Packing Messages and Optimizing Bootstrapping in GSW-FHE

Ryo Hiromasa † Masayuki Abe ‡ Tatsuaki Okamoto ‡

[†]Kyoto University [‡]NTT

PKC '15 April 1, 2015

FHE from . . .

- ✓ Ideal lattices: [Gen09]
- ✓ Integers: [DGHV10]
- ✓ RLWE: [BV11b]
- ✓ LWE: [BV11a]
- ✓ Approx. eigenvector: [GSW13]

FHE from . . .

- ✓ Ideal lattices: [Gen09]
- ✓ Integers: [DGHV10]
- ✓ RLWE: [BV11b]
- ✓ LWE: [BV11a]
- ✓ Approx. eigenvector: [GSW13]

FHE from . . .

- ✓ Ideal lattices: [Gen09]
- ✓ Integers: [DGHV10]
- ✓ RLWE: [BV11b]
- ✓ LWE: [BV11a]
- ✓ Approx. eigenvector: [GSW13]

Single-Instruction-Multiple-Data (SIMD) FHE

- FHE from . . .
 - ✓ Ideal lattices: [Gen09]
 - ✓ Integers: [DGHV10]
 - ✓ RLWE: [BV11b]
 - ✓ LWE: [BV11a]
 - ✓ Approx. eigenvector: [GSW13]

Single-Instruction-Multiple-Data (SIMD) FHE

- FHE from . . .
 - ✓ Ideal lattices: [Gen09]
 - Integers: [DGHV10]
 - ✓ RLWE: [BV11b]
 - ✓ LWE: [BV11a]
 - ✓ Approx. eigenvector: [GSW13]

- SIMD FHE from ...
 - ✓ Ideal lattices: [SV10]
 - Integers: [CCKLLTY13]
 - RLWE: [SV10]
 - ✓ LWE: [BGH13]
 - X Approx. eigenvector: ?

1 SIMD FHE from approximate eigenvector method.

1 SIMD FHE from approximate eigenvector method.

 Simple homomorphic SIMD operations (just matrix addition/multiplication).

1 SIMD (Matrix) FHE from approximate eigenvector method.

- Simple homomorphic SIMD operations (just matrix addition/multiplication).
- ✓ Supports homomorphic matrix addition and multiplication.

1 SIMD (Matrix) FHE from approximate eigenvector method.

- Simple homomorphic SIMD operations (just matrix addition/multiplication).
- ✓ Supports homomorphic matrix addition and multiplication.
- ✓ A natural extension of SIMD FHE.

Can compute more complicated homomorphic operations.

1 SIMD (Matrix) FHE from approximate eigenvector method.

- Simple homomorphic SIMD operations (just matrix addition/multiplication).
- ✓ Supports homomorphic matrix addition and multiplication.
- ✓ A natural extension of SIMD FHE.

Can compute more complicated homomorphic operations.

Requires an additional (but reasonable in FHE literature) assumption for security.

1 SIMD (Matrix) FHE from approximate eigenvector method.

- Simple homomorphic SIMD operations (just matrix addition/multiplication).
- ✓ Supports homomorphic matrix addition and multiplication.
- ✓ A natural extension of SIMD FHE.

Can compute more complicated homomorphic operations.

- Requires an additional (but reasonable in FHE literature) assumption for security.
- 2 Application: optimizing bootstrapping of [AP14].

1 SIMD (Matrix) FHE from approximate eigenvector method.

- Simple homomorphic SIMD operations (just matrix addition/multiplication).
- ✓ Supports homomorphic matrix addition and multiplication.
- ✓ A natural extension of SIMD FHE.

Can compute more complicated homomorphic operations.

- Requires an additional (but reasonable in FHE literature) assumption for security.
- 2 Application: optimizing bootstrapping of [AP14].

✓ Lattice approximation factor: $O(n^3) \rightarrow O(n^{2.5})$.

1 SIMD (Matrix) FHE from approximate eigenvector method.

- Simple homomorphic SIMD operations (just matrix addition/multiplication).
- ✓ Supports homomorphic matrix addition and multiplication.
- ✓ A natural extension of SIMD FHE.

Can compute more complicated homomorphic operations.

- Requires an additional (but reasonable in FHE literature) assumption for security.
- 2 Application: optimizing bootstrapping of [AP14].
 - ✓ Lattice approximation factor: $O(n^3) \rightarrow O(n^{2.5})$.
 - ✓ Allows us to get the best factor $O(n^{1.5+\epsilon})$ without successive dimension-modulus reduction.

Starting point: Gentry-Sahai-Waters FHE (GSW-FHE)

► Learning with Errors (LWE): $A \stackrel{U}{\leftarrow} \mathbb{Z}_q^{n \times m}, t \stackrel{U}{\leftarrow} \mathbb{Z}_q^n, e \stackrel{R}{\leftarrow} \chi^m$,

Starting point: Gentry-Sahai-Waters FHE (GSW-FHE)

► Learning with Errors (LWE): $A \stackrel{U}{\leftarrow} \mathbb{Z}_q^{n \times m}, t \stackrel{U}{\leftarrow} \mathbb{Z}_q^n, e \stackrel{R}{\leftarrow} \chi^m$,

GSW-FHE

• Secret key is $s \in \mathbb{Z}_q^{(n+1)}$.

•
$$\boldsymbol{G} = (1, 2, \dots, 2^{\lceil \log q \rceil - 1}) \otimes \boldsymbol{I}.$$

- <u>Public key</u> is a LWE matrix $\boldsymbol{B} \in \mathbb{Z}_q^{(n+1) \times m}$ s.t. $s\boldsymbol{B} \approx \boldsymbol{0}$.
- A ciphertext of $m \in \{0, 1\}$ is a matrix $C = BR + m \cdot G \mod q$ s.t.

$$sC = noise + m \cdot sG.$$

Condition to be Sufficed

For a secret key $S \in \mathbb{Z}_q^{r \times (n+r)}$, a ciphertext of $M \in \{0, 1\}^{r \times r}$ is $C \in \mathbb{Z}_q^{(n+r) \times N}$ s.t.

SC = noise + MSG.

Condition to be Sufficed

For a secret key $S \in \mathbb{Z}_q^{r \times (n+r)}$, a ciphertext of $M \in \{0, 1\}^{r \times r}$ is $C \in \mathbb{Z}_q^{(n+r) \times N}$ s.t.

SC = noise + MSG.

✓ Homomorphic matrix addition: just matrix addition .

 $S(C_1 + C_2) = \text{noise} + (M_1 + M_2)SG.$

Condition to be Sufficed

For a secret key $S \in \mathbb{Z}_q^{r \times (n+r)}$, a ciphertext of $M \in \{0, 1\}^{r \times r}$ is $C \in \mathbb{Z}_q^{(n+r) \times N}$ s.t.

SC = noise + MSG.

✓ Homomorphic matrix addition: just matrix addition .

 $S(C_1 + C_2) = \text{noise} + (M_1 + M_2)SG.$

• $G^{-1}(X)$: outputs a small matrix X' s.t. GX' = X.

Condition to be Sufficed

For a secret key $S \in \mathbb{Z}_q^{r \times (n+r)}$, a ciphertext of $M \in \{0, 1\}^{r \times r}$ is $C \in \mathbb{Z}_q^{(n+r) \times N}$ s.t.

$$SC = noise + MSG.$$

Homomorphic matrix addition: just matrix addition .

$$S(C_1 + C_2) = \text{noise} + (M_1 + M_2)SG.$$

- $G^{-1}(X)$: outputs a small matrix X' s.t. GX' = X.
- ✓ <u>Homomorphic marix multiplication</u>: computes $G^{-1}(\cdot)$ and matrix multiplication. If we let $C'_2 \stackrel{R}{\leftarrow} G^{-1}(C_2)$, then

$$SC_1C'_2 = (\text{noise} + M_1SG)C'_2$$
$$= \text{noise} + M_1SC_2$$
$$= \text{noise} + M_1M_2SG.$$

Extension to Matrix GSW-FHE: Construction

Computing Ciphertexts

For a matrix X s.t. SX = MS, ciphertexts are required to be of the form:

C = BR + XG.

Extension to Matrix GSW-FHE: Construction

Computing Ciphertexts

For a matrix X s.t. SX = MS, ciphertexts are required to be of the form:

C = BR + XG.

By construction, *S* includes an identity matrix: $S = [I \parallel S']$.

Extension to Matrix GSW-FHE: Construction

Computing Ciphertexts

For a matrix X s.t. SX = MS, ciphertexts are required to be of the form:

C = BR + XG.

- By construction, S includes an identity matrix: $S = [I \parallel S']$.
- Set *X* as follows:

$$X = \left(\frac{MS}{0}\right)$$

X can not be computed publicly.

(In [GSW13], $X = m \cdot I$, so we can publicly compute it.)

- ✓ In FHE, symmetric→asymmetric is easy [Bar10, Rot11].
- X It requires to introduce a circular security assumption.

Let *M*_(*i*,*j*) be the matrix with 1 in (*i*, *j*)-th position and 0 in the others.

Let *M*_(*i*,*j*) be the matrix with 1 in (*i*, *j*)-th position and 0 in the others.

• Publish encryptions of $M_{(i,j)}$ (= $P_{(i,j)}$) as a part of the public key. (X this enlarges the key size by a #(encrypted bits) factor.)

Let *M*_(*i*,*j*) be the matrix with 1 in (*i*, *j*)-th position and 0 in the others.

Publish encryptions of *M*_(*i*,*j*) (= *P*_(*i*,*j*)) as a part of the public key.
(X this enlarges the key size by a #(encrypted bits) factor.)

$$P_{(i,j)} = BR_{(i,j)} + \begin{bmatrix} \mathbf{0} \\ \mathbf{s}_j^T \\ \mathbf{0} \end{bmatrix} G$$

Let *M*_(*i*,*j*) be the matrix with 1 in (*i*, *j*)-th position and 0 in the others.

Publish encryptions of *M*_(*i*,*j*) (= *P*_(*i*,*j*)) as a part of the public key.
(X this enlarges the key size by a #(encrypted bits) factor.)

$$P_{(i,j)} = BR_{(i,j)} + \begin{bmatrix} \mathbf{0} \\ \mathbf{s}_j^T \\ \mathbf{0} \end{bmatrix} \mathbf{G}$$

 \approx Uniform (\Leftarrow x circular security)

Let *M*_(*i*,*j*) be the matrix with 1 in (*i*, *j*)-th position and 0 in the others.

Publish encryptions of *M*_(*i*,*j*) (= *P*_(*i*,*j*)) as a part of the public key.
(X this enlarges the key size by a #(encrypted bits) factor.)

$$P_{(i,j)} = BR_{(i,j)} + \begin{bmatrix} 0 \\ s_j^T \\ 0 \end{bmatrix} G \approx \text{Uniform} (\Leftarrow \checkmark \text{ circular security})$$

• PubEnc_{pk}($M \in \{0, 1\}^{r \times r}$): Let M[i, j] be the (i, j)-th element of M.

$$C = BR + \sum_{(i,j)\in [r]\times [r]: \mathbf{M}[i,j]=1} P_{(i,j)}$$

SIMD Ciphertexts

► A ciphertext of $M \in \{0, 1\}^{r \times r}$ is a matrix $C \in \mathbb{Z}_q^{(n+r) \times N}$ s.t. SC = noise + MSG.

▶ Store $(m_1, ..., m_r) \in \{0, 1\}^r$ in the diagonal entries of *M*:

$$SC = \text{noise} + \begin{pmatrix} m_1 & & \\ & \ddots & \\ & & m_r \end{pmatrix} SG.$$

SIMD Ciphertexts

► A ciphertext of $M \in \{0, 1\}^{r \times r}$ is a matrix $C \in \mathbb{Z}_q^{(n+r) \times N}$ s.t. SC = noise + MSG.

▶ Store $(m_1, ..., m_r) \in \{0, 1\}^r$ in the diagonal entries of *M*:

$$SC = \text{noise} + \begin{pmatrix} m_1 & & \\ & \ddots & \\ & & m_r \end{pmatrix} SG.$$

✓ Homomorphic SIMD addition:

$$S(C_1 + C_2) = \text{noise} + \left(\begin{pmatrix} m_{1,1} & & \\ & \ddots & \\ & & m_{1,r} \end{pmatrix} + \begin{pmatrix} m_{2,1} & & \\ & \ddots & \\ & & m_{2,r} \end{pmatrix} \right) SG.$$

SIMD Ciphertexts

► A ciphertext of $M \in \{0, 1\}^{r \times r}$ is a matrix $C \in \mathbb{Z}_q^{(n+r) \times N}$ s.t. SC = noise + MSG.

▶ Store $(m_1, ..., m_r) \in \{0, 1\}^r$ in the diagonal entries of *M*:

$$SC$$
 = noise + $\begin{pmatrix} m_1 & & \\ & \ddots & \\ & & m_r \end{pmatrix} SG.$

Homomorphic SIMD multiplication:

$$SC_1C'_2 = \text{noise} + \begin{pmatrix} m_{1,1} & & \\ & \ddots & \\ & & m_{1,r} \end{pmatrix} \begin{pmatrix} m_{2,1} & & \\ & \ddots & \\ & & m_{2,r} \end{pmatrix} SG.$$

SIMD Ciphertexts

► A ciphertext of $M \in \{0, 1\}^{r \times r}$ is a matrix $C \in \mathbb{Z}_q^{(n+r) \times N}$ s.t. SC = noise + MSG.

▶ Store $(m_1, ..., m_r) \in \{0, 1\}^r$ in the diagonal entries of *M*:

$$SC = \text{noise} + \begin{pmatrix} m_1 & & \\ & \ddots & \\ & & m_r \end{pmatrix} SG.$$

✓ <u>Plaintext-slot permutation</u>: Let Σ be a permutation matrix of σ , W_{Σ}, W_{Σ^T} be ciphertexts of Σ, Σ^T .

$$S(W_{\Sigma}C'W'_{\Sigma^{T}}) = \text{noise} + \begin{pmatrix} m_{\sigma(1)} & & \\ & \ddots & \\ & & m_{\sigma(r)} \end{pmatrix} SG.$$

▶ Recall: a GSW-FHE ciphertext of $m \in \{0, 1\}$ is a matrix $C \in \mathbb{Z}_q^{N \times N}$ s.t.

 $(sG)C = m \cdot (sG) +$ noise.

- \star sG is called <u>approximate eigenvector</u>.
- \star *m* is the eigenvalue.

▶ Recall: a GSW-FHE ciphertext of $m \in \{0, 1\}$ is a matrix $C \in \mathbb{Z}_q^{N \times N}$ s.t.

 $(sG)C = m \cdot (sG) +$ noise.

- \star sG is called <u>approximate eigenvector</u>.
- \star *m* is the eigenvalue.

► [GGH15]: approximate eigenvector→<u>approximate eigenspace</u>. An encoding of $M \in \mathbb{Z}^{r \times r}$ is a matrix $D \in \mathbb{Z}_q^{N \times N}$ s.t. for $S \xleftarrow{U} \mathbb{Z}_q^{r \times N}, E \xleftarrow{R} \chi^{r \times N},$ SD = MS + E.

 \star S is an approximate eigenspace.

PreSamp(trapdoor, A, z, σ): outputs x s.t. Ax = z according to a discrete Gaussian dist. with parameter σ.

PreSamp(trapdoor, A, z, σ): outputs x s.t. Ax = z according to a discrete Gaussian dist. with parameter σ.

► [GGH15]'s encoding: $D \stackrel{R}{\leftarrow}$ PreSamp(trapdoor, $S, MS + E, \sigma$).

PreSamp(trapdoor, A, z, σ): outputs x s.t. Ax = z according to a discrete Gaussian dist. with parameter σ.

- ▶ [GGH15]'s encoding: $D \stackrel{R}{\leftarrow}$ PreSamp(trapdoor, $S, MS + E, \sigma$).
- ▶ Matrix GSW-FHE: a ciphertext of $M \in \{0, 1\}^{r \times r}$ is computed by

$$C \stackrel{R}{\leftarrow} \mathsf{PreSamp}(\mathsf{trapdoor}, G, \left(\frac{MS}{0}\right)G + BR, \sigma).$$

- ★ We have (SG)C = M(SG) + noise.
- \star SG can be seen as an approximate eigenspace.

Bootstrapping transforms FHE schemes to have unlimited amount of homomorphism.

- Bootstrapping transforms FHE schemes to have unlimited amount of homomorphism.
- This is done by homomorphically evaluating the decryption circuit.

- Bootstrapping transforms FHE schemes to have unlimited amount of homomorphism.
- This is done by homomorphically evaluating the decryption circuit.

Recent Developments of Bootstrapping GSW-FHE

✓ In GSW-FHE, the noise grows asymmetrically: Let |noise(c_i)| < B_i. |noise(c₁ · c₂)| < poly(n) · B₁ + B₂.

- Bootstrapping transforms FHE schemes to have unlimited amount of homomorphism.
- This is done by homomorphically evaluating the decryption circuit.

Recent Developments of Bootstrapping GSW-FHE

✓ In GSW-FHE, the noise grows asymmetrically: Let $|noise(c_i)| < B_i$. $|noise(c_1 \cdot c_2)| < poly(n) \cdot B_1 + B_2$.

$$\rightarrow |\mathsf{noise}(c_i)| < B \rightarrow |\mathsf{noise}(\underbrace{c_1 \cdot (c_2 \cdot (\cdots (c_{\ell-1} \cdot c_\ell) \cdots))})| < \ell \cdot \mathsf{poly}(n) \cdot B.$$

- Bootstrapping transforms FHE schemes to have unlimited amount of homomorphism.
- This is done by homomorphically evaluating the decryption circuit.

Recent Developments of Bootstrapping GSW-FHE

- ✓ In GSW-FHE, the noise grows asymmetrically: Let $|noise(c_i)| < B_i$. $|noise(c_1 \cdot c_2)| < poly(n) \cdot B_1 + B_2$.
 - $\rightarrow |\mathsf{noise}(c_i)| < B \rightarrow |\mathsf{noise}(c_1 \cdot (c_2 \cdot (\cdots (c_{\ell-1} \cdot c_\ell) \cdots)))| < \ell \cdot \mathsf{poly}(n) \cdot B.$
 - To bootstrap with smaller noise, we want to compute the decryption in sequence.

- Bootstrapping transforms FHE schemes to have unlimited amount of homomorphism.
- This is done by homomorphically evaluating the decryption circuit.

Recent Developments of Bootstrapping GSW-FHE

- ✓ In GSW-FHE, the noise grows asymmetrically: Let $|noise(c_i)| < B_i$. $|noise(c_1 \cdot c_2)| < poly(n) \cdot B_1 + B_2$.
 - $\rightarrow |\mathsf{noise}(c_i)| < B \rightarrow |\mathsf{noise}(c_1 \cdot (c_2 \cdot (\cdots (c_{\ell-1} \cdot c_\ell) \cdots)))| < \ell \cdot \mathsf{poly}(n) \cdot B.$
 - To bootstrap with smaller noise, we want to compute the decryption in sequence.
- ▶ [BV14]: uses the Barrington's theorem.

- Bootstrapping transforms FHE schemes to have unlimited amount of homomorphism.
- This is done by homomorphically evaluating the decryption circuit.

Recent Developments of Bootstrapping GSW-FHE

- ✓ In GSW-FHE, the noise grows asymmetrically: Let $|noise(c_i)| < B_i$. $|noise(c_1 \cdot c_2)| < poly(n) \cdot B_1 + B_2$.
 - $\rightarrow |\mathsf{noise}(c_i)| < B \rightarrow |\mathsf{noise}(c_1 \cdot (c_2 \cdot (\cdots (c_{\ell-1} \cdot c_\ell) \cdots)))| < \ell \cdot \mathsf{poly}(n) \cdot B.$
 - To bootstrap with smaller noise, we want to compute the decryption in sequence.
- ▶ [BV14]: uses the Barrington's theorem.
- ▶ [AP14]: encodes the decryption to a subset sum.

The decryption of standard lattice-based FHE is

$$\mathsf{Dec}_{\boldsymbol{s}}(\boldsymbol{c}) = \lfloor \langle \boldsymbol{c}, \boldsymbol{s} \rangle \rceil_2 = \lfloor \sum_i c_i s_i \rceil_2 = \lfloor \sum_{i:c_i=1} s_i \rceil_2.$$

The decryption of standard lattice-based FHE is

$$\mathsf{Dec}_{\mathbf{S}}(\mathbf{c}) = \lfloor \langle \mathbf{c}, \mathbf{s} \rangle \rceil_2 = \lfloor \sum_i c_i s_i \rceil_2 = \lfloor \sum_{i:c_i=1} s_i \rceil_2.$$

Additive groups are isomorphic to groups of cyclic permutations.

The decryption of standard lattice-based FHE is

$$\mathsf{Dec}_{\mathbf{S}}(\mathbf{c}) = \lfloor \langle \mathbf{c}, \mathbf{s} \rangle \rceil_2 = \lfloor \sum_i c_i s_i \rceil_2 = \lfloor \sum_{i:c_i=1} s_i \rceil_2.$$

- Additive groups are isomorphic to groups of cyclic permutations.
- [AP14] encodes $\langle c, s \rangle$ to compositions of cyclic permutations.

The decryption of standard lattice-based FHE is

$$\mathsf{Dec}_{\mathbf{S}}(\mathbf{c}) = \lfloor \langle \mathbf{c}, \mathbf{s} \rangle \rceil_2 = \lfloor \sum_i c_i s_i \rceil_2 = \lfloor \sum_{i:c_i=1} s_i \rceil_2.$$

- Additive groups are isomorphic to groups of cyclic permutations.
- [AP14] encodes $\langle c, s \rangle$ to compositions of cyclic permutations.
- The rounding

$$\lfloor x \rceil_2 = \begin{cases} 1 & \text{if } x \approx q/4 \\ 0 & \text{otherwise} \end{cases}$$

consists of checking equality and summing their results.

The decryption of standard lattice-based FHE is

$$\mathsf{Dec}_{\boldsymbol{s}}(\boldsymbol{c}) = \lfloor \langle \boldsymbol{c}, \boldsymbol{s} \rangle \rceil_2 = \lfloor \sum_i c_i s_i \rceil_2 = \lfloor \sum_{i:c_i=1} s_i \rceil_2.$$

- Additive groups are isomorphic to groups of cyclic permutations.
- [AP14] encodes $\langle c, s \rangle$ to compositions of cyclic permutations.
- The rounding

$$\lfloor x \rceil_2 = \begin{cases} 1 & \text{if } x \approx q/4 \\ 0 & \text{otherwise} \end{cases}$$

consists of checking equality and summing their results.

- Our optimization represents Dec except for the summation as a sequence of homomorphic multiplications.
 - ✓ Lattice approximation factor: $O(n^3) \rightarrow O(n^{2.5})$.
 - ✓ This allows us to get the best factor $O(n^{1.5+\epsilon})$ without successive dimension-modulus reduction.

Conclusion

Our result: SIMD (Matrix) GSW-FHE .

- Simple homomorphic SIMD operations (just matrix addition/multiplication).
- ✓ Supports homomorphic matrix addition and multiplication.
- ✓ A natural extension of SIMD FHE.

Can compute more complicated homomorphic operations.

- × Requires an additional assumption for security.
- ★ A FHE variant of the recent MMPs [GGH15].
- Application: optimizing [AP14]'s bootstrapping.
 - ✓ Lattice approximation factor: $O(n^3) \rightarrow O(n^{2.5})$.
 - ✓ We can get the best factor $O(n^{1.5+\epsilon})$ without successive dimension-modulus reduction.