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"In an ideal world, every web request could be defaulted to HTTPS."

— Electronic Frontier Foundation

The case for using ECC is well-made, but it was initially very slow.

To ameliorate the use of ECC, one can:

o Design faster protocols

o Make point multiplication faster

o Make point addition and doubling faster
o Make finite field arithmetic faster
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Multiplication in Z/NZ

From an algorithmic perspective, two factors to consider:
e residue representation
o multiplication of representatives

Canonical representation of Z/NZ:
e residue representation: Z/NZ = {0,...,N — 1}
e ‘Modular mul. = residue mul. (in Z) + modular reduction’

Question
For 0 < x,y < N, which of the following can be computed fastest:

xy or xy (mod N)?



Mersenne Numbers

Let N =2" — 1. Residues are n-bit integers and for x,y € Z/NZ,

xy = z12"+ 2z
= zi(2"-1)+z1+ 2
= 21+ 2y (mod N)

o |f schoolbook multiplication is optimal, then multiplication modulo
N is arguably ‘near optimal’

e Drawback: too few Mersenne primes in ECC range, just 25" — 1
o Similar trick for Crandall numbers N = 2" — ¢ for ¢ very small



Generalised Mersenne Numbers

Introduced by Solinas in '99, standardised for ECC by NIST in FIPS
186-2 and SECG (2000), endorsed by the NSA in Suite B (2005):

Bitlength Prime
192 2192 284 1
224 2224 _ 2% | A1

256 2256 _ 2224 4 2192 4 296 -1
384 2384 _ 2128 _ 296 4 232 -1
521 2521 _ 1

o Used by governments, military, banks, e-commerce, browsers,
Blackberry and Blackberry Enterprise Server, openSSL,...
e Several issues =—> Suite B curves no longer trusted:

e How were the specified seeds chosen?
e Hard to implement them securely (Bernstein-Lange)
e Dual_EC_DRBG



To answer my earlier question...

Let N=2"—1, and let

n—1 n—1
x=Y x2, y=> y2
i=0 i=0
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To answer my earlier question...

Let N=2"—-1,and let
n—1 ) n—1 )
X = Zx,-Z’, y = Zy,-Z’
i=0 i=0

Then ;
e
xy =) (xoy)i2' (mod N),
i=0

where

(xoy)i= > XY

j+k=i (mod n)

e Using an IBDWT, at asymptotic bitlengths, multiplication modulo
a Mersenne number is twice as fast as integer multiplication

e Hence modulus can influence how one should multiply residues
o Are there such speedups at ECC bitlengths?
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Generalised Repunit Primes

Definition
For m+1 an odd prime and t an integer let

P=Cma() =t"+t" 41

If prime, we call p a Generalised Repunit Prime.

Embed Z/(®my1(1)Z) — Z/((t™" —1)Z) and let x(t) = > xit!
and y(t) = 31", yit' be residues. Then modulo t™*' — 1, we have

x(t)y(t) = z(t) with z; = Zx

e Costis (m+1)2M+2m(m+ 1)A
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GRP Multiplication - fast identity

ALGORITHM : GRP MULTIPLICATION

INPUT: Xx=)oxt, y=>" yt
OUTPUT: z=>[,zt where z=xy (mod ®mi(t))
1. For i=m to 0 do:

m/2 | | |
2. Zi e gt Kigp = X)) Wigpy = Yigp)
3. Return Z

o Costnow is 2™ 4 2(m? — 1)A

e See Generallsed Mersenne Numbers Revisited’, G. and Moss,
Math. Comp., Vol. 82, No. 284, Oct 2013, pp. 2389-2420.

e Drawback: Except for p=2%1 1 =250 12519 1 4241,
GRPs are not standardised...
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On 64-bit architectures residues mod p require [521/64] = 9 words,
so assume modulus is 12 — 1. Let x(t) = Y%, xit' =X = [Xo, . .., Xg],
y(t) =32 yit =¥ =1[y0,...,¥8), & Z=Xy (mod t* —1). Then z =

[XoYo + X1¥8 + Xoy7 + X3Ye + XaYs + Xs¥4 + XeYs + Xz¥2 + Xa )1,
XoY1 + X1 Yo + Xo¥s + Xay7 + XaYe + XsY5 + XeYa + X723 + Xg)o,
XoYo + X1 Y1 + XoYo + X3V + XaY7 + XsY6 + Xe Y5 + X7Ya + Xg V3,
XoY3 + X1Y2 + X2 )1 + X3Yo + XaYe + Xsy7 + Xe Y6 + X7¥5 + XgVa,
XoYa + X1Y3 + Xo)2 + XaY1 + XaYo + XsYg + XgY7 + X765 + Xg¥5,
XoYs5 + X1Ya + Xo¥3 + XaYo + XaY1 + XsYo + Xe Y8 + X7)7 + Xg Ve,
XoYs + X1Y5 + XoYa + XzY3 + XaYo + Xs Y1 + XeYo + X7Ys + Xsy7,
XoY7 + X1Y6 + Xo¥s + XaYa + XaYs + XsY2 + Xe Y1 + X7)0 + X8 Vs,
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On 64-bit architectures residues mod p require [521/64] = 9 words,
so assume modulus is 12 — 1. Let x(t) = Y%, xit' =X = [Xo, . .., Xg],
y(t) =32 yit =¥ =1[y0,...,¥8), & Z=Xy (mod t* —1). Then z =

[XoYo + X1¥8 + Xoy7 + X3Ye + XaYs + Xs¥4 + XeYs + Xz¥2 + Xa )1,
XoY1 + X1 Yo + Xo¥s + Xay7 + XaYe + XsY5 + XeYa + X723 + Xg)o,
XoYo + X1 Y1 + XoYo + X3V + XaY7 + XsY6 + Xe Y5 + X7Ya + Xg V3,
XoY3 + X1Y2 + X2 )1 + X3Yo + XaYe + Xsy7 + Xe Y6 + X7¥5 + XgVa,
XoYa + X1Y3 + Xo)2 + XaY1 + XaYo + XsYg + XgY7 + X765 + Xg¥5,
XoYs5 + X1Ya + Xo¥3 + XaYo + XaY1 + XsYo + Xe Y8 + X7)7 + Xg Ve,
XoYs + X1Y5 + XoYa + XzY3 + XaYo + Xs Y1 + XeYo + X7Ys + Xsy7,
XoY7 + X1Y6 + Xo¥s + XaYa + XaYs + XsY2 + Xe Y1 + X7)0 + X8 Vs,
Xoys + X1¥7 + XoYs + Xa¥5 + XaYa + XsY3 + XsYo + XzY1 + Xa)o).

e Costis 81M + 144A
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Application to p = 2°27 — 1

o XiYi- Then
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Application to p = 2°27 — 1

Let s= Z?:o X;y;i. Then Z may also be expressed as

[S —(x1 = x)(y1 —y8) — (e = x7) (Yo — y7) — (Xs — X6) (V3 — ¥6) — (Xa — X5)(¥a — ¥5),
— (X1 = X)(y1 — yo) — (X2 — Xg) (Y2 — ¥8) — (X5 — x7)(¥3 — y7) — (Xa — X6)(¥Va — ¥e)s
— (X5 — X6)(¥5 — ¥o) — (X2 — X0) (Y2 — Yo) — (X3 — X8)(¥3 — ¥8) — (Xa — x7)(¥a — ¥7),
— (x5 = x7)(y5 — y7) — (X2 = x1) (Yo — 1) — (Xs — X0)(¥3 — Yo) — (Xs — Xa) (Vs — ¥8)s
— (% —x8)(¥s — ¥8) — (X6 — X7)(¥6 — ¥7) — (X3 — X1)(¥3 — y1) — (Xa — X0) (¥4 — Yo),
— (% — X0)(¥5 — o) — (X6 — Xe) (V6 — ¥8) — (Xa — X2)(¥3 — ¥2) — (Xa — X1)(¥a — 11),
— (x5 = x1)(y5 — y1) — (X6 — X0) (V6 — Yo) — (X7 — Xa)(y7 — ¥8) — (Xa — X2)(¥a — ¥2),
— (x5 = Xx)(¥5 — y2) — (X6 — x1)(¥6 — ¥1) — (X7 — X0)(¥7 — ¥o) — (Xa — x3)(¥Va — ¥3),
— (% — x3)(¥5 — ¥3) — (X6 — X2)(¥6 — ¥2) — (X7 — X1)(¥7 — y1) — (X8 — X0) (Vs — Yo)]-

e Costis now 45M + 160A, exchanging 36M for 16A
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Let s= Z?:o X;y;i. Then Z may also be expressed as
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— (x5 = x7)(y5 — y7) — (X2 = x1) (Yo — 1) — (Xs — X0)(¥3 — Yo) — (Xs — Xa) (Vs — ¥8)s
— (% —x8)(¥s — ¥8) — (X6 — X7)(¥6 — ¥7) — (X3 — X1)(¥3 — y1) — (Xa — X0) (¥4 — Yo),
— (% — X0)(¥5 — o) — (X6 — Xe) (V6 — ¥8) — (Xa — X2)(¥3 — ¥2) — (Xa — X1)(¥a — 11),
— (x5 = x1)(y5 — y1) — (X6 — X0) (V6 — Yo) — (X7 — Xa)(y7 — ¥8) — (Xa — X2)(¥a — ¥2),
— (x5 = Xx)(¥5 — y2) — (X6 — x1)(¥6 — ¥1) — (X7 — X0)(¥7 — ¥o) — (Xa — x3)(¥Va — ¥3),
— (% — x3)(¥5 — ¥3) — (X6 — X2)(¥6 — ¥2) — (X7 — X1)(¥7 — y1) — (X8 — X0) (Vs — Yo)]-

e Costis now 45M + 160A, exchanging 36M for 16A

« However, we can't use the irrational base t = 252'/9 with integer
coefficients, so instead work mod 2p = t° — 2 with t = 258

o Introduces several shifts, but still only requires 45M
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The Edwards curve E-521: x2 + y? = 1 — 376014x%y? was found
independently by Bernstein-Lange, Hamburg, and Aranha et al.
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Implementation Results

The Edwards curve E-521: x2 + y? = 1 — 376014x%y? was found
independently by Bernstein-Lange, Hamburg, and Aranha et al.

We implemented constant-time cache-safe variable-base scalar
multiplication on NIST curve P-521 & E-521 in C.

openssL | P-521 | ed-521-mers | E-521
1,319,000 \ 1,073,000 \ 1,552,000 \ 943,000
Table: Cycle counts for openSSL 1.0.2-beta2, P-521 and E-521 on a 3.4GHz

Intel Haswell Core i7-4770 compiled with gcc 4.7 on Ubuntu 12.04, while
ed-521-mers was on a 3.4GHz Intel Core i7-2600 Sandy Bridge (Bos et al.)

e For our code see indigo.ie/~mscott/ws521.cpp and
indigo.ie/~mscott/ed521.cpp respectively

e Hamburg has obtained even better figures for E-521: about 800k
cycles using two Karatsuba levels and low level optimisations
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Summary

e Presented modular multiplication formulae for Crandall numbers
that requires as few M as is needed for squaring

o Efficiency of idea on ARM processors should be interesting due
to higher M/A cost ratio

o Contributed to the debate regarding E-521 feasibility for
independent standardisation (see CFRG)

Thanks for your attention!
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