ F
pd(R) , i = 1, . . . , `(R),

⇒ we can represent `(R) plaintext elements of F
pd(R) as a single element

in Rp.

Sp splits into `(S) slots

By the CRT, addition and multiplication correspond to SIMD operations
on the slots⇒ we can process `(R) input values at once.
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Switching modulus and ring

? We encrypt at level L and perform
homomorphic operations down to
level zero with a single ring switching
to improve efficiency

? The ciphertexts before ring switching
are associated to `(R) plaintext slots

? With the ring switching the input
ciphertext becomes associated with
`(R)/`(S) distinct ciphertexts
associated to `(S) plaintext slots

� Bootstrap a number (`(R)/n) of
ciphertexts in Sq in one shot.

cL = Encsk(µ) ∈ RQ = RqL

...

cL2+1 = Encsk(µ) ∈ RqL2+1

cL2 = Encsk′(µ
′) ∈ SL2ring switching

...

c0 ∈ Sq0
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Bootstrapping in more details

The ciphertexts are elements c = (c0, c1) ∈ R2
q

The decryption is an evaluation of a linear function D (dependent
on c)

DC() =
(
(c0 + · c1) mod q

)
on the secret key sk mod q, followed by a reduction mod p.

Bootstrapping: homomorphic evaluation decryption circuit:

? Given an encryption of the secret key sk, we can homomorphically
evaluate D

? Homomorphic evaluation of the mod p map
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Bootstrapping in more details

Three main problems:

1 Homomorphically evaluate the mod p-map

Z+
q G

Zp

rep

redmod p

2 Encode the sk and then using, a dec-eval function, create a set of
ciphertexts encrypting the required input to red.

3 Packed ciphertexts
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Overview of our technique

1 Find a suitable representation of Sq as an algebraic group over Fp

2 SIMD evaluation of dec-eval over G

3 SIMD evaluation of red

4 Repacking ciphertexts

We give two different instantiations:

Polynomial representation

Elliptic curve based version
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Step 1: Polynomial representation (1)

Find an Fp-representation G for Z+
q :

� By the CRT we have a group embedding

rep :

{
Z+
q −→ G =

∏t
i=1 F∗

pki

a 7−→ (ga1
1 , . . . , gat

t )

for some ki, where ai = a (mod ei), q =
∏t

i=1 ei

� One add in Z+
q translates into

M = 1
2

∑t
i=1 ki · (ki + 1) mult in Fp;

each element in G requires E =
∑t

i=1 ki elements in
Fp to represent it.

Z+
q G

Zp

rep

mod p

A reduction G→ Zp can be defined by algebraically from the
coefficient representation of G to Fp. (Step 3)
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Step 1: Polynomial representation - Extending maps

Let τ = red ◦ rep

By linearity we extend the maps:

ˆrep : (S+
q ) −→ Gn

and
τ̂ : (S+

q ) −→ Fn
p

Z+
q G

Zp

rep

redmod p

We want to bootstrap `(R)/n ciphertexts, hence we define

rep : (S+
q )`(R)/n −→ G`(R)

and
τ : (S+

q )`(R)/n −→ F`(R)
p

red is the SIMD evaluation of red on the image of rep in G`(R)
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Step 2 - Evaluating the decryption equation

We can then rewrite the decryption equation of our `(R)/n ciphertexts:

((
c
(j)
0 + sk(S) · c(j)1 (mod q)

)
( mod p)

)`(R)/n

j=1

= red
(
rep
(
c
(1)
0 + sk(S) · c(1)1 , . . . , c

(`(R)/n)
0 + sk(S) · c(`

(R)/n)
1

))
= red (rep (x)) ,

where x is the vector consisting of Sq elements

c
(j)
0 + sk(S) · c(j)1 , j = 1, . . . , `(R)/n

? At this point red is just an algebraic function
? We need to homomorphically evaluate rep(x)
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Step 2: Homomorphic evaluation of rep(x)

rep
(
c
(1)
0 + sk(S) · c(1)1 , . . . , c

(`(R)/n)
0 + sk(S) · c(`

(R)/n)
1

)

MATRIX REPRESENTATION

� We can associate an element b ∈ Sq to an n× n matrix Mb over
Zq such that the vector

c = Mb · a

is the coefficient vector of c where c = a · b.

c
(j)
1 →M

c
(j)
1

, j = 1, . . . , `(R)/n
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M
c
(j)
1

=
∑dlog q/ log pe

k=0 pk ·M(j,k)
1 , j = 1, . . . , `(R)/n

Setting
∑

j M
(j,k)
1 = M

(k)
1

rep
(
c
(1)
0 , . . . , c

(`(R)/n)
0

)
·
dlog q/ log pe∏

k=0

rep
(
pk · sk(S), . . . , pk · sk(S)

)M(k)
1

� Enc
(
rep(pk · sk(S), . . . , pk · sk(S))

)
, for k = 0, . . . , dlog q/ log pe
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Step 4: Repacking

c∗

· · ·
`(R) slots encoding the coefficients
of the ciphertexts we are bootstrapping

? We need to extract these coefficients to produce a ciphertext (or a
set of ciphertexts) which encode the same data.

Different ways to perform this task:

Technique from [AP13]

Otherwise the Full Replication algorithm from [HS14].

Note that we could produce

� `(R)/n ciphertexts each of which encodes one of the original
plaintexts
� a single ciphertext which encodes all of them.
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Conclusion

? A new bootstrapping technique based on the Fp-representation of
the additive group (Zq,+)

� Polynomial instantiation

� Elliptic curve based version

? Using a polynomial representation:

� Step 2: Homomorphically evaluate rep(x)
→ multiplicative depth O(log2(`(R)))

� Step 3: SIMD evaluation of red
→ O(log2 p+ log2 log2 q)

� Step 4: Repacking step
→ O(log2 log2 `

(R))
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THANK YOU!
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