Faster ECC over $\mathbb{F}_{2^{521}-1}$

Robert Granger¹ and Michael Scott²

¹ Laboratory for Cryptologic Algorithms School of Computer and Communication Sciences EPFL, Switzerland

robbiegranger@gmail.com

² CertiVox Labs

mike.scott@certivox.com

31st March, PKC 2015

Overview

ECC efficiency

Generalised Repunit Primes

This work

Overview

ECC efficiency

Generalised Repunit Primes

This work

Making ECC fast

"In an ideal world, every web request could be defaulted to HTTPS."

- Electronic Frontier Foundation

Making ECC fast

"In an ideal world, every web request could be defaulted to HTTPS."

Electronic Frontier Foundation

The case for using ECC is well-made, but it was initially very slow.

Making ECC fast

"In an ideal world, every web request could be defaulted to HTTPS."

- Electronic Frontier Foundation

The case for using ECC is well-made, but it was initially very slow.

To ameliorate the use of ECC, one can:

- Design faster protocols
- Make point multiplication faster
- Make point addition and doubling faster
- Make finite field arithmetic faster

Multiplication in $\mathbb{Z}/N\mathbb{Z}$

From an algorithmic perspective, two factors to consider:

- · residue representation
- multiplication of representatives

Multiplication in $\mathbb{Z}/N\mathbb{Z}$

From an algorithmic perspective, two factors to consider:

- residue representation
- multiplication of representatives

Canonical representation of $\mathbb{Z}/N\mathbb{Z}$:

- residue representation: $\mathbb{Z}/N\mathbb{Z} = \{0, \dots, N-1\}$
- 'Modular mul. = residue mul. (in Z) + modular reduction'

Multiplication in $\mathbb{Z}/N\mathbb{Z}$

From an algorithmic perspective, two factors to consider:

- residue representation
- · multiplication of representatives

Canonical representation of $\mathbb{Z}/N\mathbb{Z}$:

- residue representation: $\mathbb{Z}/N\mathbb{Z} = \{0, \dots, N-1\}$
- 'Modular mul. = residue mul. (in \mathbb{Z}) + modular reduction'

Question

For $0 \le x, y < N$, which of the following can be computed fastest:

$$xy$$
 or xy (mod N)?

Mersenne Numbers

Let $N = 2^n - 1$. Residues are *n*-bit integers and for $x, y \in \mathbb{Z}/N\mathbb{Z}$,

$$xy = z_1 2^n + z_0$$

= $z_1 (2^n - 1) + z_1 + z_0$
= $z_1 + z_0 \pmod{N}$

- If schoolbook multiplication is optimal, then multiplication modulo
 N is arguably 'near optimal'
- Drawback: too few Mersenne primes in ECC range, just 2⁵²¹ 1
- Similar trick for Crandall numbers $N = 2^n c$ for c very small

Generalised Mersenne Numbers

Introduced by Solinas in '99, standardised for ECC by NIST in FIPS 186-2 and SECG (2000), endorsed by the NSA in Suite B (2005):

Bitlength	Prime
192	$2^{192} - 2^{64} - 1$
224	$2^{224} - 2^{96} + 1$
256	$2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$
384	$2^{384} - 2^{128} - 2^{96} + 2^{32} - 1$
521	2 ⁵²¹ – 1

- Used by governments, military, banks, e-commerce, browsers, Blackberry and Blackberry Enterprise Server, openSSL,...
- Several issues ⇒ Suite B curves no longer trusted:
 - How were the specified seeds chosen?
 - Hard to implement them securely (Bernstein-Lange)
 - Dual_EC_DRBG

Let $N = 2^n - 1$, and let

$$x = \sum_{i=0}^{n-1} x_i 2^i, \quad y = \sum_{i=0}^{n-1} y_i 2^i$$

Then

$$xy \equiv \sum_{i=0}^{n-1} (x \circ y)_i 2^i \pmod{N},$$

where

$$(x \circ y)_i = \sum_{j+k \equiv i \pmod{n}} x_j y_k$$

Let $N = 2^n - 1$, and let

$$x = \sum_{i=0}^{n-1} x_i 2^i, \quad y = \sum_{i=0}^{n-1} y_i 2^i$$

Then

$$xy \equiv \sum_{i=0}^{n-1} (x \circ y)_i 2^i \pmod{N},$$

where

$$(x \circ y)_i = \sum_{j+k \equiv i \pmod{n}} x_j y_k$$

 Using an IBDWT, at asymptotic bitlengths, multiplication modulo a Mersenne number is twice as fast as integer multiplication

Let $N = 2^n - 1$, and let

$$x = \sum_{i=0}^{n-1} x_i 2^i, \quad y = \sum_{i=0}^{n-1} y_i 2^i$$

Then

$$xy \equiv \sum_{i=0}^{n-1} (x \circ y)_i 2^i \pmod{N},$$

where

$$(x \circ y)_i = \sum_{j+k \equiv i \pmod{n}} x_j y_k$$

- Using an IBDWT, at asymptotic bitlengths, multiplication modulo a Mersenne number is twice as fast as integer multiplication
- Hence modulus can influence how one should multiply residues

Let $N = 2^n - 1$, and let

$$x = \sum_{i=0}^{n-1} x_i 2^i, \quad y = \sum_{i=0}^{n-1} y_i 2^i$$

Then

$$xy \equiv \sum_{i=0}^{n-1} (x \circ y)_i \, 2^i \pmod{N},$$

where

$$(x \circ y)_i = \sum_{j+k \equiv i \pmod{n}} x_j y_k$$

- Using an IBDWT, at asymptotic bitlengths, multiplication modulo a Mersenne number is twice as fast as integer multiplication
- Hence modulus can influence how one should multiply residues
- Are there such speedups at ECC bitlengths?

Overview

ECC efficiency

Generalised Repunit Primes

This work

Generalised Repunit Primes

Definition

For m + 1 an odd prime and t an integer let

$$p = \Phi_{m+1}(t) = t^m + t^{m-1} + \cdots + t + 1.$$

If prime, we call p a Generalised Repunit Prime.

Generalised Repunit Primes

Definition

For m + 1 an odd prime and t an integer let

$$p = \Phi_{m+1}(t) = t^m + t^{m-1} + \cdots + t + 1.$$

If prime, we call p a Generalised Repunit Prime.

Embed $\mathbb{Z}/(\Phi_{m+1}(t)\mathbb{Z}) \hookrightarrow \mathbb{Z}/((t^{m+1}-1)\mathbb{Z})$ and let $x(t) = \sum_{i=0}^m x_i t^i$ and $y(t) = \sum_{i=0}^m y_i t^i$ be residues. Then modulo $t^{m+1} - 1$, we have

$$x(t)y(t) = z(t)$$
 with $z_i = \sum_{i=0}^m x_{\langle i-j \rangle} y_{\langle j \rangle}$.

Generalised Repunit Primes

Definition

For m + 1 an odd prime and t an integer let

$$p = \Phi_{m+1}(t) = t^m + t^{m-1} + \cdots + t + 1.$$

If prime, we call p a Generalised Repunit Prime.

Embed $\mathbb{Z}/(\Phi_{m+1}(t)\mathbb{Z}) \hookrightarrow \mathbb{Z}/((t^{m+1}-1)\mathbb{Z})$ and let $x(t) = \sum_{i=0}^m x_i t^i$ and $y(t) = \sum_{i=0}^m y_i t^i$ be residues. Then modulo $t^{m+1} - 1$, we have

$$x(t)y(t) = z(t)$$
 with $z_i = \sum_{i=0}^m x_{\langle i-j \rangle} y_{\langle j \rangle}$.

• Cost is $(m+1)^2M + 2m(m+1)A$

ALGORITHM: GRP MULTIPLICATION

```
INPUT: x = \sum_{i=0}^{m} x_i t^i, y = \sum_{i=0}^{m} y_i t^i
OUTPUT: z = \sum_{i=0}^{m} z_i t^i where z \equiv x y \pmod{\Phi_{m+1}(t)}
1. For i = m to 0 do:
```

- $z_i \leftarrow \sum_{j=1}^{m/2} (x_{\langle \frac{j}{2}-j \rangle} x_{\langle \frac{j}{2}+j \rangle}) (y_{\langle \frac{j}{2}+j \rangle} y_{\langle \frac{j}{2}-j \rangle})$
- 3. Return Z

ALGORITHM: GRP MULTIPLICATION

```
INPUT: x = \sum_{i=0}^{m} x_i t^i, y = \sum_{i=0}^{m} y_i t^i

OUTPUT: z = \sum_{i=0}^{m} z_i t^i where z \equiv x y \pmod{\Phi_{m+1}(t)}

1. For i = m to 0 do:

2. z_i \leftarrow \sum_{j=1}^{m/2} (x_{\langle \frac{j}{2} - j \rangle} - x_{\langle \frac{j}{2} + j \rangle}) (y_{\langle \frac{j}{2} + j \rangle} - y_{\langle \frac{j}{2} - j \rangle})

3. Return z
```

• Cost now is $\frac{m(m+1)}{2}M + 2(m^2 - 1)A$

ALGORITHM: GRP MULTIPLICATION

```
INPUT: X = \sum_{j=0}^{m} x_i t^j, y = \sum_{i=0}^{m} y_i t^i

OUTPUT: Z = \sum_{i=0}^{m} z_i t^i where Z \equiv x y \pmod{\Phi_{m+1}(t)}

1. For i = m to 0 do:

2. z_i \leftarrow \sum_{j=1}^{m/2} (x_{\langle \frac{j}{2} - j \rangle} - x_{\langle \frac{j}{2} + j \rangle}) (y_{\langle \frac{j}{2} + j \rangle} - y_{\langle \frac{j}{2} - j \rangle})

3. Return Z
```

- Cost now is $\frac{m(m+1)}{2}M + 2(m^2 1)A$
- See 'Generalised Mersenne Numbers Revisited', G. and Moss, Math. Comp., Vol. 82, No. 284, Oct 2013, pp. 2389–2420.

ALGORITHM: GRP MULTIPLICATION

```
INPUT: X = \sum_{i=0}^{m} x_i t^i, y = \sum_{i=0}^{m} y_i t^i

OUTPUT: Z = \sum_{i=0}^{m} z_i t^i where Z \equiv x y \pmod{\Phi_{m+1}(t)}

1. For i = m to 0 do:

2. Z_i \leftarrow \sum_{j=1}^{m/2} (x_{\langle \frac{j}{2} - j \rangle} - x_{\langle \frac{j}{2} + j \rangle}) (y_{\langle \frac{j}{2} + j \rangle} - y_{\langle \frac{j}{2} - j \rangle})

3. Return Z
```

- Cost now is $\frac{m(m+1)}{2}M + 2(m^2 1)A$
- See 'Generalised Mersenne Numbers Revisited', G. and Moss, Math. Comp., Vol. 82, No. 284, Oct 2013, pp. 2389–2420.
- *Drawback:* Except for $p = 2^{521} 1 = 2^{520} + 2^{519} + ... + 2 + 1$, GRPs are not standardised...

Overview

ECC efficiency

Generalised Repunit Primes

This work

On 64-bit architectures residues mod p require $\lceil 521/64 \rceil = 9$ words, so assume modulus is $t^9 - 1$. Let $x(t) = \sum_{i=0}^8 x_i t^i = \overline{\mathbf{x}} = [x_0, \dots, x_8]$, $y(t) = \sum_{i=0}^8 y_i t^i = \overline{\mathbf{y}} = [y_0, \dots, y_8]$, & $\overline{\mathbf{z}} \equiv \overline{\mathbf{x}} \, \overline{\mathbf{y}} \pmod{t^9 - 1}$.

On 64-bit architectures residues mod p require $\lceil 521/64 \rceil = 9$ words, so assume modulus is $t^9 - 1$. Let $x(t) = \sum_{i=0}^8 x_i t^i = \overline{\mathbf{x}} = [x_0, \dots, x_8]$, $y(t) = \sum_{i=0}^8 y_i t^i = \overline{\mathbf{y}} = [y_0, \dots, y_8]$, & $\overline{\mathbf{z}} \equiv \overline{\mathbf{x}} \, \overline{\mathbf{y}} \pmod{t^9 - 1}$. Then $\overline{\mathbf{z}} = \mathbf{z} = \mathbf{z} = \mathbf{z}$

$$[x_0y_0 + x_1y_8 + x_2y_7 + x_3y_6 + x_4y_5 + x_5y_4 + x_6y_3 + x_7y_2 + x_8y_1, \\ x_0y_1 + x_1y_0 + x_2y_8 + x_3y_7 + x_4y_6 + x_5y_5 + x_6y_4 + x_7y_3 + x_8y_2, \\ x_0y_2 + x_1y_1 + x_2y_0 + x_3y_8 + x_4y_7 + x_5y_6 + x_6y_5 + x_7y_4 + x_8y_3, \\ x_0y_3 + x_1y_2 + x_2y_1 + x_3y_0 + x_4y_8 + x_5y_7 + x_6y_6 + x_7y_5 + x_8y_4, \\ x_0y_4 + x_1y_3 + x_2y_2 + x_3y_1 + x_4y_0 + x_5y_8 + x_6y_7 + x_7y_6 + x_8y_5, \\ x_0y_5 + x_1y_4 + x_2y_3 + x_3y_2 + x_4y_1 + x_5y_0 + x_6y_8 + x_7y_7 + x_8y_6, \\ x_0y_6 + x_1y_5 + x_2y_4 + x_3y_3 + x_4y_2 + x_5y_1 + x_6y_0 + x_7y_8 + x_8y_7, \\ x_0y_7 + x_1y_6 + x_2y_5 + x_3y_4 + x_4y_3 + x_5y_2 + x_6y_1 + x_7y_0 + x_8y_8, \\ x_0y_8 + x_1y_7 + x_2y_6 + x_3y_5 + x_4y_4 + x_5y_3 + x_6y_2 + x_7y_1 + x_8y_0].$$

On 64-bit architectures residues mod p require $\lceil 521/64 \rceil = 9$ words, so assume modulus is $t^9 - 1$. Let $x(t) = \sum_{i=0}^8 x_i t^i = \overline{\mathbf{x}} = [x_0, \dots, x_8]$, $y(t) = \sum_{i=0}^8 y_i t^i = \overline{\mathbf{y}} = [y_0, \dots, y_8], \& \overline{\mathbf{z}} \equiv \overline{\mathbf{x}} \overline{\mathbf{y}} \pmod{t^9 - 1}$. Then $\overline{\mathbf{z}} = \overline{\mathbf{z}} = \overline{\mathbf{y}}$ $[X_0 V_0 + X_1 V_8 + X_2 V_7 + X_3 V_6 + X_4 V_5 + X_5 V_4 + X_6 V_3 + X_7 V_2 + X_8 V_1,$ $X_0V_1 + X_1V_0 + X_2V_8 + X_3V_7 + X_4V_6 + X_5V_5 + X_6V_4 + X_7V_3 + X_8V_2$ $X_0 y_2 + X_1 y_1 + X_2 y_0 + X_3 y_8 + X_4 y_7 + X_5 y_6 + X_6 y_5 + X_7 y_4 + X_8 y_3$ $X_0 V_3 + X_1 V_2 + X_2 V_1 + X_3 V_0 + X_4 V_8 + X_5 V_7 + X_6 V_6 + X_7 V_5 + X_8 V_4$ $X_0 y_4 + X_1 y_3 + X_2 y_2 + X_3 y_1 + X_4 y_0 + X_5 y_8 + X_6 y_7 + X_7 y_6 + X_8 y_5$ $X_0y_5 + X_1y_4 + X_2y_3 + X_3y_2 + X_4y_1 + X_5y_0 + X_6y_8 + X_7y_7 + X_8y_6$ $X_0 V_6 + X_1 V_5 + X_2 V_4 + X_3 V_3 + X_4 V_2 + X_5 V_1 + X_6 V_0 + X_7 V_8 + X_8 V_7$ $X_0 y_7 + X_1 y_6 + X_2 y_5 + X_3 y_4 + X_4 y_3 + X_5 y_2 + X_6 y_1 + X_7 y_0 + X_8 y_8$ $X_0 V_8 + X_1 V_7 + X_2 V_6 + X_3 V_5 + X_4 V_4 + X_5 V_3 + X_6 V_2 + X_7 V_1 + X_8 V_0$.

Cost is 81M + 144A

Let
$$s = \sum_{i=0}^8 x_i y_i$$
.

Let $s = \sum_{i=0}^{8} x_i y_i$. Then $\overline{\mathbf{z}}$ may also be expressed as

$$\begin{split} [s - (x_1 - x_8)(y_1 - y_8) - (x_2 - x_7)(y_2 - y_7) - (x_3 - x_6)(y_3 - y_6) - (x_4 - x_5)(y_4 - y_5), \\ s - (x_1 - x_0)(y_1 - y_0) - (x_2 - x_8)(y_2 - y_8) - (x_3 - x_7)(y_3 - y_7) - (x_4 - x_6)(y_4 - y_6), \\ s - (x_5 - x_6)(y_5 - y_6) - (x_2 - x_0)(y_2 - y_0) - (x_3 - x_8)(y_3 - y_8) - (x_4 - x_7)(y_4 - y_7), \\ s - (x_5 - x_7)(y_5 - y_7) - (x_2 - x_1)(y_2 - y_1) - (x_3 - x_0)(y_3 - y_0) - (x_4 - x_8)(y_4 - y_8), \\ s - (x_5 - x_8)(y_5 - y_8) - (x_6 - x_7)(y_6 - y_7) - (x_3 - x_1)(y_3 - y_1) - (x_4 - x_0)(y_4 - y_0), \\ s - (x_5 - x_0)(y_5 - y_0) - (x_6 - x_8)(y_6 - y_8) - (x_3 - x_2)(y_3 - y_2) - (x_4 - x_1)(y_4 - y_1), \\ s - (x_5 - x_1)(y_5 - y_1) - (x_6 - x_0)(y_6 - y_0) - (x_7 - x_8)(y_7 - y_8) - (x_4 - x_2)(y_4 - y_2), \\ s - (x_5 - x_2)(y_5 - y_2) - (x_6 - x_1)(y_6 - y_1) - (x_7 - x_0)(y_7 - y_0) - (x_4 - x_3)(y_4 - y_3), \\ s - (x_5 - x_3)(y_5 - y_3) - (x_6 - x_2)(y_6 - y_2) - (x_7 - x_1)(y_7 - y_1) - (x_8 - x_0)(y_8 - y_0). \end{split}$$

Let $s = \sum_{i=0}^{8} x_i y_i$. Then $\overline{\mathbf{z}}$ may also be expressed as

$$[s-(x_1-x_8)(y_1-y_8)-(x_2-x_7)(y_2-y_7)-(x_3-x_6)(y_3-y_6)-(x_4-x_5)(y_4-y_5),\\ s-(x_1-x_0)(y_1-y_0)-(x_2-x_8)(y_2-y_8)-(x_3-x_7)(y_3-y_7)-(x_4-x_6)(y_4-y_6),\\ s-(x_5-x_6)(y_5-y_6)-(x_2-x_0)(y_2-y_0)-(x_3-x_8)(y_3-y_8)-(x_4-x_7)(y_4-y_7),\\ s-(x_5-x_7)(y_5-y_7)-(x_2-x_1)(y_2-y_1)-(x_3-x_0)(y_3-y_0)-(x_4-x_8)(y_4-y_8),\\ s-(x_5-x_8)(y_5-y_8)-(x_6-x_7)(y_6-y_7)-(x_3-x_1)(y_3-y_1)-(x_4-x_0)(y_4-y_0),\\ s-(x_5-x_0)(y_5-y_0)-(x_6-x_8)(y_6-y_8)-(x_3-x_2)(y_3-y_2)-(x_4-x_1)(y_4-y_1),\\ s-(x_5-x_1)(y_5-y_1)-(x_6-x_0)(y_6-y_0)-(x_7-x_8)(y_7-y_8)-(x_4-x_2)(y_4-y_2),\\ s-(x_5-x_2)(y_5-y_2)-(x_6-x_1)(y_6-y_1)-(x_7-x_0)(y_7-y_0)-(x_4-x_3)(y_4-y_3),\\ s-(x_5-x_3)(y_5-y_3)-(x_6-x_2)(y_6-y_2)-(x_7-x_1)(y_7-y_1)-(x_8-x_0)(y_8-y_0)].$$

Cost is now 45M + 160A, exchanging 36M for 16A

Let $s = \sum_{i=0}^{8} x_i y_i$. Then $\bar{\mathbf{z}}$ may also be expressed as

$$\begin{split} [s-(x_1-x_8)(y_1-y_8)-(x_2-x_7)(y_2-y_7)-(x_3-x_6)(y_3-y_6)-(x_4-x_5)(y_4-y_5),\\ s-(x_1-x_0)(y_1-y_0)-(x_2-x_8)(y_2-y_8)-(x_3-x_7)(y_3-y_7)-(x_4-x_6)(y_4-y_6),\\ s-(x_5-x_6)(y_5-y_6)-(x_2-x_0)(y_2-y_0)-(x_3-x_8)(y_3-y_8)-(x_4-x_7)(y_4-y_7),\\ s-(x_5-x_7)(y_5-y_7)-(x_2-x_1)(y_2-y_1)-(x_3-x_0)(y_3-y_0)-(x_4-x_8)(y_4-y_8),\\ s-(x_5-x_8)(y_5-y_8)-(x_6-x_7)(y_6-y_7)-(x_3-x_1)(y_3-y_1)-(x_4-x_0)(y_4-y_0),\\ s-(x_5-x_0)(y_5-y_0)-(x_6-x_8)(y_6-y_8)-(x_3-x_2)(y_3-y_2)-(x_4-x_1)(y_4-y_1),\\ s-(x_5-x_1)(y_5-y_1)-(x_6-x_0)(y_6-y_0)-(x_7-x_8)(y_7-y_8)-(x_4-x_2)(y_4-y_2),\\ s-(x_5-x_2)(y_5-y_2)-(x_6-x_1)(y_6-y_1)-(x_7-x_0)(y_7-y_0)-(x_4-x_3)(y_4-y_3),\\ s-(x_5-x_3)(y_5-y_3)-(x_6-x_2)(y_6-y_2)-(x_7-x_1)(y_7-y_1)-(x_8-x_0)(y_8-y_0)]. \end{split}$$

- Cost is now 45M + 160A, exchanging 36M for 16A
- However, we can't use the irrational base $t = 2^{521/9}$ with integer coefficients, so instead work mod $2p = t^9 2$ with $t = 2^{58}$

Let $s = \sum_{i=0}^{8} x_i y_i$. Then $\bar{\mathbf{z}}$ may also be expressed as

$$\begin{split} [s-(x_1-x_8)(y_1-y_8)-(x_2-x_7)(y_2-y_7)-(x_3-x_6)(y_3-y_6)-(x_4-x_5)(y_4-y_5),\\ s-(x_1-x_0)(y_1-y_0)-(x_2-x_8)(y_2-y_8)-(x_3-x_7)(y_3-y_7)-(x_4-x_6)(y_4-y_6),\\ s-(x_5-x_6)(y_5-y_6)-(x_2-x_0)(y_2-y_0)-(x_3-x_8)(y_3-y_8)-(x_4-x_7)(y_4-y_7),\\ s-(x_5-x_7)(y_5-y_7)-(x_2-x_1)(y_2-y_1)-(x_3-x_0)(y_3-y_0)-(x_4-x_8)(y_4-y_8),\\ s-(x_5-x_8)(y_5-y_8)-(x_6-x_7)(y_6-y_7)-(x_3-x_1)(y_3-y_1)-(x_4-x_0)(y_4-y_0),\\ s-(x_5-x_0)(y_5-y_0)-(x_6-x_8)(y_6-y_8)-(x_3-x_2)(y_3-y_2)-(x_4-x_1)(y_4-y_1),\\ s-(x_5-x_1)(y_5-y_1)-(x_6-x_0)(y_6-y_0)-(x_7-x_8)(y_7-y_8)-(x_4-x_2)(y_4-y_2),\\ s-(x_5-x_2)(y_5-y_2)-(x_6-x_1)(y_6-y_1)-(x_7-x_0)(y_7-y_0)-(x_4-x_3)(y_4-y_3),\\ s-(x_5-x_3)(y_5-y_3)-(x_6-x_2)(y_6-y_2)-(x_7-x_1)(y_7-y_1)-(x_8-x_0)(y_8-y_0)]. \end{split}$$

- Cost is now 45M + 160A, exchanging 36M for 16A
- However, we can't use the irrational base $t = 2^{521/9}$ with integer coefficients, so instead work mod $2p = t^9 2$ with $t = 2^{58}$
- Introduces several shifts, but still only requires 45M

The Edwards curve E-521: $x^2 + y^2 = 1 - 376014x^2y^2$ was found independently by Bernstein-Lange, Hamburg, and Aranha *et al.*

The Edwards curve E-521: $x^2 + y^2 = 1 - 376014x^2y^2$ was found independently by Bernstein-Lange, Hamburg, and Aranha *et al.*

We implemented constant-time cache-safe variable-base scalar multiplication on NIST curve P-521 & E-521 in C.

The Edwards curve E-521: $x^2 + y^2 = 1 - 376014x^2y^2$ was found independently by Bernstein-Lange, Hamburg, and Aranha *et al.*

We implemented constant-time cache-safe variable-base scalar multiplication on NIST curve P-521 & E-521 in C.

openSSL	P-521	ed-521-mers	E-521
1,319,000	1,073,000	1,552,000	943,000

Table: Cycle counts for openSSL 1.0.2-beta2, P-521 and E-521 on a 3.4GHz Intel Haswell Core i7-4770 compiled with gcc 4.7 on Ubuntu 12.04, while ed-521-mers was on a 3.4GHz Intel Core i7-2600 Sandy Bridge (Bos *et al.*)

The Edwards curve E-521: $x^2 + y^2 = 1 - 376014x^2y^2$ was found independently by Bernstein-Lange, Hamburg, and Aranha *et al.*

We implemented constant-time cache-safe variable-base scalar multiplication on NIST curve P-521 & E-521 in C.

openSSL	P-521	ed-521-mers	E-521
1,319,000	1,073,000	1,552,000	943,000

Table: Cycle counts for openSSL 1.0.2-beta2, P-521 and E-521 on a 3.4GHz Intel Haswell Core i7-4770 compiled with gcc 4.7 on Ubuntu 12.04, while ed-521-mers was on a 3.4GHz Intel Core i7-2600 Sandy Bridge (Bos *et al.*)

• For our code see indigo.ie/~mscott/ws521.cpp and indigo.ie/~mscott/ed521.cpp respectively

The Edwards curve E-521: $x^2 + y^2 = 1 - 376014x^2y^2$ was found independently by Bernstein-Lange, Hamburg, and Aranha *et al.*

We implemented constant-time cache-safe variable-base scalar multiplication on NIST curve P-521 & E-521 in C.

openSSL	P-521	ed-521-mers	E-521
1,319,000	1,073,000	1,552,000	943,000

Table: Cycle counts for openSSL 1.0.2-beta2, P-521 and E-521 on a 3.4GHz Intel Haswell Core i7-4770 compiled with gcc 4.7 on Ubuntu 12.04, while ed-521-mers was on a 3.4GHz Intel Core i7-2600 Sandy Bridge (Bos *et al.*)

- For our code see indigo.ie/~mscott/ws521.cpp and indigo.ie/~mscott/ed521.cpp respectively
- Hamburg has obtained even better figures for E-521: about 800k cycles using two Karatsuba levels and low level optimisations

 Presented modular multiplication formulae for Crandall numbers that requires as few M as is needed for squaring

- Presented modular multiplication formulae for Crandall numbers that requires as few M as is needed for squaring
- Efficiency of idea on ARM processors should be interesting due to higher M/A cost ratio

- Presented modular multiplication formulae for Crandall numbers that requires as few M as is needed for squaring
- Efficiency of idea on ARM processors should be interesting due to higher M/A cost ratio
- Contributed to the debate regarding E-521 feasibility for independent standardisation (see CFRG)

- Presented modular multiplication formulae for Crandall numbers that requires as few M as is needed for squaring
- Efficiency of idea on ARM processors should be interesting due to higher M/A cost ratio
- Contributed to the debate regarding E-521 feasibility for independent standardisation (see CFRG)

Thanks for your attention!