
Secure Efficient History-Hiding Append-Only Signatures
in the Standard Model

Benôıt Libert
ENS de Lyon

Marc Joye
Palo Alto, USA

Moti Yung
New York, USA

Thomas Peters
ENS, Paris

Maryland - the 31st of March

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 1 / 19

Append-Only Signature

Allowing adding lines/opinions in a poll

Avoiding the above misbehavior =⇒ Ensuring non “redactness”

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 2 / 19

Append-Only Signature

Allowing adding lines/opinions in a poll

Avoiding the above misbehavior =⇒ Ensuring non “redactness”

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 2 / 19

Append-Only Signature

Allowing adding lines/opinions in a poll

Avoiding the above misbehavior =⇒ Ensuring non “redactness”

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 2 / 19

Append-Only Signature

Allowing adding lines/opinions in a poll

Avoiding the above misbehavior =⇒ Ensuring non “redactness”

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 2 / 19

Append-Only Signature: Unforgeability

No PPT adversary can forge a signature with noticeable advantage in

PK
.
.
.

Mi = {mi,1, ...,mi,ni }

Σi

.

.

.

M∗,Σ∗

Sign(sk, ·) SignDerive(pk, ·, ·)

If Verify(M∗,Σ∗) 6= 1 or Mi ⊂ M∗ for some i = 1, . . . , q

Then (M∗,Σ∗) 6= forgery

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 3 / 19

Append-Only Signature: Unforgeability

No PPT adversary can forge a signature with noticeable advantage in

PK
.
.
.

Mi = {mi,1, ...,mi,ni }

Σi

.

.

.

M∗,Σ∗

Sign(sk, ·) SignDerive(pk, ·, ·)

If Verify(M∗,Σ∗) 6= 1 or Mi ⊂ M∗ for some i = 1, . . . , q

Then (M∗,Σ∗) 6= forgery

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 3 / 19

Append-Only Signature: Unforgeability

No PPT adversary can forge a signature with noticeable advantage in

PK
.
.
.

Mi = {mi,1, ...,mi,ni }

Σi

.

.

.

M∗,Σ∗

Sign(sk, ·) SignDerive(pk, ·, ·)

If Verify(M∗,Σ∗) 6= 1 or Mi ⊂ M∗ for some i = 1, . . . , q

Then (M∗,Σ∗) 6= forgery

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 3 / 19

Privacy of AOS: History-Hiding

Hiding the history of appended messages, which is implied by...

Context-Hiding [Ahn et al. (TCC’12)]

Derived signatures should “look” like fresh signatures, even if original

(honestly generated) signatures are given

⇒ Guarantees unlinkability between derivatives of a signature

Complete Context-Hiding [Attrapadung-Libert-Peters (Asiacrypt’12)]

For all M ⊂M along with a possibly maliciously generated valid

signature Σ and for any M ′ such that M ⊂ M ′ :{
sk,Σ,Sign(sk,M ′)

}
∼S
{
sk,Σ,SignDerive(pk, (Σ,M),M ′ \M)

}
⇒ The definition takes into account e.g. randomizable Σ

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 4 / 19

Privacy of AOS: History-Hiding

Hiding the history of appended messages, which is implied by...

Context-Hiding [Ahn et al. (TCC’12)]

Derived signatures should “look” like fresh signatures, even if original

(honestly generated) signatures are given

⇒ Guarantees unlinkability between derivatives of a signature

Complete Context-Hiding [Attrapadung-Libert-Peters (Asiacrypt’12)]

For all M ⊂M along with a possibly maliciously generated valid

signature Σ and for any M ′ such that M ⊂ M ′ :{
sk,Σ,Sign(sk,M ′)

}
∼S
{
sk,Σ,SignDerive(pk, (Σ,M),M ′ \M)

}
⇒ The definition takes into account e.g. randomizable Σ

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 4 / 19

Privacy of AOS: History-Hiding

Hiding the history of appended messages, which is implied by...

Context-Hiding [Ahn et al. (TCC’12)]

Derived signatures should “look” like fresh signatures, even if original

(honestly generated) signatures are given

⇒ Guarantees unlinkability between derivatives of a signature

Complete Context-Hiding [Attrapadung-Libert-Peters (Asiacrypt’12)]

For all M ⊂M along with a possibly maliciously generated valid

signature Σ and for any M ′ such that M ⊂ M ′ :{
sk,Σ,Sign(sk,M ′)

}
∼S
{
sk,Σ,SignDerive(pk, (Σ,M),M ′ \M)

}
⇒ The definition takes into account e.g. randomizable Σ

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 4 / 19

History-hiding append-only signatures can be viewed as

Main functionality

Allowing anyone to add messages or opinions (e.g. approval votes...)

Security: preventing withdrawing other’s inputs (secure archive)

History-Hiding property

Not considering as strings but as sets

Privacy: removing the order =⇒ Hides influences in successive appendings

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 5 / 19

Homomorphic Signatures: Related Work

Desmedt (NSPW’93): Call for constructions

Johnson-Molnar-Song-Wagner (CT-RSA’02):

Formal definitions of homomorphic signatures

Ahn-Boneh-Camenisch-Hohenberger-shelat-Waters (TCC’12):

Generalized model, context-hiding privacy, constructions

Attrapadung-Libert-Peters (Asiacrypt’12 & PKC’13):

Stronger context-hiding privacy, separation results, improved constructions

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 6 / 19

Homomorphic Signatures: Related Work

Desmedt (NSPW’93): Call for constructions

Johnson-Molnar-Song-Wagner (CT-RSA’02):

Formal definitions of homomorphic signatures

Ahn-Boneh-Camenisch-Hohenberger-shelat-Waters (TCC’12):

Generalized model, context-hiding privacy, constructions

Attrapadung-Libert-Peters (Asiacrypt’12 & PKC’13):

Stronger context-hiding privacy, separation results, improved constructions

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 6 / 19

Homomorphic Signatures: Related Work

Desmedt (NSPW’93): Call for constructions

Johnson-Molnar-Song-Wagner (CT-RSA’02):

Formal definitions of homomorphic signatures

Ahn-Boneh-Camenisch-Hohenberger-shelat-Waters (TCC’12):

Generalized model, context-hiding privacy, constructions

Attrapadung-Libert-Peters (Asiacrypt’12 & PKC’13):

Stronger context-hiding privacy, separation results, improved constructions

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 6 / 19

Append-Only Signatures: Prior Works

Kiltz-Mityagin-Panjwani-Raghavan (ICALP’05):

Formal definitions, generic constructions, instantiations

Bethencourt-Boneh-Waters (NDSS’07):

History-Hiding, bounded set or random oracle

Cui-Li-Yokoyama-Imai (ICC’09): Adaptive security

Moran-Naor-Segev (ICALP’07): (write-once memories instead of signatures)

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 7 / 19

Append-Only Signatures: Prior Works

Kiltz-Mityagin-Panjwani-Raghavan (ICALP’05):

Formal definitions, generic constructions, instantiations

Bethencourt-Boneh-Waters (NDSS’07):

History-Hiding, bounded set or random oracle

Cui-Li-Yokoyama-Imai (ICC’09): Adaptive security

Moran-Naor-Segev (ICALP’07): (write-once memories instead of signatures)

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 7 / 19

Append-Only Signatures: Prior Works

Kiltz-Mityagin-Panjwani-Raghavan (ICALP’05):

Formal definitions, generic constructions, instantiations

Bethencourt-Boneh-Waters (NDSS’07):

History-Hiding, bounded set or random oracle

Cui-Li-Yokoyama-Imai (ICC’09): Adaptive security

Moran-Naor-Segev (ICALP’07): (write-once memories instead of signatures)

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 7 / 19

Append-Only Signatures: Prior Works

Kiltz-Mityagin-Panjwani-Raghavan (ICALP’05):

Formal definitions, generic constructions, instantiations

Bethencourt-Boneh-Waters (NDSS’07):

History-Hiding, bounded set or random oracle

Cui-Li-Yokoyama-Imai (ICC’09): Adaptive security

Moran-Naor-Segev (ICALP’07): (write-once memories instead of signatures)

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 7 / 19

Our Contributions

Recast History-Hiding AOS in homomorphic signature frameworks

Efficient History-Hiding AOS in prime-order bilinear groups

Security in the standard model under simple assumptions (DLIN)

Constant-size public key pk for sets of unbounded messages

Signature of O(n)-size for sets of messages {m1, . . . ,mn} ∈ Zn
p

New application: generic Identity-Based Ring Signatures

Generic construction from HH-AOS for arbitrary-size rings

Unforgeability against adaptively (as opposed to selectively) chosen rings

Full Anonymity even for adversarially-chosen private keys of ID’s

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 8 / 19

Our Contributions

Recast History-Hiding AOS in homomorphic signature frameworks

Efficient History-Hiding AOS in prime-order bilinear groups

Security in the standard model under simple assumptions (DLIN)

Constant-size public key pk for sets of unbounded messages

Signature of O(n)-size for sets of messages {m1, . . . ,mn} ∈ Zn
p

New application: generic Identity-Based Ring Signatures

Generic construction from HH-AOS for arbitrary-size rings

Unforgeability against adaptively (as opposed to selectively) chosen rings

Full Anonymity even for adversarially-chosen private keys of ID’s

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 8 / 19

HH-AOS in the Standard Model

Challenges:

Bethencourt-Boneh-Waters (NDSS’07) rely on aggregate signatures

Multi-linear maps and iO give standard-model adaptations . . .

. . . but ruin the efficiency and require ad hoc assumptions

Sequential aggregate signatures (e.g., based on Waters signatures
[LOSSW06]) do not work here (see the full version of the paper)

Our solution: key ingredients

Exploit the randomizability / malleability of Groth-Sahai proofs [GS08]

Structure-preserving signatures based simple assumptions [ACD+12]

Programmable hash functions [HK08] and a (one-time) standard-model
instantiation of Boneh-Lynn-Schacham signatures [BLS01]

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 9 / 19

HH-AOS in the Standard Model

Challenges:

Bethencourt-Boneh-Waters (NDSS’07) rely on aggregate signatures

Multi-linear maps and iO give standard-model adaptations . . .

. . . but ruin the efficiency and require ad hoc assumptions

Sequential aggregate signatures (e.g., based on Waters signatures
[LOSSW06]) do not work here (see the full version of the paper)

Our solution: key ingredients

Exploit the randomizability / malleability of Groth-Sahai proofs [GS08]

Structure-preserving signatures based simple assumptions [ACD+12]

Programmable hash functions [HK08] and a (one-time) standard-model
instantiation of Boneh-Lynn-Schacham signatures [BLS01]

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 9 / 19

Our Append-Only Signature: Outline

Uses a two-tier construction: To sign a set {m1, . . . ,mn}

Generate a fresh one-time key pair (X = g x , x) ∈ G× Zp

Certify the one-time public key X = g x using a long term secret key SK

Use the one-time x ∈ Zp to sign {m1, . . . ,mn} by splitting x into additive
shares x = ω1 + · · ·+ ωn:

Compute σi = HG(mi)
ωi for each i ∈ {1, . . . , n} (and pki = gωi)

Commit to each σi = HG(mi)
ωi and prove consistency with X = g

∑n
i=1 ωi

Inserts mn+1 in a signed {m1, . . . ,mn} by turning a (n, n) additive sharing of

x =
∑n

i=1 ωi into a (n + 1, n + 1) sharing x =
∑n+1

i=1 ω
′
i “in the exponent”

Leverages the malleability of GS proofs to derive a proof that X = g
∑n+1

i=1 ω
′
i

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 10 / 19

Our Append-Only Signature: Outline

Uses a two-tier construction: To sign a set {m1, . . . ,mn}

Generate a fresh one-time key pair (X = g x , x) ∈ G× Zp

Certify the one-time public key X = g x using a long term secret key SK

Use the one-time x ∈ Zp to sign {m1, . . . ,mn} by splitting x into additive
shares x = ω1 + · · ·+ ωn:

Compute σi = HG(mi)
ωi for each i ∈ {1, . . . , n} (and pki = gωi)

Commit to each σi = HG(mi)
ωi and prove consistency with X = g

∑n
i=1 ωi

Inserts mn+1 in a signed {m1, . . . ,mn} by turning a (n, n) additive sharing of

x =
∑n

i=1 ωi into a (n + 1, n + 1) sharing x =
∑n+1

i=1 ω
′
i “in the exponent”

Leverages the malleability of GS proofs to derive a proof that X = g
∑n+1

i=1 ω
′
i

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 10 / 19

Our Append-Only Signature: Outline

Uses a two-tier construction: To sign a set {m1, . . . ,mn}

Generate a fresh one-time key pair (X = g x , x) ∈ G× Zp

Certify the one-time public key X = g x using a long term secret key SK

Use the one-time x ∈ Zp to sign {m1, . . . ,mn} by splitting x into additive
shares x = ω1 + · · ·+ ωn:

Compute σi = HG(mi)
ωi for each i ∈ {1, . . . , n} (and pki = gωi)

Commit to each σi = HG(mi)
ωi and prove consistency with X = g

∑n
i=1 ωi

Inserts mn+1 in a signed {m1, . . . ,mn} by turning a (n, n) additive sharing of

x =
∑n

i=1 ωi into a (n + 1, n + 1) sharing x =
∑n+1

i=1 ω
′
i “in the exponent”

Leverages the malleability of GS proofs to derive a proof that X = g
∑n+1

i=1 ω
′
i

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 10 / 19

Our Append-Only Signature: first step (non-HH)
...only achieving unforgeability

KeyGen(pp) where pp = (G,GT , p, g , e)

Let (KeyGen0,Sign0,Verify0) be a signature scheme with M0 = G

Let HG : {0, 1}L → G such that HG(m) = h0 ·
∏L

j=1
h
m[j]
j ∈ G

Run (pk , sk)← KeyGen0(pp) and set PK = (HG, pk) and SK = sk

Sign(SK,M = {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Generate a random X = g x , with x
R← Zp

Authenticate X as σ0 ← Sign(sk,X)

Share x into n pieces: pick ω1, . . . , ωn
R← Zp s.t. x =

∑n
i=1 ωi

Authenticate each mi ∈ M using ωi as σi,1 = HG(mi)
ωi and σi,2 = gωi

Output Σ = (X , σ0, {(σi ,1, σi ,2)}ni=1) as the signature

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 11 / 19

Our Append-Only Signature: first step (non-HH)
...only achieving unforgeability

KeyGen(pp) where pp = (G,GT , p, g , e)

Let (KeyGen0,Sign0,Verify0) be a signature scheme with M0 = G

Let HG : {0, 1}L → G such that HG(m) = h0 ·
∏L

j=1
h
m[j]
j ∈ G

Run (pk , sk)← KeyGen0(pp) and set PK = (HG, pk) and SK = sk

Sign(SK,M = {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Generate a random X = g x , with x
R← Zp

Authenticate X as σ0 ← Sign(sk,X)

Share x into n pieces: pick ω1, . . . , ωn
R← Zp s.t. x =

∑n
i=1 ωi

Authenticate each mi ∈ M using ωi as σi,1 = HG(mi)
ωi and σi,2 = gωi

Output Σ = (X , σ0, {(σi ,1, σi ,2)}ni=1) as the signature

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 11 / 19

Our Append-Only Signature: first step (non-HH)
...only achieving unforgeability

KeyGen(pp) where pp = (G,GT , p, g , e)

Let (KeyGen0,Sign0,Verify0) be a signature scheme with M0 = G

Let HG : {0, 1}L → G such that HG(m) = h0 ·
∏L

j=1
h
m[j]
j ∈ G

Run (pk , sk)← KeyGen0(pp) and set PK = (HG, pk) and SK = sk

Sign(SK,M = {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Generate a random X = g x , with x
R← Zp

Authenticate X as σ0 ← Sign(sk,X)

Share x into n pieces: pick ω1, . . . , ωn
R← Zp s.t. x =

∑n
i=1 ωi

Authenticate each mi ∈ M using ωi as σi,1 = HG(mi)
ωi and σi,2 = gωi

Output Σ = (X , σ0, {(σi ,1, σi ,2)}ni=1) as the signature

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 11 / 19

Our Append-Only Signature: first step (non-HH)
...only achieving unforgeability

KeyGen(pp) where pp = (G,GT , p, g , e)

Let (KeyGen0,Sign0,Verify0) be a signature scheme with M0 = G

Let HG : {0, 1}L → G such that HG(m) = h0 ·
∏L

j=1
h
m[j]
j ∈ G

Run (pk , sk)← KeyGen0(pp) and set PK = (HG, pk) and SK = sk

Sign(SK,M = {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Generate a random X = g x , with x
R← Zp

Authenticate X as σ0 ← Sign(sk,X)

Share x into n pieces: pick ω1, . . . , ωn
R← Zp s.t. x =

∑n
i=1 ωi

Authenticate each mi ∈ M using ωi as σi,1 = HG(mi)
ωi and σi,2 = gωi

Output Σ = (X , σ0, {(σi ,1, σi ,2)}ni=1) as the signature

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 11 / 19

Our Append-Only Signature: first step (non-HH)
...only achieving unforgeability

KeyGen(pp) where pp = (G,GT , p, g , e)

Let (KeyGen0,Sign0,Verify0) be a signature scheme with M0 = G

Let HG : {0, 1}L → G such that HG(m) = h0 ·
∏L

j=1
h
m[j]
j ∈ G

Run (pk , sk)← KeyGen0(pp) and set PK = (HG, pk) and SK = sk

Sign(SK,M = {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Generate a random X = g x , with x
R← Zp

Authenticate X as σ0 ← Sign(sk,X)

Share x into n pieces: pick ω1, . . . , ωn
R← Zp s.t. x =

∑n
i=1 ωi

Authenticate each mi ∈ M using ωi as σi,1 = HG(mi)
ωi and σi,2 = gωi

Output Σ = (X , σ0, {(σi ,1, σi ,2)}ni=1) as the signature

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 11 / 19

Our Append-Only Signature: first step (non-HH)
...only achieving unforgeability

KeyGen(pp) where pp = (G,GT , p, g , e)

Let (KeyGen0,Sign0,Verify0) be a signature scheme with M0 = G

Let HG : {0, 1}L → G such that HG(m) = h0 ·
∏L

j=1
h
m[j]
j ∈ G

Run (pk , sk)← KeyGen0(pp) and set PK = (HG, pk) and SK = sk

Sign(SK,M = {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Generate a random X = g x , with x
R← Zp

Authenticate X as σ0 ← Sign(sk,X)

Share x into n pieces: pick ω1, . . . , ωn
R← Zp s.t. x =

∑n
i=1 ωi

Authenticate each mi ∈ M using ωi as σi,1 = HG(mi)
ωi and σi,2 = gωi

Output Σ = (X , σ0, {(σi ,1, σi ,2)}ni=1) as the signature

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 11 / 19

Our Append-Only Signature: first step (non-HH)
...only achieving unforgeability

KeyGen(pp) where pp = (G,GT , p, g , e)

Let (KeyGen0,Sign0,Verify0) be a signature scheme with M0 = G

Let HG : {0, 1}L → G such that HG(m) = h0 ·
∏L

j=1
h
m[j]
j ∈ G

Run (pk , sk)← KeyGen0(pp) and set PK = (HG, pk) and SK = sk

Sign(SK,M = {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Generate a random X = g x , with x
R← Zp

Authenticate X as σ0 ← Sign(sk,X)

Share x into n pieces: pick ω1, . . . , ωn
R← Zp s.t. x =

∑n
i=1 ωi

Authenticate each mi ∈ M using ωi as σi,1 = HG(mi)
ωi and σi,2 = gωi

Output Σ = (X , σ0, {(σi ,1, σi ,2)}ni=1) as the signature

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 11 / 19

...only achieving unforgeability (continuing with verification)

Sign(SK, {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Compute X = g x , for x
R← Zp, and σ0 ← Sign(sk,X)

Select ω1, . . . , ωn
R← Zp such that x =

∑n
i=1 ωi

Authenticate each mi as σi,1 = HG(mi)
ωi and σi,2 = gωi

Verify(PK, {m1, . . . ,mn},Σ) returns 1 only if

If Verify(pk,X , σ0) = 1

If X =
∏n

i=1 σi,2 (i.e. x = ω1 + · · ·+ ωn)

If e(σi,1, g) = e(HG(mi), σi,2) for all i = 1, . . . , n

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 12 / 19

...only achieving unforgeability (continuing with verification)

Sign(SK, {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Compute X = g x , for x
R← Zp, and σ0 ← Sign(sk,X)

Select ω1, . . . , ωn
R← Zp such that x =

∑n
i=1 ωi

Authenticate each mi as σi,1 = HG(mi)
ωi and σi,2 = gωi

Verify(PK, {m1, . . . ,mn},Σ) returns 1 only if

If Verify(pk,X , σ0) = 1

If X =
∏n

i=1 σi,2 (i.e. x = ω1 + · · ·+ ωn)

If e(σi,1, g) = e(HG(mi), σi,2) for all i = 1, . . . , n

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 12 / 19

...only achieving unforgeability (continuing with verification)

Sign(SK, {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Compute X = g x , for x
R← Zp, and σ0 ← Sign(sk,X)

Select ω1, . . . , ωn
R← Zp such that x =

∑n
i=1 ωi

Authenticate each mi as σi,1 = HG(mi)
ωi and σi,2 = gωi

Verify(PK, {m1, . . . ,mn},Σ) returns 1 only if

If Verify(pk,X , σ0) = 1

If X =
∏n

i=1 σi,2 (i.e. x = ω1 + · · ·+ ωn)

If e(σi,1, g) = e(HG(mi), σi,2) for all i = 1, . . . , n

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 12 / 19

...only achieving unforgeability (appending messages)

Sign(SK, {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Compute X = g x , for x
R← Zp, and σ0 ← Sign(sk,X)

Select ω1, . . . , ωn
R← Zp such that x =

∑n
i=1 ωi

Authenticate each mi as σi,1 = HG(mi)
ωi and σi,2 = gωi

SignDerive(PK, ({m1, . . . ,mn},Σ),mn+1) appends mn+1 ∈ {0, 1}L

Select ω′1, . . . , ω
′
n, ω
′
n+1

R← Zp such that 0 =
∑n+1

i=1 ω
′
i

Randomize each pair (σi,1, σi,2) with ω′i :

σ′i,1 = σi,1 · HG(mi)
ω′

i σ′i,2 = σi,2 · gω
′
i

Authenticate mn+1 as σ′n+1,1 = HG(mn+1)ω
′
n+1 and σ′n+1,2 = gω

′
n+1

Correctness is obvious ... but X is not randomizable ...

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 13 / 19

...only achieving unforgeability (appending messages)

Sign(SK, {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Compute X = g x , for x
R← Zp, and σ0 ← Sign(sk,X)

Select ω1, . . . , ωn
R← Zp such that x =

∑n
i=1 ωi

Authenticate each mi as σi,1 = HG(mi)
ωi and σi,2 = gωi

SignDerive(PK, ({m1, . . . ,mn},Σ),mn+1) appends mn+1 ∈ {0, 1}L

Select ω′1, . . . , ω
′
n, ω
′
n+1

R← Zp such that 0 =
∑n+1

i=1 ω
′
i

Randomize each pair (σi,1, σi,2) with ω′i :

σ′i,1 = σi,1 · HG(mi)
ω′

i σ′i,2 = σi,2 · gω
′
i

Authenticate mn+1 as σ′n+1,1 = HG(mn+1)ω
′
n+1 and σ′n+1,2 = gω

′
n+1

Correctness is obvious ... but X is not randomizable ...

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 13 / 19

...only achieving unforgeability (appending messages)

Sign(SK, {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Compute X = g x , for x
R← Zp, and σ0 ← Sign(sk,X)

Select ω1, . . . , ωn
R← Zp such that x =

∑n
i=1 ωi

Authenticate each mi as σi,1 = HG(mi)
ωi and σi,2 = gωi

SignDerive(PK, ({m1, . . . ,mn},Σ),mn+1) appends mn+1 ∈ {0, 1}L

Select ω′1, . . . , ω
′
n, ω
′
n+1

R← Zp such that 0 =
∑n+1

i=1 ω
′
i

Randomize each pair (σi,1, σi,2) with ω′i :

σ′i,1 = σi,1 · HG(mi)
ω′

i σ′i,2 = σi,2 · gω
′
i

Authenticate mn+1 as σ′n+1,1 = HG(mn+1)ω
′
n+1 and σ′n+1,2 = gω

′
n+1

Correctness is obvious ... but X is not randomizable ...

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 13 / 19

...only achieving unforgeability (appending messages)

Sign(SK, {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Compute X = g x , for x
R← Zp, and σ0 ← Sign(sk,X)

Select ω1, . . . , ωn
R← Zp such that x =

∑n
i=1 ωi

Authenticate each mi as σi,1 = HG(mi)
ωi and σi,2 = gωi

SignDerive(PK, ({m1, . . . ,mn},Σ),mn+1) appends mn+1 ∈ {0, 1}L

Select ω′1, . . . , ω
′
n, ω
′
n+1

R← Zp such that 0 =
∑n+1

i=1 ω
′
i

Randomize each pair (σi,1, σi,2) with ω′i :

σ′i,1 = σi,1 · HG(mi)
ω′

i σ′i,2 = σi,2 · gω
′
i

Authenticate mn+1 as σ′n+1,1 = HG(mn+1)ω
′
n+1 and σ′n+1,2 = gω

′
n+1

Correctness is obvious ... but X is not randomizable ...

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 13 / 19

...only achieving unforgeability (appending messages)

Sign(SK, {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Compute X = g x , for x
R← Zp, and σ0 ← Sign(sk,X)

Select ω1, . . . , ωn
R← Zp such that x =

∑n
i=1 ωi

Authenticate each mi as σi,1 = HG(mi)
ωi and σi,2 = gωi

SignDerive(PK, ({m1, . . . ,mn},Σ),mn+1) appends mn+1 ∈ {0, 1}L

Select ω′1, . . . , ω
′
n, ω
′
n+1

R← Zp such that 0 =
∑n+1

i=1 ω
′
i

Randomize each pair (σi,1, σi,2) with ω′i :

σ′i,1 = σi,1 · HG(mi)
ω′

i σ′i,2 = σi,2 · gω
′
i

Authenticate mn+1 as σ′n+1,1 = HG(mn+1)ω
′
n+1 and σ′n+1,2 = gω

′
n+1

Correctness is obvious ... but X is not randomizable ...

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 13 / 19

...only achieving unforgeability (security)

Sign(SK, {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Compute X = g x , for x
R← Zp, and σ0 ← Sign(sk,X)

Select ω1, . . . , ωn
R← Zp such that x =

∑n
i=1 ωi

Authenticate each mi as σi,1 = HG(mi)
ωi and σi,2 = gωi

Append-Only Unforgeability

1 If Π0 = (KeyGen0,Sign0,Verify0) is secure against eXtended RMA

2 If HG is an (1, q)-programmable hash function (CDH)

Then security follows...

Programmability [HK08]: The Waters hash HG(m) = g J(m)hK(m)

Secretly computable J(·) and K (·) (in the reduction)

For any m1, . . . ,mq+1 only 1 has K (mi) = 0 (with good probability)

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 14 / 19

...only achieving unforgeability (security)

Sign(SK, {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Compute X = g x , for x
R← Zp, and σ0 ← Sign(sk,X)

Select ω1, . . . , ωn
R← Zp such that x =

∑n
i=1 ωi

Authenticate each mi as σi,1 = HG(mi)
ωi and σi,2 = gωi

Append-Only Unforgeability

1 If Π0 = (KeyGen0,Sign0,Verify0) is secure against eXtended RMA

2 If HG is an (1, q)-programmable hash function (CDH)

Then security follows...

Programmability [HK08]: The Waters hash HG(m) = g J(m)hK(m)

Secretly computable J(·) and K (·) (in the reduction)

For any m1, . . . ,mq+1 only 1 has K (mi) = 0 (with good probability)

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 14 / 19

...only achieving unforgeability (security)

Sign(SK, {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Compute X = g x , for x
R← Zp, and σ0 ← Sign(sk,X)

Select ω1, . . . , ωn
R← Zp such that x =

∑n
i=1 ωi

Authenticate each mi as σi,1 = HG(mi)
ωi and σi,2 = gωi

Append-Only Unforgeability

1 If Π0 = (KeyGen0,Sign0,Verify0) is secure against eXtended RMA

2 If HG is an (1, q)-programmable hash function (CDH)

Then security follows...

Programmability [HK08]: The Waters hash HG(m) = g J(m)hK(m)

Secretly computable J(·) and K (·) (in the reduction)

For any m1, . . . ,mq+1 only 1 has K (mi) = 0 (with good probability)

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 14 / 19

Sign(SK, {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Compute X = g x , for x
R← Zp, and σ0 ← Sign(sk,X)

Select ω1, . . . , ωn
R← Zp such that x =

∑n
i=1 ωi

Authenticate each mi as σi,1 = HG(mi)
ωi and σi,2 = gωi

Let Σ∗ = (X ∗, σ∗
0, {σ∗

i ,1, σ
∗
i ,2}n

∗
i=1) be a forgery on M∗ = {m∗

1, . . . ,m
∗
n∗}

1 If X ∗ is fresh, σ∗0 is a forgery on the scheme Π0

2 Otherwise X ∗ = Xj for some j-th query on Mj = {m1, . . . ,mnj}

Given a CDH instance (g , g a, gb), in the reduction HG(m) = g J(m)(gb)K(m)

Guess j in advance and set Xj = g a then sign it

Guess a message index i ∈ {1, . . . , nj} such that mi 6∈ M∗

Hope mi is the only one in M∗ ∪Mj such that K (mi) = 0

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 15 / 19

Sign(SK, {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Compute X = g x , for x
R← Zp, and σ0 ← Sign(sk,X)

Select ω1, . . . , ωn
R← Zp such that x =

∑n
i=1 ωi

Authenticate each mi as σi,1 = HG(mi)
ωi and σi,2 = gωi

Let Σ∗ = (X ∗, σ∗
0, {σ∗

i ,1, σ
∗
i ,2}n

∗
i=1) be a forgery on M∗ = {m∗

1, . . . ,m
∗
n∗}

1 If X ∗ is fresh, σ∗0 is a forgery on the scheme Π0

2 Otherwise X ∗ = Xj for some j-th query on Mj = {m1, . . . ,mnj}

Given a CDH instance (g , g a, gb), in the reduction HG(m) = g J(m)(gb)K(m)

Guess j in advance and set Xj = g a then sign it

Guess a message index i ∈ {1, . . . , nj} such that mi 6∈ M∗

Hope mi is the only one in M∗ ∪Mj such that K (mi) = 0

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 15 / 19

Sign(SK, {m1, . . . ,mn}) with m1, . . . ,mn ∈ {0, 1}L

Compute X = g x , for x
R← Zp, and σ0 ← Sign(sk,X)

Select ω1, . . . , ωn
R← Zp such that x =

∑n
i=1 ωi

Authenticate each mi as σi,1 = HG(mi)
ωi and σi,2 = gωi

Let Σ∗ = (X ∗, σ∗
0, {σ∗

i ,1, σ
∗
i ,2}n

∗
i=1) be a forgery on M∗ = {m∗

1, . . . ,m
∗
n∗}

1 If X ∗ is fresh, σ∗0 is a forgery on the scheme Π0

2 Otherwise X ∗ = Xj for some j-th query on Mj = {m1, . . . ,mnj}

Given a CDH instance (g , g a, gb), in the reduction HG(m) = g J(m)(gb)K(m)

Guess j in advance and set Xj = g a then sign it

Guess a message index i ∈ {1, . . . , nj} such that mi 6∈ M∗

Hope mi is the only one in M∗ ∪Mj such that K (mi) = 0

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 15 / 19

Our History-Hiding Append-Only Signature

Add a layer of Groth-Sahai proofs above Σ = (X , σ0, {(σi,1, σi,2)}ni=1)

Mallebility of GS proofs allows keeping the derivability

Perfectly hiding CRS provides NIWI proofs: none info. on X

Perfect randomizability completely redistributes the proof of X

...compeletly context-hiding follows (and then history-hiding)

Hardness Assumptions

1 Decision Linear Problem (DLIN): given (g , g a, gb, g ac , gbd , gη) ∈ G6,
decide whether η = c+d or η ∈R Zp

First switch the CRS into a perfectly sound CRS (extractable proof)...

[ACD+12]: DLIN-based instantiation of XRMA secure signature

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 16 / 19

Our History-Hiding Append-Only Signature

Add a layer of Groth-Sahai proofs above Σ = (X , σ0, {(σi,1, σi,2)}ni=1)

Mallebility of GS proofs allows keeping the derivability

Perfectly hiding CRS provides NIWI proofs: none info. on X

Perfect randomizability completely redistributes the proof of X

...compeletly context-hiding follows (and then history-hiding)

Hardness Assumptions

1 Decision Linear Problem (DLIN): given (g , g a, gb, g ac , gbd , gη) ∈ G6,
decide whether η = c+d or η ∈R Zp

First switch the CRS into a perfectly sound CRS (extractable proof)...

[ACD+12]: DLIN-based instantiation of XRMA secure signature

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 16 / 19

Identity-Based Ring Signatures from HH-AOS

Let (AO.Keygen,AO.Sign,AO.SignDerive,AO.Verify) be an AO Signature

Setup(λ): Output (msk,mpk) := (SK,PK)← AO.Keygen(λ)

Keygen(msk, id): compute and return did ← AO.Sign(sk, {0‖id})

Sign(mpk, did ,M ,R): given id ∈ R = {id1, . . . , idr}

Encode M et R as L = {0‖id1, . . . , 0‖idr , 1‖M‖R}
Compute σ ← AO.SignDerive(PK, {(did , {0‖id})}, L)

Verify(mpk,M ,R, σ):

Encode M et R as L = {0‖id1, . . . , 0‖idr , 1‖M‖R}
Output AO.Verify(pk, L, σ)

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 17 / 19

Identity-Based Ring Signatures from HH-AOS

Let (AO.Keygen,AO.Sign,AO.SignDerive,AO.Verify) be an AO Signature

Setup(λ): Output (msk,mpk) := (SK,PK)← AO.Keygen(λ)

Keygen(msk, id): compute and return did ← AO.Sign(sk, {0‖id})

Sign(mpk, did ,M ,R): given id ∈ R = {id1, . . . , idr}

Encode M et R as L = {0‖id1, . . . , 0‖idr , 1‖M‖R}
Compute σ ← AO.SignDerive(PK, {(did , {0‖id})}, L)

Verify(mpk,M ,R, σ):

Encode M et R as L = {0‖id1, . . . , 0‖idr , 1‖M‖R}
Output AO.Verify(pk, L, σ)

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 17 / 19

Identity-Based Ring Signatures from HH-AOS

Let (AO.Keygen,AO.Sign,AO.SignDerive,AO.Verify) be an AO Signature

Setup(λ): Output (msk,mpk) := (SK,PK)← AO.Keygen(λ)

Keygen(msk, id): compute and return did ← AO.Sign(sk, {0‖id})

Sign(mpk, did ,M ,R): given id ∈ R = {id1, . . . , idr}

Encode M et R as L = {0‖id1, . . . , 0‖idr , 1‖M‖R}
Compute σ ← AO.SignDerive(PK, {(did , {0‖id})}, L)

Verify(mpk,M ,R, σ):

Encode M et R as L = {0‖id1, . . . , 0‖idr , 1‖M‖R}
Output AO.Verify(pk, L, σ)

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 17 / 19

Conclusion

We gave:

The first HH-AOS for abribtarily large sets with fixed-size keys in the
standard model

- Based on simple assumptions

- Based on a new design principle (different from [BBW07])

New application to generic identity-based ring signatures

A new view of AOS schemes in homomorphic signatures frameworks

Also gives AOS satisfying stronger privacy definitions

Open problem:

Extension supporting other set homomorphic operations (e.g., set union)

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 18 / 19

Thank you!

Questions?

Thomas Peters (ENS) History-Hiding Append-Only Signatures PKC’15 - March 31, 2015 19 / 19

