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The [BMW’03] Model
Four algorithms:

1. KeyGen(n,N) −→
(
gpk, gmsk, {gsk[i ]}N−1i=0

)
.

2. Sign(gsk[i ],M) −→ Σ.

3. Verify(gpk,M,Σ) −→ {0, 1}.
4. Open(gmsk,M,Σ) −→ {i ,⊥}.

Correctness requirement:

Verify
(
gpk,M,Sign(gsk[i ],M)

)
= 1,

Open
(
gmsk,M,Sign(gsk[i ],M)

)
= i .

Security requirements:

1. CCA-anonymity: Signatures generated by two distinct group users
are computationally indistinguishable to an adversary who:

I Knows all the user secret keys.
I Has access to Opening oracle. (CPA-anonymity ([BBS’04]),

otherwise.)

2. Traceability: All signatures, even those produced by a coalition,
can be traced to a member of the coalition.
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Previous Lattice-based Group Signatures
Schemes in the [BMW’03] model:

Scheme GKV10 CNR12 LLLS13

Signature N · Õ(n2) N · Õ(n2) logN · Õ(n2)

Public key N · Õ(n2) Õ(n2) logN · Õ(n2)

User secret key N · Õ(n2) Õ(n2) Õ(n2)

Anonymity SIVPÕ(n2)
SIVPÕ(n2)

SIVPÕ(n8)

Traceability SIVPÕ(n1.5)
SIVPÕ(n2)

SIVPÕ(n7.5)

I Encryption layer to be initialized in accordance with signature layer;
long user secret keys; long ciphertexts.

I None of previous schemes simultaneously achieves logarithmic
signature size and weak hardness assumptions.

I Another open question raised in [LLLS’13]: Ring-based group
signature?



Our Results and Comparison with Previous Works
Lattice-based group signature (in the [BMW’03] model) with:

1. Logarithmic signature and public key sizes + short user secret key.

2. Weak hardness assumptions: CCA-anonymous and traceable if the
underlying encryption and standard signature schemes are secure,
respectively (i.e., no overhead!).

3. Easy transformation into the ring setting.

4. Encryption layer and signature layer are independent. Only logN
bits have to be encrypted.

Scheme GKV10 CNR12 LLLS13 Scheme (I) Scheme (II)

Signature N · Õ(n2) N · Õ(n2) logN · Õ(n2) logN · Õ(n) logN · Õ(n)

Public key N · Õ(n2) Õ(n2) logN · Õ(n2) logN · Õ(n2) logN · Õ(n)

User secret key N · Õ(n2) Õ(n2) Õ(n2) Õ(n) Õ(n)

Anonymity SIVPÕ(n2)
SIVPÕ(n2)

SIVPÕ(n8)
SIVPÕ(n2)

SVP∞
Õ(n3.5)

Traceability SIVPÕ(n1.5)
SIVPÕ(n2)

SIVPÕ(n7.5)
SIVPÕ(n2)

SVP∞
Õ(n2)

Note: All known lattice-based group signatures are proven secure only in the ROM.



A Simple Design Approach

Choose N = 2`, user j ∈ [0,N − 1] is equivalently indexed by d ∈ {0, 1}`.

1. Group public key consists of verification key of the Boyen signature
scheme ([Boyen’10]), and encrypting key of a lattice-based PKE E .
Opening key is the decrypting key of E .

2. Secret key of user with index d ∈ {0, 1}` is a Boyen signature z on
“message” d .

3. To sign any message, encrypt d to obtain a ciphertext c and
generate a zero-knowledge argument π to prove that:

(i) The user possesses a valid message-signature pair (d , z)
for the Boyen signature scheme.

(ii) c is a correct encryption of d .

Then using the Fiat-Shamir heuristic to get a NIZKAoK π. The
signature is Σ = (c, π).

4. To verify Σ, check π.

5. To open Σ, decrypt c.



Main Technical Contribution
We introduce a statistical ZK argument for a valid message-signature
pair (d , z) for the Boyen signature (i.e., both d and z are hidden), which
might be of independent interest.

Specifically, given public matrices A,A0, . . . ,A` ∈ Zn×m
q and vector

u ∈ Zn
q, we prove in ZK the possession of d = (d1, . . . , d`) ∈ {0, 1}` and

small z = (x‖y) ∈ Z2m s.t. Ax +
(
A0 +

∑`
i=1 diAi

)
y = u mod q.

A A0 A1 A`
· x

y

d1y

d`y

u
= (mod q)n

m

Observation: This is essentially an ISIS relation A∗z∗ = u mod q, where
the ISIS solution z∗ has a special structure.
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A A0 A1 A` 0 0
· x

y

d1y

d`y

d`+1y

d2`y

u
= (mod q)n

m

Main ideas:

I After extensions, we still have an ISIS relation. Here, d`+1, . . . , d2` are
bits s.t. the extended vector d∗ = (d1, . . . , d`, d`+1, . . . , d2`) ∈ {0, 1}2`
has weight exactly equal to `.

I We develop the Stern-type protocol for ISIS from [LNSW’13].

I Proving the knowledge of x and y is a simple adaptation.
I We randomly permute the blocks of (d1y, . . . , d`y, d`+1y, . . . , d2`y)

and show that it has exactly ` blocks equal to y. This convinces the
verifier that the original vector has the form (d1y, . . . , d`y) for
certain hidden (d1, . . . , d`) ∈ {0, 1}`.
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Scheme Developments

I We have a flexible choice for encryption layer. For the Dual-Regev
encryption [GPV’08], we obtain a Stern-type ZK argument for
proving that a given ciphertext c is a valid encryption of d .

I The two Stern-type protocols can be combined together to result in
a CPA-anonymous group signature.

I To achieve CCA-anonymity, we employ the IBE version of
Dual-Regev [GPV08], and the technique from [BCHK07].

I We obtain a ring-based group signature scheme, in which the public
key and signature both have asymptotically size logN · Õ(n). Key
points:

1. Boyen’s signature can be transformed into the ring setting.
2. We use an efficient variant of Dual-Regev encryption presented

in [LPR13].
3. Our ZK protocol basically works as for general lattices.
4. CPA-anonymity and traceability can be based on the

worst-case hardness of SVP∞γ on ideal lattices, for relatively
small γ. (Also, no overhead in security assumptions.)
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points:

1. Boyen’s signature can be transformed into the ring setting.
2. We use an efficient variant of Dual-Regev encryption presented

in [LPR13].
3. Our ZK protocol basically works as for general lattices.
4. CPA-anonymity and traceability can be based on the

worst-case hardness of SVP∞γ on ideal lattices, for relatively
small γ. (Also, no overhead in security assumptions.)



Scheme Developments

I We have a flexible choice for encryption layer. For the Dual-Regev
encryption [GPV’08], we obtain a Stern-type ZK argument for
proving that a given ciphertext c is a valid encryption of d .

I The two Stern-type protocols can be combined together to result in
a CPA-anonymous group signature.

I To achieve CCA-anonymity, we employ the IBE version of
Dual-Regev [GPV08], and the technique from [BCHK07].

I We obtain a ring-based group signature scheme, in which the public
key and signature both have asymptotically size logN · Õ(n). Key
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A Brief Comparison with [NZZ’15]

In a concurrent and independent work, Nguyen, Zhang, and Zhang
also obtain a lattice-based group signature scheme which is simpler
than [GKV’10],[LLLS’13].

In their scheme:

I Group public key and signature sizes are shorter than ours.

I The secret key of each group user is still a matrix in Z2m×2m

of bit-size Õ(n2).

I Parameters are required to be larger than ours, e.g.,
q = m2.5 max(m6ω(log2.5m), 4N).

I Security assumptions are stronger than ours, e.g., traceability
is based on the worst-case hardness of SIVPÕ(n8.5).
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Some Open Questions

Constructing lattice-based group signatures with:

I Dynamic enrollment of users ([BSZ’05], [SSEHO’12] models)?

I Signatures size independent of N?

I Provable security in the standard model?
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A Zero-knowledge Protocol for the GPV-IBE
Given public key (B,G) and ciphertext (c1, c2), prove in ZK the
knowledge of s ∈ Zn

q (might be small), small (e1 ∈ Zm, e2 ∈ Z`) and

d ∈ {0, 1}` s.t.(
c1 = BT s + e1, c2 = GT s + e2 + bq/2cd

)
.

BT

GT

s

+ e1

e2

+ 0

b q
2
cI`

d

= c1

c2

(mod q)

n

m

`

`

I This can be done by adapting the techniques from [LNSW13].
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