Additively Homomorphic UC Commitments With Optimal Amortized Overhead

Ignacio Cascudo, Ivan Damgård, Bernardo David, Irene Giacomelli, Jesper Buus Nielsen, Roberto Trifiletti Aarhus University

1. Introduction

- 1. Introduction
- 2. Our Contributions

- 1. Introduction
- 2. Our Contributions
- 3. A general framework

- 1. Introduction
- 2. Our Contributions
- 3. A general framework
- 4. Open Questions

Commitment Schemes

Commitment Schemes

Multiparty Computation

• The Millionaires' Problem

Universal Composability

 Protocols remain secure in parallel concurrent executions and arbitrary composition.

Universal Composability

 Protocols remain secure in parallel concurrent executions and arbitrary composition.

Commitments require setup assumptions [CF01].

Universal Composability

 Protocols remain secure in parallel concurrent executions and arbitrary composition.

- Commitments require setup assumptions [CF01].
- Commitments are complete [CLOS02].

Related Works

- DDH based fast UC commitments: [Lindell11,BCPV13].
 - Use a Common Reference String (CRS).
 - High asymptotic communication and computational complexity.

Related Works

- DDH based fast UC commitments: [Lindell11,BCPV13].
 - Use a Common Reference String (CRS).
 - High asymptotic communication and computational complexity.
- UC commitments with optimal rate: [DDGN14,GIKW14].
 - Use Oblivious Transfer as a setup assumption.
 - Require PRGs and general Linear Secret Sharing.

Optimal communication

- Optimal communication
- Additively Homomorphic

- Optimal communication
- Additively Homomorphic
- Optimal computation

- Optimal communication
- Additively Homomorphic
- Optimal computation

- Optimal communication
- Additively Homomorphic
- Optimal computation

No need for general secret sharing

How do we do it?

What do we do in practice?

Online Phase:

2 Encodings: 1.5 μs

What do we do in practice?

Online Phase:

2 Encodings: 1.5 μs

[Lindell11,BCPV13] -> 22 exponentiations: 8250 μs

What do we do in practice?

Online Phase:

2 Encodings: 1.5 μs

VS.

[Lindell11,BCPV13] -> 22 exponentiations: 8250 μs

Practical scheme runs 5500 times faster

Practical Trade Offs...

Practical Trade Offs...

No additive homomorphism.

Practical Trade Offs...

No additive homomorphism.

Setup phase cost:

796 OTs

8756 exponentiations using [PVW08]

398 [Lindell11,BCPV13] commitments

Building Blocks

- Error correcting codes:
 - Linear-time encodable codes[GI01,GI02,GI03,GI05,Spi96,DI14].

Building Blocks

- Error correcting codes:
 - Linear-time encodable codes [GI01,GI02,GI03,GI05,Spi96,DI14].
- UC Oblivious Transfer:
 - Any UC Oblivious Transfer protocol, e.g. [PVW08]

Building Blocks

- Error correcting codes:
 - Linear-time encodable codes[GI01,GI02,GI03,GI05,Spi96,DI14].
- UC Oblivious Transfer:
 - Any UC Oblivious Transfer protocol, e.g. [PVW08]
- Pseudorandom Generator:
 - Linear-time PRG, e.g. [VZ12]

Oblivious Transfer

Oblivious Transfer

General Framework

Setup phase:

Commitment/Open Phases:

- Setup phase:
 - Independent from the inputs

Commitment/Open Phases:

- Setup phase:
 - Independent from the inputs
 - Constant number of OTs for unbounded number of commitments.

Commitment/Open Phases:

- Setup phase:
 - Independent from the inputs
 - Constant number of OTs for unbounded number of commitments.
 - Constant communication complexity.
- Commitment/Open Phases:

- Setup phase:
 - Independent from the inputs
 - Constant number of OTs for unbounded number of commitments.
 - Constant communication complexity.
- Commitment/Open Phases:
 - Linear communication complexity.

Setup phase:

- Independent from the inputs
- Constant number of OTs for unbounded number of commitments.
- Constant communication complexity.
- Commitment/Open Phases:
 - Linear communication complexity.
 - Only require a PRG and the encoding scheme.

Setup phase:

- Independent from the inputs
- Constant number of OTs for unbounded number of commitments.
- Constant communication complexity.
- Commitment/Open Phases:
 - Linear communication complexity.
 - Only require a PRG and the encoding scheme.
 - Non interactive.

Setup Phase

Sender Receiver

Random Seeds:

Setup Phase

Sender Receiver

Commitment Phase (Sender)

Generate one-time pads:

Commitment Phase (Sender)

 $s_2[n]$

Generate one-time pads: Encode messages and encrypt with one-time pads: s₁[1] **PRG** P_2 k_2 PRG $s_{2}[1]$ k_3 PRG s₁[2] PRG **ENC** s₂[2] k_{n-1} PRG $s_1[n]$

PRG

 P_n

Commitment Phase (Sender)

Generate one-time pads: Encode messages and encrypt with one-time pads: $s_1[1]$ **PRG** P_2 k_2 PRG s₂[1] P_2 k_3 PRG s₁[2] PRG **ENC** s₂[2] P_4 k_{n-1} PRG $s_1[n]$ C_{n-1} PRG P_n $s_2[n]$ P_{n}

Opening Message:

Open Phase (Receiver)

s₁[1]

s₂[1]

s₁[2]

s₂[2]

s₁[n]

 $s_2[n]$

Opening Message:

Open Phase (Receiver)

M

s₁[1]

s₂[1]

s₁[2]

s₂[2]

s₁[n]

 $s_2[n]$

Generate one-time pads:

$$k_{3+c2}$$
 PRG \rightarrow P_{3+c2}

$$K_{n-1+cn}$$
 \longrightarrow PRG \longrightarrow P_{n-1+cn}

Opening Message:

Open Phase (Receiver)

Open Phase (Receiver)

Open Phase (Receiver)

Open Problems

- Can we get optimal rate?
- Can optimal fully homomorphic commitments be constructed without general LSSS?
- Can we get additive homomorphism in this construction without VSS?
- Can we increase concrete efficiency in both setup and online phases?

THANK YOU!

READ THE FULL PAPER:

https://eprint.iacr.org/2014/829