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Fully Homomorphic Encryption (FHE)

....

f , c

.

ĉ

.

c← Enc(m)

.

ĉ← Eval( f , c)

.

( f (m)← Dec(ĉ))

▶ FHE from . . .

3 Ideal lattices: [Gen09]
3 Integers: [DGHV10]
3 RLWE: [BV11b]
3 LWE: [BV11a]
3 Approx. eigenvector: [GSW13]

▶ SIMD FHE from . . .

3 Ideal lattices: [SV10]
3 Integers: [CCKLLTY13]
3 RLWE: [SV10]
3 LWE: [BGH13]
7 Approx. eigenvector: ?
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Single-Instruction-Multiple-Data (SIMD) FHE
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This Talk

..1 SIMD FHE from approximate eigenvector method.

3 Simple homomorphic SIMD operations
(just matrix addition/multiplication).

3 Supports homomorphic matrix addition and multiplication.
3 A natural extension of SIMD FHE.

Can compute more complicated homomorphic operations.
7 Requires an additional (but reasonable in FHE literature) assumption

for security.

..2 Application: optimizing bootstrapping of [AP14].

3 Lattice approximation factor: O(n3)→ O(n2.5).
3 Allows us to get the best factor O(n1.5+ϵ) without successive

dimension-modulus reduction.
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Starting point: Gentry-Sahai-Waters FHE (GSW-FHE)

▶ Learning with Errors (LWE): A
U←− Zn×m

q , t
U←− Zn

q, e
R←− χm,

bT = tT A + eT bT

A

 ≈ Uniform(Z(n+1)×m
q )

..

GSW-FHE

.

▶ Secret key is s ∈ Z(n+1)
q ．

▶ G = (1, 2, . . . , 2⌈log q⌉−1) ⊗ I.

▶ Public key is a LWE matrix B ∈ Z(n+1)×m
q s.t. sB ≈ 0.

▶ A ciphertext of m ∈ {0, 1} is a matrix C = BR + m · G mod q s.t.

sC = noise + m · sG.
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Extension to Matrix GSW-FHE: A Natural Extension

..

Condition to be Sufficed

.

For a secret key S ∈ Zr×(n+r)
q , a ciphertext of M ∈ {0, 1}r×r is C ∈ Z(n+r)×N

q

s.t.

SC = noise + MSG.

3 Homomorphic matrix addition: just matrix addition．

S(C1 + C2) = noise + (M1 + M2)SG.

▶ G−1(X): outputs a small matrix X′ s.t. GX′ = X.

3 Homomorphic marix multiplication: computes G−1(·) and matrix

multiplication．If we let C′2
R←− G−1(C2), then

SC1C′2 = (noise + M1SG)C′2
= noise + M1SC2

= noise + M1 M2SG.
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Extension to Matrix GSW-FHE: Construction

..

Computing Ciphertexts

.

For a matrix X s.t. SX = MS, ciphertexts are required to be of the form:

C = BR + XG.

▶ By construction, S includes an identity matrix: S = [I ∥ S′].

▶ Set X as follows:

X =
 MS

0


7 X can not be computed publicly.

(In [GSW13], X = m · I, so we can publicly compute it.)
3 In FHE, symmetric→asymmetric is easy [Bar10, Rot11].
7 It requires to introduce a circular security assumption.
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Extension to Matrix GSW-FHE: Symmetric→Asymmetric

▶ Let M(i, j) be the matrix with 1 in (i, j)-th
position and 0 in the others.

..

1

.

0

.

0

.

0

.

0

.

j

.

i

▶ Publish encryptions of M(i, j) (= P(i, j)) as a part of the public key.

(7 this enlarges the key size by a #(encrypted bits) factor.)

.

.

sT
j

.

0

.

0

.

P(i, j) = BR(i, j)+

.

G

.

≈ Uniform (⇐ 7 circular security)

▶ PubEncpk(M ∈ {0, 1}r×r): Let M[i, j] be the (i, j)-th element of M.

C = BR +
∑

(i, j)∈[r]×[r]:M[i, j]=1

P(i, j).

7 / 13



Extension to Matrix GSW-FHE: Symmetric→Asymmetric

▶ Let M(i, j) be the matrix with 1 in (i, j)-th
position and 0 in the others.

..

1

.

0

.

0

.

0

.

0

.

j

.

i

▶ Publish encryptions of M(i, j) (= P(i, j)) as a part of the public key.

(7 this enlarges the key size by a #(encrypted bits) factor.)

.

.

sT
j

.

0

.

0

.

P(i, j) = BR(i, j)+

.

G

.

≈ Uniform (⇐ 7 circular security)

▶ PubEncpk(M ∈ {0, 1}r×r): Let M[i, j] be the (i, j)-th element of M.

C = BR +
∑

(i, j)∈[r]×[r]:M[i, j]=1

P(i, j).

7 / 13



Extension to Matrix GSW-FHE: Symmetric→Asymmetric

▶ Let M(i, j) be the matrix with 1 in (i, j)-th
position and 0 in the others.

..

1

.

0

.

0

.

0

.

0

.

j

.

i

▶ Publish encryptions of M(i, j) (= P(i, j)) as a part of the public key.

(7 this enlarges the key size by a #(encrypted bits) factor.)

..

sT
j

.

0

.

0

.

P(i, j) = BR(i, j)+

.

G

.

≈ Uniform (⇐ 7 circular security)

▶ PubEncpk(M ∈ {0, 1}r×r): Let M[i, j] be the (i, j)-th element of M.

C = BR +
∑

(i, j)∈[r]×[r]:M[i, j]=1

P(i, j).

7 / 13



Extension to Matrix GSW-FHE: Symmetric→Asymmetric

▶ Let M(i, j) be the matrix with 1 in (i, j)-th
position and 0 in the others.

..

1

.

0

.

0

.

0

.

0

.

j

.

i

▶ Publish encryptions of M(i, j) (= P(i, j)) as a part of the public key.

(7 this enlarges the key size by a #(encrypted bits) factor.)

..

sT
j

.

0

.

0

.

P(i, j) = BR(i, j)+

.

G

.

≈ Uniform (⇐ 7 circular security)

▶ PubEncpk(M ∈ {0, 1}r×r): Let M[i, j] be the (i, j)-th element of M.

C = BR +
∑

(i, j)∈[r]×[r]:M[i, j]=1

P(i, j).

7 / 13



Extension to Matrix GSW-FHE: Symmetric→Asymmetric

▶ Let M(i, j) be the matrix with 1 in (i, j)-th
position and 0 in the others.

..

1

.

0

.

0

.

0

.

0

.

j

.

i

▶ Publish encryptions of M(i, j) (= P(i, j)) as a part of the public key.

(7 this enlarges the key size by a #(encrypted bits) factor.)

..

sT
j

.

0

.

0

.

P(i, j) = BR(i, j)+

.

G

.

≈ Uniform (⇐ 7 circular security)

▶ PubEncpk(M ∈ {0, 1}r×r): Let M[i, j] be the (i, j)-th element of M.

C = BR +
∑

(i, j)∈[r]×[r]:M[i, j]=1

P(i, j).

7 / 13



Example: Implementing SIMD FHE

..

SIMD Ciphertexts

.

▶ A ciphertext of M ∈ {0, 1}r×r is a matrix C ∈ Z(n+r)×N
q s.t.

SC = noise + MSG.

▶ Store (m1, . . . ,mr) ∈ {0, 1}r in the diagonal entries of M：

SC = noise +


m1

. . .

mr

SG.
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Related Work: Graph-Induced Multilinear Maps [GGH15]

▶ Recall: a GSW-FHE ciphertext of m ∈ {0, 1} is a matrix C ∈ ZN×N
q s.t.

(sG)C = m · (sG) + noise.

⋆ sG is called approximate eigenvector.
⋆ m is the eigenvalue.

▶ [GGH15]: approximate eigenvector→approximate eigenspace．

An encoding of M ∈ Zr×r is a matrix D ∈ ZN×N
q s.t. for

S
U←− Zr×N

q , E
R←− χr×N ,

SD = MS + E.

⋆ S is an approximate eigenspace.
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Related Work: Graph-Induced Multilinear Maps [GGH15]

▶ PreSamp(trapdoor, A, z, σ): outputs x s.t. Ax = z
according to a discrete Gaussian dist. with

parameter σ．

▶ [GGH15]’s encoding: D
R←− PreSamp(trapdoor, S,MS + E, σ).

▶ Matrix GSW-FHE: a ciphertext of M ∈ {0, 1}r×r is computed by

C
R←− PreSamp(trapdoor,G,

 MS
0

G + BR, σ).

⋆ We have (SG)C = M(SG) + noise．
⋆ SG can be seen as an approximate eigenspace.
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Application: Bootstrapping

▶ Bootstrapping transforms FHE schemes to have unlimited amount of

homomorphism.

▶ This is done by homomorphically evaluating the decryption circuit.

..

Recent Developments of Bootstrapping GSW-FHE

.

3 In GSW-FHE, the noise grows asymmetrically:
Let |noise(ci)| < Bi. |noise(c1 · c2)| < poly(n) · B1 + B2.

→ |noise(ci)| < B→ |noise(c1 · (c2 · (· · · (cℓ−1 · cℓ) · · · ))︸                             ︷︷                             ︸
ℓ

)| < ℓ · poly(n) · B.

3 To bootstrap with smaller noise, we want to compute the decryption
in sequence.

▶ [BV14]: uses the Barrington’s theorem.

▶ [AP14]: encodes the decryption to a subset sum.
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Application: Optimizing the Bootstrapping of [AP14]
▶ The decryption of standard lattice-based FHE is

Decs(c) = ⌊⟨c, s⟩⌉2 = ⌊
∑

i

cisi⌉2 = ⌊
∑

i:ci=1

si⌉2.

▶ Additive groups are isomorphic to groups of cyclic permutations.

▶ [AP14] encodes ⟨c, s⟩ to compositions of cyclic permutations.
▶ The rounding

⌊x⌉2 =
 1 if x ≈ q/4

0 otherwise

consists of checking equality and summing their results.
3 Our optimization represents Dec except for the summation as a

sequence of homomorphic multiplications.
3 Lattice approximation factor: O(n3)→ O(n2.5).
3 This allows us to get the best factor O(n1.5+ϵ) without successive

dimension-modulus reduction.
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Conclusion

▶ Our result: SIMD (Matrix) GSW-FHE．

3 Simple homomorphic SIMD operations
(just matrix addition/multiplication).

3 Supports homomorphic matrix addition and multiplication.
3 A natural extension of SIMD FHE.

Can compute more complicated homomorphic operations.
7 Requires an additional assumption for security.
⋆ A FHE variant of the recent MMPs [GGH15].

▶ Application: optimizing [AP14]’s bootstrapping.

3 Lattice approximation factor: O(n3)→ O(n2.5).
3 We can get the best factor O(n1.5+ϵ) without successive

dimension-modulus reduction.
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