Packing Messages and Optimizing Bootstrapping

Ryo Hiromasa'

in GSW-FHE

Masayuki Abe* Tatsuaki Okamoto*

TKyoto University ¥NTT

PKC '15
April 1, 2015

1/13

Fully Homomorphic Encryption (FHE)

¢ « Enc(m) fic

64
<

(f(m) <« Dec(¢))

_ ¢ « Eval(f,c)

(o)

2/13

Fully Homomorphic Encryption (FHE)

¢ <« Enc(m) f,c . ¢« Eval(f,c)

g <
<

(f(m) <« Dec(¢))

Y

(o)

» FHE from ...
v ldeal lattices: [Gen09]
v/ Integers: [DGHV10]
v RLWE: [BV11Db]
v LWE: [BV11q]
v/ Approx. eigenvector: [GSW13]

2/13

Fully Homomorphic Encryption (FHE)

C1 (—EnC(ml) f,cl’---,cr 6] <_Eva|(f,C])
¢r < Enc(m) e < ¢ « Eval(f, c,)
(f(m;) <« Dec(¢))) 1.,

» FHE from ...

v ldeal lattices: [Gen09]

v/ Integers: [DGHV10]

v RLWE: [BV11Db]

v/ LWE: [BV11a]

v/ Approx. eigenvector: [GSW13]

2/13

Fully Homomorphic Encryption (FHE)

c1 « Enc(m;) fiet,oer &1 « Eval(f,cy)
¢, « Enc(m,) B < G — E\?I(f, cr)
(f(m;) < Dec(¢))) Cly...,lr

» FHE from...

v Ideal lattices: [Gen09]

v/ Integers: [DGHV10]

v RLWE: [BV11Db]

v LWE: [BV11q]

v/ Approx. eigenvector: [GSW13]

2/13

Single-Instruction-Multiple-Data (SIMD) FHE

¢ < Enc(my,...,m,) f,c . ¢« Eval(f,c)

g <
<

(f(ml)s o 7f(mr) — DeC(é)) ¢

A 4

» FHE from ...
v ldeal lattices: [Gen09]
v/ Integers: [DGHV10]
v RLWE: [BV11Db]
v LWE: [BV11q]
v/ Approx. eigenvector: [GSW13]

2/13

Single-Instruction-Multiple-Data (SIMD) FHE

¢ « Enc(my,...,m,) frc ¢ « Eval(f,c)
(f(my),..., f(m,) < Dec(@) ¢
» FHE from ... » SIMD FHE from ...
v ldeal lattices: [Gen09] v/ ldeal lattices: [SV10]
v/ Integers: [DGHV10] v Integers: [CCKLLTY13]
v RLWE: [BV11D] v RLWE: [SV10]
v LWE: [BV11a] v LWE: [BGH13]

v Approx. eigenvector: [GSW13] X Approx. eigenvector: ?

2/13

This Talk

© SIMD FHE from approximate eigenvector method.

3/13

This Talk

© SIMD FHE from approximate eigenvector method.

v/ Simple homomorphic SIMD operations
(just matrix addition/multiplication).

3/13

This Talk

© SIMD (Matrix) FHE from approximate eigenvector method.

v/ Simple homomorphic SIMD operations
(just matrix addition/multiplication).
v/ Supports homomorphic matrix addition and multiplication.

3/13

This Talk

© SIMD (Matrix) FHE from approximate eigenvector method.
v/ Simple homomorphic SIMD operations
(just matrix addition/multiplication).
v/ Supports homomorphic matrix addition and multiplication.
v/ A natural extension of SIMD FHE.
Can compute more complicated homomorphic operations.

3/13

This Talk

© SIMD (Matrix) FHE from approximate eigenvector method.

v/ Simple homomorphic SIMD operations
(just matrix addition/multiplication).

v/ Supports homomorphic matrix addition and multiplication.

v/ A natural extension of SIMD FHE.
Can compute more complicated homomorphic operations.

X Requires an additional (but reasonable in FHE literature) assumption
for security.

3/13

This Talk

© SIMD (Matrix) FHE from approximate eigenvector method.

v/ Simple homomorphic SIMD operations
(just matrix addition/multiplication).

v/ Supports homomorphic matrix addition and multiplication.

v/ A natural extension of SIMD FHE.
Can compute more complicated homomorphic operations.

X Requires an additional (but reasonable in FHE literature) assumption
for security.

® Application: optimizing bootstrapping of [AP14].

3/13

This Talk

© SIMD (Matrix) FHE from approximate eigenvector method.
v/ Simple homomorphic SIMD operations
(just matrix addition/multiplication).
v/ Supports homomorphic matrix addition and multiplication.
v/ A natural extension of SIMD FHE.
Can compute more complicated homomorphic operations.
X Requires an additional (but reasonable in FHE literature) assumption
for security.
® Application: optimizing bootstrapping of [AP14].
v/ Lattice approximation factor: O(n) — O(n>”).

3/13

This Talk

© SIMD (Matrix) FHE from approximate eigenvector method.

v/ Simple homomorphic SIMD operations
(just matrix addition/multiplication).

v/ Supports homomorphic matrix addition and multiplication.

v/ A natural extension of SIMD FHE.
Can compute more complicated homomorphic operations.

X Requires an additional (but reasonable in FHE literature) assumption
for security.

® Application: optimizing bootstrapping of [AP14].
v/ Lattice approximation factor: O(n) — O(n>”).

v/ Allows us to get the best factor O(n'*€) without successive
dimension-modulus reduction.

3/13

Starting point: Gentry-Sahai-Waters FHE (GSW-FHE)

> Learning with Errors (LWE): A L ngm,t L Zy.e <5Xm,

b7 = TA+el

]

Uniform(ZEJ”“)Xm)

2

4/13

Starting point: Gentry-Sahai-Waters FHE (GSW-FHE)

> Learning with Errors (LWE): A L ngm,t L Zy.e <5Xm,
b7 = TA+el
bT
GSW-FHE

> Secretkey is s € Z/"*'00
» G=(1,2,...,2M¢d-ly o T

Uniform(Zé”“)Xm)

2

> Public key is a LWE matrix B € Zf]”“)xm s.t. sB ~ 0.
> A ciphertext of m € {0, 1} is a matrix C = BR + m - G mod ¢ s.i.

sC = noise + m - sG.

4/13

Extension to Matrix GSW-FHE: A Natural Extension
Condition to be Sufficed

For a secret key S € Z,""*", a ciphertext of M € {0, 1} is C € ZJ"""

s.t.
SC = noise + MSG.

5/13

Extension to Matrix GSW-FHE: A Natural Extension
Condition to be Sufficed

For a secret key S € Z,""*", a ciphertext of M € {0, 1} is C € ZJ"""

s.t.
SC = noise + MSG.

v/ Homomorphic matrix addition: just matrix additiond

S(Cy + Cp) = noise + (M| + M»)SG.

5/13

Extension to Matrix GSW-FHE: A Natural Extension
Condition to be Sufficed

For a secret key S € Z,""*", a ciphertext of M € {0, 1} is C € ZJ"""

s.t.
SC = noise + MSG.

v/ Homomorphic matrix addition: just matrix additiond

S(Cy + Cp) = noise + (M| + M»)SG.
» G '(X): outputs a small matrix X’ s.t. GX’ = X.

5/13

Extension to Matrix GSW-FHE: A Natural Extension
Condition to be Sufficed

For a secret key S € Z,""*", a ciphertext of M € {0, 1} is C € ZJ"""

s.t.
SC = noise + MSG.

v/ Homomorphic matrix addition: just matrix additiond

S(Cy + Cp) = noise + (M| + M»)SG.

» G '(X): outputs a small matrix X’ s.t. GX’ = X.
v Homomorphic marix multiplication: computes G™!(-) and matrix
multiplication[] If we let C; & G~'(C»), then

SC,C;, = (noise + MSG)C),
= noise + M SC,
= noise + M| M»SG.

5/13

Extension to Matrix GSW-FHE: Construction
Computing Ciphertexts

For a matrix X s.t. SX = MS, ciphertexts are required to be of the form:

C = BR + XG.

6/13

Extension to Matrix GSW-FHE: Construction
Computing Ciphertexts

For a matrix X s.t. SX = MS, ciphertexts are required to be of the form:

C = BR + XG.

» By construction, S includes an identity matrix: S = [I || S'].

6/13

Extension to Matrix GSW-FHE: Construction
Computing Ciphertexts

For a matrix X s.t. SX = MS, ciphertexts are required to be of the form:

C = BR + XG.

» By construction, S includes an identity matrix: S = [I || S'].

MS
X=|—
0
X X can not be computed publicly.
(In [GSW13], X = m - I, so we can publicly compute it.)

v In FHE, symmetric—>asymmetric is easy [Bar10, Rot11].
X It requires to introduce a circular security assumption.

> Set X as follows:

6/13

Extension to Matrix GSW-FHE: Symmetric—Asymmetric

> Let M|, ; be the matrix with 1 in (i, j)-th 0 0
position and 0 in the others. i 1

7/13

Extension to Matrix GSW-FHE: Symmetric—Asymmetric

> Let M(; ;) be the matrix with 1 in (i, j)-th
position and 0 in the others.

> Publish encryptions of M; ;, (= P j) as a part of the public key.

J

0

0

0

0

(X this enlarges the key size by a #(encrypted bits) factor.)

7/13

Extension to Matrix GSW-FHE: Symmetric—Asymmetric

> Let M(; ;) be the matrix with 1 in (i, j)-th
position and 0 in the others.

> Publish encryptions of M; ;, (= P j) as a part of the public key.

J

0

0

0

0

(X this enlarges the key size by a #(encrypted bits) factor.)

P j = BR; j+ sT G

7/13

Extension to Matrix GSW-FHE: Symmetric—Asymmetric

> Let M(; ;) be the matrix with 1 in (i, j)-th
position and 0 in the others.

> Publish encryptions of M; ;, (= P j) as a part of the public key.

J

0

0

0

0

(X this enlarges the key size by a #(encrypted bits) factor.)

P j) = BR)+ sT G ~ Uniform (& x circular security)

7/13

Extension to Matrix GSW-FHE: Symmetric—Asymmetric

> Let M|, ; be the matrix with 1 in (i, j)-th 0 0

position and 0 in the others.

J

0 0

> Publish encryptions of M; ;, (= P j) as a part of the public key.
(X this enlarges the key size by a #(encrypted bits) factor.)

P j = BR; j+

G ~ Uniform (< x circular security)

» PubEncp(M € {0, 1}"): Let M[i, j] be the (i, j)-th element of M.

C =BR+

Z P j.

@ pelrixr:Mii, j1=1

7/13

Example: Implementing SIMD FHE

SIMD Ciphertexts

» A ciphertext of M € {0, 1} is a matrix C € Z(q””)XN s.t.
SC = noise + MSG.

» Store (my,...,m,) € {0, 1} in the diagonal entries of M

mi
SC = noise + SG.

my

8/13

Example: Implementing SIMD FHE

SIMD Ciphertexts

SC = noise + MSG.

SC = noise +

\.

» A ciphertext of M € {0, 1} is a matrix C € Z(q””)XN s.t.

» Store (my,...,m,) € {0, 1} in the diagonal entries of M

my
SG.

my

v/ Homomorphic SIMD addition:

mi

S(C; + C) = noise +

ma,

mi r my

8/13

Example: Implementing SIMD FHE

SIMD Ciphertexts

» A ciphertext of M € {0, 1} is a matrix C € Z(q””)XN s.t.
SC = noise + MSG.

» Store (my,...,m,) € {0, 1} in the diagonal entries of M

mi
SC = noise + SG.

my

\.

v/ Homomorphic SIMD multiplication:

my| my,|
SC,C;, = noise + SG.
mi r ma

8/13

Example: Implementing SIMD FHE

SIMD Ciphertexts

» A ciphertext of M € {0, 1} is a matrix C € Z(q””)XN s.t.
SC = noise + MSG.

» Store (my,...,m,) € {0, 1} in the diagonal entries of M

mi
SC = noise + SG.

my

\.

v/ Plaintext-slot permutation: Let X be a permutation matrix of o,
Ws, Wsr be ciphertexts of £, 7.

Mer(1)
S(WsC'Wg;) = noise + SG.

Mo (r)
8/13

Related Work: Graph-Induced Multilinear Maps [GGH15]

> Recall: a GSW-FHE ciphertext of 7 € {0, 1} is a matrix C € Z)*V s.t.

(sG)C = m - (sG) + noise.

* G is called approximate eigenvector.
* m is the eigenvalue.

9/13

Related Work: Graph-Induced Multilinear Maps [GGH15]

> Recall: a GSW-FHE ciphertext of 7 € {0, 1} is a matrix C € Z)*V s.t.

(sG)C = m - (sG) + noise.

* G is called approximate eigenvector.
* m is the eigenvalue.

» [GGH15]: approximate eigenvector—approximate eigenspacel’]
An encoding of M € Z™" is a matrix D € Z)>*V s.. for

U R
XN XN
S —Z)NE <y,

SD=MS+E.

* S is an approximate eigenspace.

9/13

Related Work: Graph-Induced Multilinear Maps [GGH15]

> PreSamp(trapdoor, A, z,0): outputs x s.t. Ax =z
according to a discrete Gaussian dist. with
parameter o]

10/13

Related Work: Graph-Induced Multilinear Maps [GGH15]

> PreSamp(trapdoor, A, z,0): outputs x s.t. Ax =z
according to a discrete Gaussian dist. with
parameter o]

» [GGH15]'s encoding: D & PreSamp(trapdoor, S, MS + E, o).

10/13

Related Work: Graph-Induced Multilinear Maps [GGH15]

> PreSamp(trapdoor, A, z,0): outputs x s.t. Ax =z
according to a discrete Gaussian dist. with
parameter o]

» [GGH15]'s encoding: D & PreSamp(trapdoor, S, MS + E, o).
» Matrix GSW-FHE: a ciphertext of M € {0, 1}"*" is computed by

R MS
C — PreSamp(trapdoor, G, e G + BR,0).

* We have (SG)C = M(SG) + noisel]
* SG can be seen as an approximate eigenspace.

10/13

Application: Bootstrapping

> Bootstrapping transforms FHE schemes to have unlimited amount of
homomorphism.

11/13

Application: Bootstrapping

> Bootstrapping transforms FHE schemes to have unlimited amount of
homomorphism.

> This is done by homomorphically evaluating the decryption circuit.

11/13

Application: Bootstrapping

> Bootstrapping transforms FHE schemes to have unlimited amount of
homomorphism.

> This is done by homomorphically evaluating the decryption circuit.

Recent Developments of Bootstrapping GSW-FHE

v In GSW-FHE, the noise grows asymmetrically:
Let |noise(c;)| < B;. [noise(c - ¢3)| < poly(n) - By + Bs.

11/13

Application: Bootstrapping

> Bootstrapping transforms FHE schemes to have unlimited amount of
homomorphism.

> This is done by homomorphically evaluating the decryption circuit.

Recent Developments of Bootstrapping GSW-FHE

v In GSW-FHE, the noise grows asymmetrically:
Let |noise(c;)| < B;. [noise(c - ¢3)| < poly(n) - By + Bs.
— |noise(c;)| < B — |noise(cy - (c2 - (+++ (ce-1-¢¢)) < € - poly(n) - B.

¢

11/13

Application: Bootstrapping

> Bootstrapping transforms FHE schemes to have unlimited amount of
homomorphism.

> This is done by homomorphically evaluating the decryption circuit.

Recent Developments of Bootstrapping GSW-FHE

v In GSW-FHE, the noise grows asymmetrically:
Let |noise(c;)| < B;. [noise(c - ¢3)| < poly(n) - By + Bs.
— |noise(c;)| < B — |noise(cy - (c2 - (+++ (ce-1-¢¢)) < € - poly(n) - B.

£
v To bootstrap with smaller noise, we want to compute the decryption

in sequence.

11/13

Application: Bootstrapping

> Bootstrapping transforms FHE schemes to have unlimited amount of
homomorphism.

> This is done by homomorphically evaluating the decryption circuit.

Recent Developments of Bootstrapping GSW-FHE

v In GSW-FHE, the noise grows asymmetrically:
Let |noise(c;)| < B;. [noise(c - ¢3)| < poly(n) - By + Bs.
— |noise(c;)| < B — |noise(cy - (c2 - (+++ (ce-1-¢¢)) < € - poly(n) - B.

£
v To bootstrap with smaller noise, we want to compute the decryption

in sequence.

» [BV14]: uses the Barrington’s theorem.

11/13

Application: Bootstrapping

> Bootstrapping transforms FHE schemes to have unlimited amount of
homomorphism.

> This is done by homomorphically evaluating the decryption circuit.

Recent Developments of Bootstrapping GSW-FHE

v In GSW-FHE, the noise grows asymmetrically:
Let |noise(c;)| < B;. [noise(c - ¢3)| < poly(n) - By + Bs.
— |noise(c;)| < B — |noise(cy - (c2 - (+++ (ce-1-¢¢)) < € - poly(n) - B.

£
v To bootstrap with smaller noise, we want to compute the decryption

in sequence.
» [BV14]: uses the Barrington’s theorem.

» [AP14]: encodes the decryption to a subset sum.

11/13

Application: Optimizing the Bootstrapping of [AP14]
> The decryption of standard lattice-based FHE is

Decs(c) = e, Vb = 1) cish =1) silb.

fZC,:l

12/13

Application: Optimizing the Bootstrapping of [AP14]
> The decryption of standard lattice-based FHE is

Decs(c) = e, Vb = 1) cish =1) silb.

iZC,‘Zl

> Additive groups are isomorphic to groups of cyclic permutations.

12/13

Application: Optimizing the Bootstrapping of [AP14]
> The decryption of standard lattice-based FHE is

Decs(c) = e, Vb = 1) cish =1) silb.
i iZC,‘Zl
> Additive groups are isomorphic to groups of cyclic permutations.
» [AP14] encodes {c, s) to compositions of cyclic permutations.

12/13

Application: Optimizing the Bootstrapping of [AP14]
> The decryption of standard lattice-based FHE is

Decs(c) = e, Vb = 1) cish =1) silb.
i iZC,‘Zl
> Additive groups are isomorphic to groups of cyclic permutations.
» [AP14] encodes {c, s) to compositions of cyclic permutations.

Lxh:{ 1 ifx=gqg/4

> The rounding

0 otherwise

consists of checking equality and summing their results.

12/13

Application: Optimizing the Bootstrapping of [AP14]
> The decryption of standard lattice-based FHE is

Decs(c) = e, Vb = 1) cish =1) silb.

iZC,‘Zl

> Additive groups are isomorphic to groups of cyclic permutations.

» [AP14] encodes {c, s) to compositions of cyclic permutations.

Lxh:{ 1 ifx=gqg/4

> The rounding

0 otherwise

consists of checking equality and summing their results.
v/ Our optimization represents Dec except for the summation as a
sequence of homomorphic multiplications.
v/ Lattice approximation factor: O(n) — O(n>”).
v/ This allows us to get the best factor O(n'*€) without successive
dimension-modulus reduction.

12/13

Conclusion

> QOur result: SIMD (Matrix) GSW-FHEDO

v/ Simple homomorphic SIMD operations

(just matrix addition/multiplication).
v/ Supports homomorphic matrix addition and multiplication.
v/ A natural extension of SIMD FHE.

Can compute more complicated homomorphic operations.
X Requires an additional assumption for security.
* A FHE variant of the recent MMPs [GGH15].

> Application: optimizing [AP14]'s bootstrapping.
v/ Lattice approximation factor: O(n) — O(n>”).

v/ We can get the best factor O(n'>*€) without successive
dimension-modulus reduction.

13/13

	Background
	Results
	Techniques
	Related Work
	Application
	Conclusion

