One-Round Key Exchange with Strong Security:
An Efficient and Generic Construction
in the Standard Model

Florian Bergsma Tibor Jager Jorg Schwenk

PKC 2015

hg1:

Horst Gortz Institute W
for [T-Security B

Public-Key Authenticated
Key Exchange

Insecure channel

Public-Key Authenticated
Key Exchange

Alice Bob
(pkAISkA)
N Insecure channel

Public-Key Authenticated
Key Exchange

Alice
(pkAISkA)
N Insecure channel

b } AKE Protocol

Key K,p

Public-Key Authenticated
Key Exchange

Alice
(pkAISkA)
», O Insecure channel
b O AKE Protocol
Key kAB - Key kAB

Partner = Bob Partner = Alice

Nobody except for
Bob is able to

distinguish k,z from
random

One-Round Key Exchange (ORKE)

(Pky, ska)
At
y - My = f(pkB;SkA' r.A) >
‘ . mB - f(pkA,SkB;rB)

L
JASNY

KDF(pkg,ska,ra mg) = kag = KDF(pk,,skg,rg my)

One-Round Key Exchange (ORKE)

Possibly sent simultaneously

(pk/}jkA) (or precomputed)
& m, = 1:(pkBrSkA' r.A) >
| . Mg = f(pk,,Ske, rg)

L
JASNY
[~

KDF(pkg,ska,ra mg) = kag = KDF(pk,,skg,rg my)

One-Round Key Exchange (ORKE)

Possibly sent simultaneously

(pk%ka) (or precomputed)
. W m, = f(pkg,sky,ra) N
9) m; = f(pk,,sks,rp)

KDF(pkg,ska,ra mg) = kag = KDF(pk,,skg,rg my)

* Simple design and implementation
* Quick key establishment in at most one RTT

Security Analysis of AKE Protocols

* Provide A with “execution environment” that
formalizes A’s capabilities

Security Analysis of AKE Protocols

A controls the
network

* Provide A with “execution environment” that
formalizes A’s capabilities

10

Security Analysis of AKE Protocols

A may
corrupt users

* Provide A with “execution environment” that
formalizes A’s capabilities

11

Security Analysis of AKE Protocols

A may
corrupt sessions

* Provide A with “execution environment” that
formalizes A’s capabilities

12

Security Analysis of AKE Protocols

A has to
distinguish k
from random

* Provide A with “execution environment” that
formalizes A’s capabilities

13

Weak Randomness in Practice

Many examples for the difficulty in practice:
* Debian OpenSSL PRNG Bug (2006-2008)
 Weak RSA public keys

— Lenstra et al. (Crypto 2012)

— Heninger et al. (USENIX Security 2012)

— Bernstein et al. (Asiacrypt 2013)
* Cold boot attacks

— Halderman et al. (USENIX Security 2008)

int getRandomNumber ()

return Y, // chosen bg fair dice roll.
// quaranteed to be random.

https://xkcd.com/221/

“eCK Security”

[LLMO7]

Key Kk,gis
indistinguishable
even if the attacker
learns the
randomness

4 m, = f(pkg,sky,r A
9) m, = f(pk,, sk, rs)

g(pkBISkAIrA’mB) = Kpg = g(pkAISkBIrB’mA)

15

Forward Security (PFS)

(Diffie, van Oorschot, Wiener, DESI 1992)

Session 3 Session 7

with Carol ge with Eve
Session 1 Session 2 Session 4 Session 5 Session 6 Session 8
with Alice with Eve l with Alice with Mallory with Carol l with Alice
! d d { ! !

Time

16

Forward Security (PFS)

(Diffie, van Oorschot, Wiener, DESI 1992)

Session 3

with Carol
Session 1 Session 2 l Session 4

with Alice with Eve with Alice

! | {

7’
=1

Session 7

with Eve
Session 5 Session 6 Session 8
with Mallory with Carol with Alice

|

{

|

b,

17

Forward Security (PFS)

(Diffie, van Oorschot, Wiener, DESI 1992)

7’
=1

{ Session 7

with Eve
Session 5 Session 6 l Session 8

Session 3

with Carol
Session 1 Session 2 l Session 4

with Mallory with Carol with Alice

! | VR

with Alice with Eve with Alice

! | {

Time

“Corruption of the long-term secret should not compromise
sessions that were established before the corruption”

e Put forward by large Internet companies since 2011 (Google)
* Design goal of modern protocols like TLS 1.3, TextSecure, ...

18

The Difficulty of
Forward Security in the eCK Model

Forward security:
key-indistinguishability is based on
secret ephemeral randomness

19

The Difficulty of
Forward Security in the eCK Model

Forward security:
key-indistinguishability is based on
secret ephemeral randomness

1

eCK security:
key-indistinguishability even if
ephemeral randomness is leaked

20

The Difficulty of
Forward Security in the eCK Model

Forward security:
key-indistinguishability is based on
secret ephemeral randomness

eCK security:
key-indistinguishability even if
ephemeral randomness is leaked

NO
PETS
ALLOWED

ALL PETS MUST |}
i BE ON LEASH
-

21

The Difficulty of
Forward Security in the eCK Model

Forward security:
key-indistinguishability is based on
secret ephemeral randomness

[

eCK security:
key-indistinguishability even if
ephemeral randomness is leaked

ALL PETS MUST
BE ON LEASH

NO
PETS
ALLOWED

Session keys must depend on both long-term and ephemeral
secrets, such that corruption of either (but not both) does not
corrupt the security of session keys

x')\"\ \P =T " “r,l "g
P(p) - R
N 8

Contributions S

* eCK-PFS secure key exchange :
— One-round (ORKE)
— First from generic assumptions

e Signature scheme
e Pseudorandom function

* Non-interactive key exchange
* First not based on discrete log type assumption

— Without Random Oracles
— Relatively efficient
— Simple construction and proof

23

Non-Interactive Key Exchange (NIKE)

(Diffie, Hellman '76; Freire, Hofheinz, Kiltz, Paterson, PKC "13)

Security parameter ' Gen (pk,sk)

nike

(skn Pks) | KDFpje Kag

Non-Interactive Key Exchange (NIKE)

(Diffie, Hellman '76; Freire, Hofheinz, Kiltz, Paterson, PKC "13)

Security parameter — Gen_.. [(pk,sk)
(skaPkg) =™ KDFge * Kng

KDF ixe(PKg,SKa) = Kng = KDF yc(pky,skg)

25

& Our Protocol

<

pkA = (pkA,sig'pkA,nike) pkB = (pkB,sig'pkB,nike)

26

¥ Our Protocol

(pk‘,,sks) €NIKEGen(1X,r,) (pk‘g,sk’z) €NIKEGen(1k,rg)

My = (psz’ SigA(pklA))>
- Mg = (ple; SigB(ple))

KDForke(pkB;SkA:mBer) = kAB = KDForke(pkA'SkB'mA'rB)

27

N Our Protocol

(pk‘,,sk‘y) €NIKEGen(1kr,) (pk‘s,sk’z) €NIKEGen(1K,r)
A A A B B B

My = (psz’ SigA(pklA))>
- Mg = (ple; SigB(ple))

KDForke(pkB;SkA;mBer) = kAB = KDForke(pkA'SkB'mA'rB)

Similar to signed Diffie-Hellman, but
* NIKE instead of DH
* more complex key derivation

28

orke

Idea of KDF w

Alice essentially computes:
KDForke(pkB'SkAlpkBl;SkAl) =
I<DFnike(pkB'SkA) ® KDFnike(pkBl'SkAl) ® KDFnike(pkB'S‘kAl) ® KDFnike(r*')kBl'SkA)

29

orke

ldea of KDF ‘

Alice essentially computes:
KDForke(pkB'SkAkaBl;SkAl) =
KDF . .(pkg,sky) ® KDF . .(pky',sk,’) ® KDF . .(pkg,sk,’) ® KDF_ . .(pky',sk,)

nike

e Adversary learns Randomness(A) and Randomness(B)

30

ldea of KDF | “

orke

Alice essentially computes:
KDForke(pkB'SkAkaBl;SkAl) =
KDFnike(pkB'SkA) ® KDFnike(pkBl'SkAl) ® KDFnike(pkB'SkAl) ® KDFnike(pkBl'SkA)

e Adversary learns Randomness(A) and Randomness(B)
e Adversary learns SecretKey(A) and SecretKey(B)

31

/‘r N

ldea of KDF Y

orke

KDF,...(pkg,sk,) ® KDF, .. .(pkg',sk,) ® KDF

Alice essentially computes:
KDF,,(Pkg, Sk, pkg’,sk,) =
(pkg,sk,) ® KDF, . .(pky',sk,)

nike

 Adversary
e Adversary
 Adversary

earns Randomness(A) and Randomness(B)
earns SecretKey(A) and SecretKey(B)
earns SecretKey(A) and Randomness(B)

32

ldea of KDF

orke

Alice essentially computes:
KDF,,(Pkg, Sk, pkg’,sk,) =

KDF, . ..(pkg,sk,) ® KDF . .(pkg',sk,) ® KDF . .(pky,sk,’) ® KDF ., .(Pkg ,sKA)

nike

e Adversary learns Randomness(A) and Randomness(B)
e Adversary learns SecretKey(A) and SecretKey(B)
e Adversary learns SecretKey(A) and Randomness(B)

e Adversary learns Randomness(A) SecretKey(B)

33

ldea of KDF W

orke

Alice essentially computes:
KDForke(pkB'SkAlpkBl;SkAl) =
I<DFnike(pkB'SkA) ® KDFnike(pkBl'SkAl) ® KDFnike(pkB'SkAl) ® KDFnike(pkBl'SkA)

e Adversary learns Randomness(A) and Randomness(B)
e Adversary learns SecretKey(A) and SecretKey(B)
e Adversary learns SecretKey(A) and Randomness(B)

e Adversary learns Randomness(A) SecretKey(B)

Adversary may learn all non-trivial combinations of
randomness / long-term secret,
even from the “target-session”

The “real” KDF

orke

Input: (pkg,sk,,(pkg’,sigs), (Pk,’,siga))
o T:=sort((pky’,sigg), (Pk,",sig,))

+ k, := PRF(KDF. , (pky,sky), T)

+ k, := PRF(KDF... (pkq,sk,’), T)

+ k, := PRF(KDF... (pky’,sk,), T)

K, := KDF . .(pkg',sk,)

e ki=k ek ok, ek,

Output k

35

Generic Construction

* Building blocks of the ORKE protocol:

— Non-interactive key exchange ™

~ Standard security

— Signature scheme L
definitions

— Pseudorandom function

—

* [nstantiable with any concrete construction

— From different assumptions, like
* Discrete log type, with/without pairing
* Factoring-related
e Possibly post-quantum?

36

Summary

* eCK-PFS secure construction of ORKE
— Simple and natural construction and proof

— Generic, based on standard primitives
* Givesrise to first ORKE not based on DL
— Relatively efficiently instantiable

* |nstantiations in ROM: very efficient
* |Instantiations without ROM: not horrible

Summary

* eCK-PFS secure construction of ORKE
— Simple and natural construction and proof

— Generic, based on standard primitives
* Givesrise to first ORKE not based on DL

— Relatively efficiently instantiable
* |nstantiations in ROM: very efficient
* |Instantiations without ROM: not horrible

Thank you!

Comparison with other protocols

Standard |PFS|weak| KCI| exp. pairing | Security

Model PF'S per party|evaluations| model
TS1 [21] X X | X | X 1 - BR'
TS3 [21] v V| v | X 3 - BR*
MQV X X | vV | X 1 - CK
HMQV X X | v |/ 2 - CK
KEA X X | v/ |/ 2 - CK
P1 [6] v X | X |/ 8 2 CK
P2 [6] v X | v |/ 10 2 CK
NAXOS X X | v |/ 4 - eCK
Okamoto |v +7PRF| X | vV | / 8 - eCK
NAXOS;,| X | v |/ 4 - eCK-PFS
ORKE® XNIKE)| v | vV | V 5 - eCK-PFS
ORKE* v v | V| Y/ 16 12 eCK-PFS

39

