Group Signatures from Lattices: Simpler, Tighter, Shorter, Ring-based

San Ling and Khoa Nguyen and Huaxiong Wang

Nanyang Technological University, Singapore

PKC 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Content

Introduction

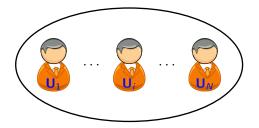
Group Signatures Previous Group Signatures from Lattices

Our Results and Techniques

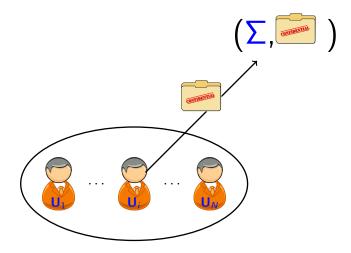
Our Results and Comparison with Previous Works Our Techniques Comparison with Concurrent Work ([NZZ'15])

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

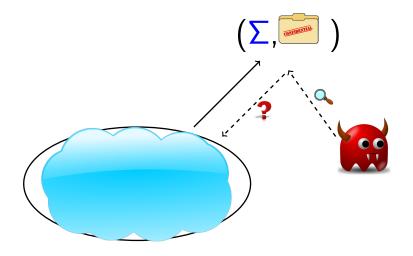
Some Open Problems



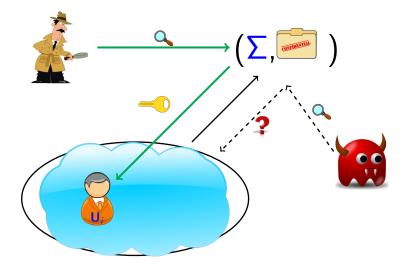
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

The [BMW'03] Model

Four algorithms:

1. KeyGen $(n, N) \longrightarrow (gpk, gmsk, \{gsk[i]\}_{i=0}^{N-1}).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 2. $\operatorname{Sign}(\operatorname{gsk}[i], M) \longrightarrow \Sigma$.
- 3. Verify(gpk, M, Σ) $\longrightarrow \{0, 1\}$.
- 4. Open(gmsk, M, Σ) $\longrightarrow \{i, \bot\}$.

The [BMW'03] Model

Four algorithms:

- 1. KeyGen $(n, N) \longrightarrow (gpk, gmsk, \{gsk[i]\}_{i=0}^{N-1}).$
- 2. Sign(gsk[i], M) $\longrightarrow \Sigma$.
- 3. Verify(gpk, M, Σ) $\longrightarrow \{0, 1\}$.
- 4. Open(gmsk, M, Σ) $\longrightarrow \{i, \bot\}$.

Correctness requirement:

 $\begin{aligned} & \mathsf{Verify}\big(\mathsf{gpk}, M, \mathsf{Sign}\big(\mathsf{gsk}[i], M\big)\big) &= 1, \\ & \mathsf{Open}\big(\mathsf{gmsk}, M, \mathsf{Sign}\big(\mathsf{gsk}[i], M\big)\big) &= i. \end{aligned}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The [BMW'03] Model

Four algorithms:

- 1. KeyGen $(n, N) \longrightarrow (gpk, gmsk, \{gsk[i]\}_{i=0}^{N-1}).$
- 2. Sign(gsk[i], M) $\longrightarrow \Sigma$.
- 3. Verify(gpk, M, Σ) $\longrightarrow \{0, 1\}$.
- 4. Open(gmsk, M, Σ) $\longrightarrow \{i, \bot\}$.

Correctness requirement:

Verify(gpk, M, Sign(gsk[i], M)) = 1,Open(gmsk, M, Sign(gsk[i], M)) = i.

Security requirements:

- 1. **CCA-anonymity:** Signatures generated by two distinct group users are computationally indistinguishable to an adversary who:
 - Knows all the user secret keys.
 - Has access to Opening oracle. (CPA-anonymity ([BBS'04]), otherwise.)
- Traceability: All signatures, even those produced by a coalition, can be traced to a member of the coalition.

Previous Lattice-based Group Signatures

Schemes in the [BMW'03] model:

Scheme	GKV10	CNR12	LLLS13
Signature	$N\cdot \widetilde{\mathcal{O}}(n^2)$	$N\cdot\widetilde{\mathcal{O}}(n^2)$	$\log N \cdot \widetilde{\mathcal{O}}(n^2)$
Public key	$N\cdot\widetilde{\mathcal{O}}(n^2)$	$\widetilde{\mathcal{O}}(n^2)$	$\log N \cdot \widetilde{\mathcal{O}}(n^2)$
User secret key	$N \cdot \widetilde{\mathcal{O}}(n^2)$	$\widetilde{\mathcal{O}}(n^2)$	$\widetilde{\mathcal{O}}(n^2)$
Anonymity	$SIVP_{\widetilde{\mathcal{O}}(n^2)}$	$SIVP_{\widetilde{\mathcal{O}}(n^2)}$	$SIVP_{\widetilde{\mathcal{O}}(n^8)}$
Traceability	$SIVP_{\widetilde{\mathcal{O}}(n^{1.5})}$	$SIVP_{\widetilde{\mathcal{O}}(n^2)}$	$SIVP_{\widetilde{\mathcal{O}}(n^{7.5})}$

- Encryption layer to be initialized in accordance with signature layer; long user secret keys; long ciphertexts.
- None of previous schemes simultaneously achieves logarithmic signature size and weak hardness assumptions.
- Another open question raised in [LLLS'13]: Ring-based group signature?

Our Results and Comparison with Previous Works

Lattice-based group signature (in the [BMW'03] model) with:

- 1. Logarithmic signature and public key sizes $+ \mbox{ short user secret key.}$
- 2. Weak hardness assumptions: CCA-anonymous and traceable if the underlying encryption and standard signature schemes are secure, respectively (i.e., no overhead!).
- 3. Easy transformation into the ring setting.
- 4. Encryption layer and signature layer are independent. Only log *N* bits have to be encrypted.

Scheme	GKV10	CNR12	LLLS13	Scheme (I)	Scheme (II)
Signature	$N\cdot\widetilde{\mathcal{O}}(n^2)$	$N \cdot \widetilde{\mathcal{O}}(n^2)$	$\log N \cdot \widetilde{\mathcal{O}}(n^2)$	$\log N \cdot \widetilde{\mathcal{O}}(n)$	$\log N \cdot \widetilde{\mathcal{O}}(n)$
Public key	$N\cdot \widetilde{\mathcal{O}}(n^2)$	$\widetilde{\mathcal{O}}(n^2)$	$\log N \cdot \widetilde{\mathcal{O}}(n^2)$	$\log N \cdot \widetilde{\mathcal{O}}(n^2)$	$\log N \cdot \widetilde{\mathcal{O}}(n)$
User secret key	$N\cdot\widetilde{\mathcal{O}}(n^2)$	$\widetilde{\mathcal{O}}(n^2)$	$\widetilde{\mathcal{O}}(n^2)$	$\widetilde{\mathcal{O}}(n)$	$\widetilde{\mathcal{O}}(n)$
Anonymity	$SIVP_{\widetilde{\mathcal{O}}(n^2)}$	$SIVP_{\widetilde{\mathcal{O}}(n^2)}$	$SIVP_{\widetilde{\mathcal{O}}(n^8)}$	$SIVP_{\widetilde{\mathcal{O}}(n^2)}$	$SVP^\infty_{\widetilde{\mathcal{O}}(n^{3.5})}$
Traceability	$SIVP_{\widetilde{\mathcal{O}}(n^{1.5})}$	$SIVP_{\widetilde{\mathcal{O}}(n^2)}$	$SIVP_{\widetilde{\mathcal{O}}(n^{7.5})}$	$SIVP_{\widetilde{\mathcal{O}}(n^2)}$	$SVP^\infty_{\widetilde{\mathcal{O}}(n^2)}$

Note: All known lattice-based group signatures are proven secure only in the ROM.

A Simple Design Approach

Choose $N = 2^{\ell}$, user $j \in [0, N - 1]$ is equivalently indexed by $d \in \{0, 1\}^{\ell}$.

- Group public key consists of verification key of the Boyen signature scheme ([Boyen'10]), and encrypting key of a lattice-based PKE *E*.
 Opening key is the decrypting key of *E*.
- 2. Secret key of user with index $d \in \{0,1\}^{\ell}$ is a Boyen signature **z** on "message" d.
- 3. To sign any message, encrypt d to obtain a ciphertext **c** and generate a zero-knowledge argument π to prove that:
 - (i) The user possesses a valid message-signature pair (d, z) for the Boyen signature scheme.

(ii) **c** is a correct encryption of d.

Then using the Fiat-Shamir heuristic to get a NIZKAoK π . The signature is $\Sigma = (\mathbf{c}, \pi)$.

- 4. To verify Σ , check π .
- 5. To open Σ , decrypt **c**.

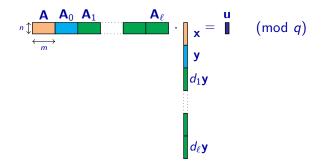
Main Technical Contribution

We introduce a statistical ZK argument for a valid message-signature pair (d, z) for the Boyen signature (i.e., both d and z are hidden), which might be of independent interest.

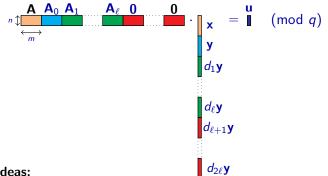
Main Technical Contribution

We introduce a statistical ZK argument for a valid message-signature pair (d, z) for the Boyen signature (i.e., both d and z are hidden), which might be of independent interest.

Specifically, given public matrices $\mathbf{A}, \mathbf{A}_0, \dots, \mathbf{A}_\ell \in \mathbb{Z}_q^{n \times m}$ and vector $\mathbf{u} \in \mathbb{Z}_q^n$, we prove in ZK the possession of $d = (d_1, \dots, d_\ell) \in \{0, 1\}^\ell$ and small $\mathbf{z} = (\mathbf{x} || \mathbf{y}) \in \mathbb{Z}^{2m}$ s.t. $\mathbf{A}\mathbf{x} + (\mathbf{A}_0 + \sum_{i=1}^\ell d_i \mathbf{A}_i)\mathbf{y} = \mathbf{u} \mod q$.

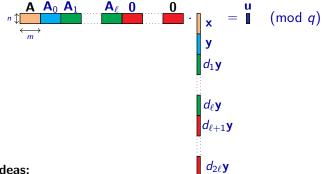


Observation: This is essentially an ISIS relation $A^*z^* = u \mod q$, where the ISIS solution z^* has a special structure.



Main ideas:

After extensions, we still have an ISIS relation. Here, d_{ℓ+1},..., d_{2ℓ} are bits s.t. the extended vector d^{*} = (d₁,..., d_ℓ, d_{ℓ+1},..., d_{2ℓ}) ∈ {0,1}^{2ℓ} has weight exactly equal to ℓ.



Main ideas:

- After extensions, we still have an ISIS relation. Here, d_{ℓ+1},..., d_{2ℓ} are bits s.t. the extended vector d^{*} = (d₁,..., d_ℓ, d_{ℓ+1},..., d_{2ℓ}) ∈ {0,1}^{2ℓ} has weight exactly equal to ℓ.
- ► We develop the Stern-type protocol for ISIS from [LNSW'13].
 - Proving the knowledge of x and y is a simple adaptation.
 - ▶ We randomly permute the blocks of $(d_1\mathbf{y}, \ldots, d_\ell\mathbf{y}, d_{\ell+1}\mathbf{y}, \ldots, d_{2\ell}\mathbf{y})$ and show that it has exactly ℓ blocks equal to \mathbf{y} . This convinces the verifier that the original vector has the form $(d_1\mathbf{y}, \ldots, d_\ell\mathbf{y})$ for certain hidden $(d_1, \ldots, d_\ell) \in \{0, 1\}^\ell$.

We have a flexible choice for encryption layer. For the Dual-Regev encryption [GPV'08], we obtain a Stern-type ZK argument for proving that a given ciphertext c is a valid encryption of d.

- We have a flexible choice for encryption layer. For the Dual-Regev encryption [GPV'08], we obtain a Stern-type ZK argument for proving that a given ciphertext c is a valid encryption of d.
- The two Stern-type protocols can be combined together to result in a CPA-anonymous group signature.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- We have a flexible choice for encryption layer. For the Dual-Regev encryption [GPV'08], we obtain a Stern-type ZK argument for proving that a given ciphertext c is a valid encryption of d.
- The two Stern-type protocols can be combined together to result in a CPA-anonymous group signature.

 To achieve CCA-anonymity, we employ the IBE version of Dual-Regev [GPV08], and the technique from [BCHK07].

- We have a flexible choice for encryption layer. For the Dual-Regev encryption [GPV'08], we obtain a Stern-type ZK argument for proving that a given ciphertext c is a valid encryption of d.
- The two Stern-type protocols can be combined together to result in a CPA-anonymous group signature.
- To achieve CCA-anonymity, we employ the IBE version of Dual-Regev [GPV08], and the technique from [BCHK07].
- ► We obtain a ring-based group signature scheme, in which the public key and signature both have asymptotically size log N · Õ(n). Key points:
 - 1. Boyen's signature can be transformed into the ring setting.
 - We use an efficient variant of Dual-Regev encryption presented in [LPR13].
 - 3. Our ZK protocol basically works as for general lattices.
 - 4. CPA-anonymity and traceability can be based on the worst-case hardness of SVP_{γ}^{∞} on ideal lattices, for relatively small γ . (Also, no overhead in security assumptions.)

・ロト・日本・モート モー うへぐ

A Brief Comparison with [NZZ'15]

In a concurrent and independent work, Nguyen, Zhang, and Zhang also obtain a lattice-based group signature scheme which is simpler than [GKV'10],[LLLS'13].

A Brief Comparison with [NZZ'15]

In a concurrent and independent work, Nguyen, Zhang, and Zhang also obtain a lattice-based group signature scheme which is simpler than [GKV'10],[LLLS'13].

In their scheme:

- Group public key and signature sizes are shorter than ours.
- ► The secret key of each group user is still a matrix in Z^{2m×2m} of bit-size Õ(n²).
- ► Parameters are required to be larger than ours, e.g., $q = m^{2.5} \max(m^6 \omega (\log^{2.5} m), 4N).$
- ► Security assumptions are stronger than ours, e.g., traceability is based on the worst-case hardness of SIVP_{Õ(n^{8.5})}.

Some Open Questions

Constructing lattice-based group signatures with:

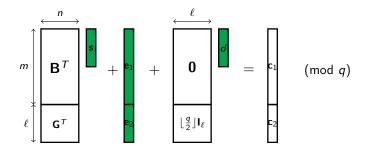
- Dynamic enrollment of users ([BSZ'05], [SSEHO'12] models)?
- Signatures size independent of N?
- Provable security in the standard model?

Scheme	GKV10	CNR12	LLLS13	Scheme (I)	Scheme (II)
Signature	$N\cdot\widetilde{\mathcal{O}}(n^2)$	$N\cdot\widetilde{\mathcal{O}}(n^2)$	$\log N \cdot \widetilde{\mathcal{O}}(n^2)$	$\log N \cdot \widetilde{\mathcal{O}}(n)$	$\log N \cdot \widetilde{\mathcal{O}}(n)$
Public key	$N\cdot\widetilde{\mathcal{O}}(n^2)$	$\widetilde{\mathcal{O}}(n^2)$	$\log N \cdot \widetilde{\mathcal{O}}(n^2)$	$\log N \cdot \widetilde{\mathcal{O}}(n^2)$	$\log N \cdot \widetilde{\mathcal{O}}(n)$
User secret key	$N\cdot \widetilde{\mathcal{O}}(n^2)$	$\widetilde{\mathcal{O}}(n^2)$	$\widetilde{\mathcal{O}}(n^2)$	$\widetilde{\mathcal{O}}(n)$	$\widetilde{\mathcal{O}}(n)$
Anonymity	$SIVP_{\widetilde{\mathcal{O}}(n^2)}$	$SIVP_{\widetilde{\mathcal{O}}(n^2)}$	$SIVP_{\widetilde{\mathcal{O}}(n^8)}$	$SIVP_{\widetilde{\mathcal{O}}(n^2)}$	$SVP^\infty_{\widetilde{\mathcal{O}}(n^{3.5})}$
Traceability	$SIVP_{\widetilde{\mathcal{O}}(n^{1.5})}$	$SIVP_{\widetilde{\mathcal{O}}(n^2)}$	$SIVP_{\widetilde{\mathcal{O}}(n^{7.5})}$	$SIVP_{\widetilde{\mathcal{O}}(n^2)}$	$SVP^\infty_{\widetilde{\mathcal{O}}(n^2)}$

A Zero-knowledge Protocol for the GPV-IBE

Given public key (\mathbf{B}, \mathbf{G}) and ciphertext $(\mathbf{c}_1, \mathbf{c}_2)$, prove in ZK the knowledge of $\mathbf{s} \in \mathbb{Z}_q^n$ (might be small), small $(\mathbf{e}_1 \in \mathbb{Z}^m, \mathbf{e}_2 \in \mathbb{Z}^\ell)$ and $d \in \{0, 1\}^\ell$ s.t.

$$(\mathbf{c}_1 = \mathbf{B}^T \mathbf{s} + \mathbf{e}_1, \mathbf{c}_2 = \mathbf{G}^T \mathbf{s} + \mathbf{e}_2 + \lfloor q/2 \rfloor d).$$

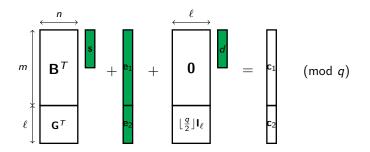


イロト イポト イヨト イヨト

A Zero-knowledge Protocol for the GPV-IBE

Given public key (\mathbf{B}, \mathbf{G}) and ciphertext $(\mathbf{c}_1, \mathbf{c}_2)$, prove in ZK the knowledge of $\mathbf{s} \in \mathbb{Z}_q^n$ (might be small), small $(\mathbf{e}_1 \in \mathbb{Z}^m, \mathbf{e}_2 \in \mathbb{Z}^\ell)$ and $d \in \{0, 1\}^\ell$ s.t.

$$(\mathbf{c}_1 = \mathbf{B}^T \mathbf{s} + \mathbf{e}_1, \mathbf{c}_2 = \mathbf{G}^T \mathbf{s} + \mathbf{e}_2 + \lfloor q/2 \rfloor d).$$



This can be done by adapting the techniques from [LNSW13].