

Making Σ-Protocols Non-Interactive without Random Oracles

> Pyrros Chaidos, Jens Groth University College London

Engineering and Physical Sciences Research Council

Overview

- Zero knowledge proofs are an important tool, often made non-interactive using Fiat-Shamir transformation.
- Damgård-Fazio-Nicolosi (DFN) transformation: alternative to Fiat-Shamir for a class of Σ-protocols. Requires complexity leveraging assumption.
- We revisit the transformation, using culpable soundness to model the adversary.
- We give a protocol proving that ciphertexts contain 0/1, and a voting application.

Outline

Definitions

Culpable Soundness for DFN

Applications

- 3-move protocols for some NP relation *R*.
- Prover demonstrates a statement x ∈ L_R: (x, w) ∈ R, for some witness w.

- Completeness: V outputs 1 for $x \in L_R$.
- **Relaxed** Special Soundness: If $x \notin L_R$, at most one value of e can lead to Verifier outputting 1.
- Special Honest Verifier Zero Knowledge: transcripts between P and honest V can be efficiently simulated. Special: simulator targets a challenge e.

- 3-move protocols for some NP relation *R*.
- Prover demonstrates a statement x ∈ L_R: (x, w) ∈ R, for some witness w.

$$P \xrightarrow{a} V \xrightarrow{0/1}$$

- Completeness: V outputs 1 for $x \in L_R$.
- **Relaxed** Special Soundness: If $x \notin L_R$, at most one value of e can lead to Verifier outputting 1.
- Special Honest Verifier Zero Knowledge: transcripts between P and honest V can be efficiently simulated. Special: simulator targets a challenge e.

- 3-move protocols for some NP relation *R*.
- Prover demonstrates a statement x ∈ L_R: (x, w) ∈ R, for some witness w.

$$P \xrightarrow{a} e \xrightarrow{0/1} 0/1$$

- Completeness: V outputs 1 for $x \in L_R$.
- **Relaxed** Special Soundness: If $x \notin L_R$, at most one value of e can lead to Verifier outputting 1.
- Special Honest Verifier Zero Knowledge: transcripts between P and honest V can be efficiently simulated. Special: simulator targets a challenge e.

- 3-move protocols for some NP relation *R*.
- Prover demonstrates a statement x ∈ L_R: (x, w) ∈ R, for some witness w.

$$P \xrightarrow{a}_{e} \sqrt{0/1}$$

- Completeness: V outputs 1 for $x \in L_R$.
- **Relaxed** Special Soundness: If $x \notin L_R$, at most one value of e can lead to Verifier outputting 1.
- Special Honest Verifier Zero Knowledge: transcripts between P and honest V can be efficiently simulated. Special: simulator targets a challenge *e*.

Homomorphic Encryption

• Additively Homomorphic:

 $- E_{pk}(m_1; r_1) \cdot E_{pk}(m_2; r_2) = E_{pk}(m_1 + m_2; r_1 + r_2)$

- Strongly Additively Homomorphic:
 - Decryption Homomorphic and efficiently verifiable ciphertext space: any *c* either fails verification or decrypts and respects homomorphic property.
 - Extended Randomness: randomness can be any $r \in \mathbb{Z}$.
 - Prime order message space.
 - Verifiable Keys (efficient to check if (pk, vk) are a keypair).
- IND-CPA Security

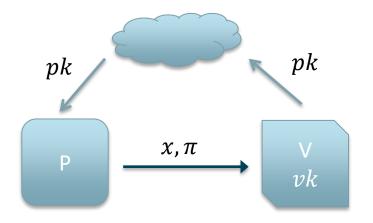
Culpable Soundness

- Standard soundness: hard for adversary to prove **any** false statements.
- Culpable soundness: hard for adversary to prove some false statements, and be aware of the falsehood.
- Guilt relation R_g consists of (x, w_g) such that $x \notin L_R$.
- Culpable Soundness for a guilt relation R_g : no efficient adversary can produce x, π, w_g s.t. $(x, w_g) \in R_g$ and $Ver(vk, x, \pi)$ accepts.

Soundness with Unique Identifiable Challenge

- Relaxed Special Soundness: for fixed *a*, adversary can only prove false statement *x* for **one** value of *e*.
- Unique Identifiable Challenge: for **some** false statements, adversary must also be **aware** of the *e* value in successful proofs.
- Unique Identifiable Challenge for a guilt relation R_g : Given w_g and $x, a: (x, w_g) \in R_g$ and Ver(x, a, e, z) = 1 for some e, z we can extract the unique "good" e.

Designated Verifier NIZK

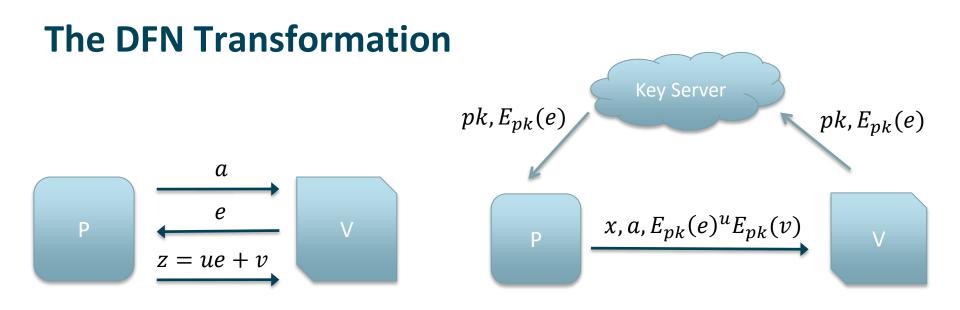


- Verifier has (*pk*, *vk*) keypair.
 - Public key pk used to generate proofs. The choice of pk designates who can verify the proof.
 - Verification key vk used to verify.

Outline

Definitions Culpable Soundness for DFN

Applications



• For ZK, simulator obtains vk in registration step, decrypts $E_{pk}(e)$, calls the original SHVZK simulator and encrypts answer.

Using UIC-soundness in DFN

- Soundness with Unique Identifiable Challenge (UIC) provides us with a challenge extractor using w_g as a "hint".
- No need for complexity leveraging: UIC extractor runs in polynomial time.

Theorem 2: Applying DNF transformation to a UIC-sound Σ-protocol with linear answer over the integers, produces a DV NIZK with culpable soundness for the same guilt relation.

Culpable soundness follows from IND-CPA and UIC

- From an accepting proof of a false statement and a guilt witness we can extract the unique challenge *e* in *c*.
- We can easily adapt a cheating prover to an IND-CPA adversary:
- Obtain challenge ciphertext from IND-CPA game, use as encrypted challenge. If adversary succeeds in forging, we succeed in decrypting challenge.

Outline

Definitions Culpable Soundness for DFN **Applications**

UIC-sound Σ-protocol for ciphertext containing 0 or 1

 Argument that a ciphertext c contains 0 or 1, for a Strongly Additively Homomorphic encryption scheme (e.g Okamoto-Uchiyama).

$$R = \left\{ ((ek, c), (m, r)) : c = \mathcal{E}_{ek}(m; r) \text{ and } m \in \{0, 1\} \text{ and } r \in \{0, 1\}^{\ell_r(n)} \right\}$$
$$R_g = \left\{ ((ek, c), dk) : c \in \mathcal{C}_{ek} \text{ and } \mathcal{D}_{dk}(c) \notin \{0, 1\} \text{ and VerifyKey}(ek, dk) = 1 \right\}$$

- Applications:
 - Encrypted wires satisfying a circuit: $c = (a \text{ NAND } b) \iff a + b + 2c \in \{0,1\}$
 - Vote Encoding
 - More complex variants possible ($c \approx 0$, $c_1 \approx c_2$, etc.)

Proving UIC Soundness

Prover((ek, c), m)

Verifier(ek, c)

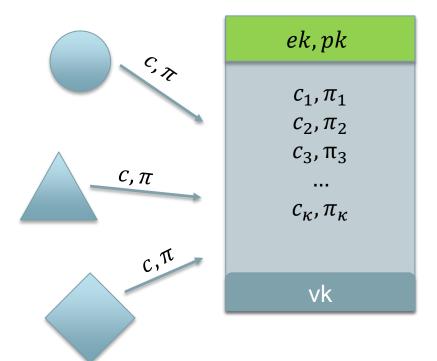
$m_a \leftarrow [2^n, 2^{n+1}] \\ a \leftarrow \mathcal{E}_{ek}(m_a)$	<i>a, b</i> →	Accept if:
$b \leftarrow \mathcal{E}_{ek}(-mm_a)$	− <i>e</i>	$a, b, c \in \mathcal{C}_{ek}$
$f := em + m_a$	<i>f</i>	$c^{e}a = \mathcal{E}_{ek}(f)$ $c^{f-e}b = \mathcal{E}_{ek}(0)$

- We use the guilt witness (*dk*) to decrypt *a*, *b*, *c*, obtaining values m_a, m_b, m .
- Combining the verification equations, we have: $e(m-1)m + m_am + m_b = 0 \mod p.$
- Since $m \notin \{0,1\}$ this determines *e* uniquely mod *p*.

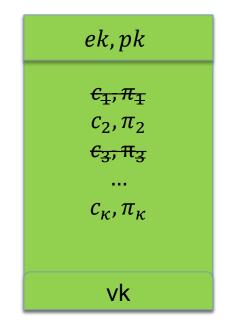
Using Culpable Soundness

- Need broad enough L_g, otherwise, we may allow a large class of invalid statements to be accepted.
 - We will achieve this by requiring the decryption is not 0/1, and relying on strongly additively homomorphic property.
- Need w_q to be available somehow.
 - Depending on the setting, it is possible that the environment has the decryption key. If an adversary succeeds in forging a proof, we can "plant" the key on him to satisfy Culpable Soundness.

Voting Application



Voting Application



$$r = D_{dk} (\prod_{Ver(c,\pi,vk)=1} c)$$

Voting Application

ek, pk	
$\epsilon_{\pm}, \pi_{\pm}$	
c_2, π_2	
८_३, 	
c_κ , π_κ	
vk	

$$r = D_{dk} (\prod_{Ver(c,\pi,vk)=1} c)$$

- We prove correctness and ballot privacy. Adversary can use standard functionality and also submit arbitrary ballots.
- Correctness:
 - Adversary cannot force result to be out of bounds.
 - Follows from CS: ballots that do not contain 0/1 contradict soundness
- Ballot Privacy
 - Adversary cannot distinguish between normal run, and run with all honest 0/1 ballots swapped to honest 0 ballots but tallied normally.

Voting Privacy

- We use a series of hybrid arguments to argue that the adversary can distinguish between games that differ in a single ciphertext.
- We want to reduce the difference to IND-CPA, but we must provide the (correct) tally before the adversary can guess.
- Workaround: suspend adversary, guess tally r, resume.
 Feasible to try all values because of referendum.
- Also need to know which guess was true (best).
 Before playing out all cases we can test using known ciphertexts to determine optimal r value.

Conclusion

- The DFN transformation can produce Designated Verifier NIZKs from a wide range of Σ-protocols, without Random Oracles.
- We show how to avoid complexity leveraging using culpable soundness and restricting to UIC-sound protocols.
- We demonstrate that this restricted class of Σ-protocols is useful for settings where culpable soundness is achievable e.g. voting applications.

Thanks!

Questions?