Secure Efficient History-Hiding Append-Only Signatures in the Standard Model

Benoît Libert ENS de Lyon Marc Joye Palo Alto, USA Moti Yung New York, USA Thomas Peters ENS, Paris

Maryland - the 31st of March

Image: A match a ma

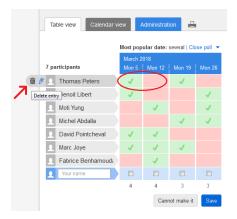
Allowing adding lines/opinions in a poll

Table view Calendar v	iew 🥻 A	Administrat	ion 📄	I	
	Most popular date: several Close poll				
7 participants	March 2 Mon 5				
1 Thomas Peters	1		1		
Benoit Libert	1			1	
Moti Yung		1		1	
Michel Abdalla			1	1	
David Pointcheval	1	1			
▲ Marc Joye	1	1	1		
Fabrice Benhamoud:		1			
Your name					
	4	4	3	3	
		Canr	Cannot make it Save		

Avoiding the above misbehavior \Longrightarrow Ensuring non "redactness"

・ロト ・回ト ・ヨト ・

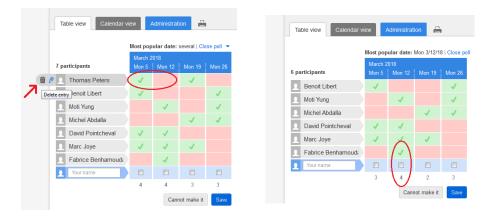
Allowing adding lines/opinions in a poll



Avoiding the above misbehavior \Longrightarrow Ensuring non "redactness"

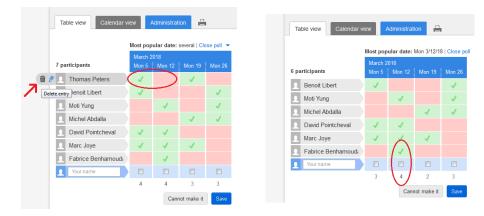
(a)

Allowing adding lines/opinions in a poll



Avoiding the above misbehavior \Longrightarrow Ensuring non "redactness"

Allowing adding lines/opinions in a poll



Avoiding the above misbehavior \implies Ensuring non "redactness"

Append-Only Signature: Unforgeability

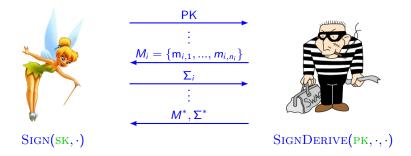
No PPT adversary can forge a signature with noticeable advantage in

If VERIFY $(M^*, \Sigma^*) \neq 1$ or $M_i \subset M^*$ for some i = 1, ..., qThen $(M^*, \Sigma^*) \neq forgery$

A D > A P > A B > A

Append-Only Signature: Unforgeability

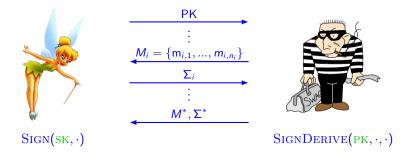
No PPT adversary can forge a signature with noticeable advantage in



If VERIFY $(M^*, \Sigma^*) \neq 1$ or $M_i \subset M^*$ for some i = 1, ..., qThen $(M^*, \Sigma^*) \neq for gery$

Append-Only Signature: Unforgeability

No PPT adversary can forge a signature with noticeable advantage in



If VERIFY $(M^*, \Sigma^*) \neq 1$ or $M_i \subset M^*$ for some i = 1, ..., qThen $(M^*, \Sigma^*) \neq forgery$

Privacy of AOS: History-Hiding

Hiding the history of appended messages, which is implied by...

Context-Hiding [Ahn et al. (TCC'12)]

Derived signatures should "look" like fresh signatures, *even* if original (honestly generated) signatures are given

 \Rightarrow Guarantees *unlinkability* between derivatives of a signature

Complete Context-Hiding [Attrapadung-Libert-Peters (Asiacrypt'12)]

For all $M \subset M$ along with a *possibly maliciously generated* valid signature Σ and for any M' such that $M \subset M'$:

 $\{\mathrm{sk}, \Sigma, \mathrm{Sign}(\mathrm{sk}, M')\} \sim^{S} \{\mathrm{sk}, \Sigma, \mathrm{SignDerive}(\mathrm{pk}, (\Sigma, M), M' \setminus M)\}$

 \Rightarrow The definition takes into account *e.g.* randomizable Σ

Privacy of AOS: History-Hiding

Hiding the history of appended messages, which is implied by...

Context-Hiding [Ahn et al. (TCC'12)]

Derived signatures should "look" like fresh signatures, *even* if original (honestly generated) signatures are given

 \Rightarrow Guarantees *unlinkability* between derivatives of a signature

Complete Context-Hiding [Attrapadung-Libert-Peters (Asiacrypt'12)]

For all $M \subset M$ along with a *possibly maliciously generated* valid signature Σ and for any M' such that $M \subset M'$:

 $\{\operatorname{sk}, \Sigma, \operatorname{Sign}(\operatorname{sk}, M')\} \sim^{5} \{\operatorname{sk}, \Sigma, \operatorname{SignDerive}(\operatorname{pk}, (\Sigma, M), M' \setminus M)\}$

 \Rightarrow The definition takes into account *e.g.* randomizable Σ

Privacy of AOS: History-Hiding

Hiding the history of appended messages, which is implied by...

Context-Hiding [Ahn et al. (TCC'12)]

Derived signatures should "look" like fresh signatures, *even* if original (honestly generated) signatures are given

 \Rightarrow Guarantees *unlinkability* between derivatives of a signature

Complete Context-Hiding [Attrapadung-Libert-Peters (Asiacrypt'12)]

For all $M \subset M$ along with a *possibly maliciously generated* valid signature Σ and for any M' such that $M \subset M'$:

 $\{\operatorname{sk}, \Sigma, \operatorname{Sign}(\operatorname{sk}, M')\} \sim^{5} \{\operatorname{sk}, \Sigma, \operatorname{SignDerive}(\operatorname{pk}, (\Sigma, M), M' \setminus M)\}$

 \Rightarrow The definition takes into account *e.g.* randomizable Σ

History-hiding append-only signatures can be viewed as

Main functionality

- Allowing anyone to add messages or opinions (e.g. approval votes...)
- Security: preventing withdrawing other's inputs (secure archive)

History-Hiding property

- Not considering as strings but as sets
- Privacy: removing the order \implies Hides influences in successive appendings

Homomorphic Signatures: Related Work

- Desmedt (NSPW'93): Call for constructions
- Johnson-Molnar-Song-Wagner (CT-RSA'02):
 Formal definitions of homomorphic signatures
- Ahn-Boneh-Camenisch-Hohenberger-shelat-Waters (TCC'12): Generalized model, context-hiding privacy, constructions
- Attrapadung-Libert-Peters (Asiacrypt'12 & PKC'13):

Stronger context-hiding privacy, separation results, improved constructions

Homomorphic Signatures: Related Work

- Desmedt (NSPW'93): Call for constructions
- Johnson-Molnar-Song-Wagner (CT-RSA'02):

Formal definitions of homomorphic signatures

- Ahn-Boneh-Camenisch-Hohenberger-shelat-Waters (TCC'12): Generalized model, context-hiding privacy, constructions
- Attrapadung-Libert-Peters (Asiacrypt'12 & PKC'13):

Stronger context-hiding privacy, separation results, improved constructions

(日) (同) (日) (日)

Homomorphic Signatures: Related Work

- Desmedt (NSPW'93): Call for constructions
- Johnson-Molnar-Song-Wagner (CT-RSA'02):

Formal definitions of homomorphic signatures

• Ahn-Boneh-Camenisch-Hohenberger-shelat-Waters (TCC'12):

Generalized model, context-hiding privacy, constructions

• Attrapadung-Libert-Peters (Asiacrypt'12 & PKC'13):

Stronger context-hiding privacy, separation results, improved constructions

(日) (同) (日) (日)

• Kiltz-Mityagin-Panjwani-Raghavan (ICALP'05):

Formal definitions, generic constructions, instantiations

• Bethencourt-Boneh-Waters (NDSS'07):

History-Hiding, bounded set or random oracle

• Cui-Li-Yokoyama-Imai (ICC'09): Adaptive security

• Moran-Naor-Segev (ICALP'07): (write-once memories instead of signatures)

A D > A B > A B > A

• Kiltz-Mityagin-Panjwani-Raghavan (ICALP'05):

Formal definitions, generic constructions, instantiations

• Bethencourt-Boneh-Waters (NDSS'07):

History-Hiding, bounded set or random oracle

• Cui-Li-Yokoyama-Imai (ICC'09): Adaptive security

Moran-Naor-Segev (ICALP'07): (write-once memories instead of signatures)

< ロ > < 同 > < 三 > < 三

• Kiltz-Mityagin-Panjwani-Raghavan (ICALP'05):

Formal definitions, generic constructions, instantiations

• Bethencourt-Boneh-Waters (NDSS'07):

History-Hiding, bounded set or random oracle

- Cui-Li-Yokoyama-Imai (ICC'09): Adaptive security
- Moran-Naor-Segev (ICALP'07): (write-once memories instead of signatures)

• • • • • • • • • • • •

• Kiltz-Mityagin-Panjwani-Raghavan (ICALP'05):

Formal definitions, generic constructions, instantiations

• Bethencourt-Boneh-Waters (NDSS'07):

History-Hiding, bounded set or random oracle

- Cui-Li-Yokoyama-Imai (ICC'09): Adaptive security
- Moran-Naor-Segev (ICALP'07): (write-once memories instead of signatures)

4 D N 4 B N 4 B N

Our Contributions

Recast History-Hiding AOS in homomorphic signature frameworks

Efficient History-Hiding AOS in prime-order bilinear groups

- Security in the standard model under simple assumptions (DLIN)
- Constant-size public key pk for sets of unbounded messages
- Signature of $\mathcal{O}(n)$ -size for sets of messages $\{m_1, \ldots, m_n\} \in \mathbb{Z}_p^n$

New application: generic Identity-Based Ring Signatures

- Generic construction from HH-AOS for arbitrary-size rings
- Unforgeability against adaptively (as opposed to selectively) chosen rings
- Full Anonymity even for adversarially-chosen private keys of ID's

(a)

Our Contributions

Recast History-Hiding AOS in homomorphic signature frameworks

Efficient History-Hiding AOS in prime-order bilinear groups

- Security in the standard model under simple assumptions (DLIN)
- Constant-size public key pk for sets of unbounded messages
- Signature of $\mathcal{O}(n)$ -size for sets of messages $\{m_1, \ldots, m_n\} \in \mathbb{Z}_p^n$

New application: generic Identity-Based Ring Signatures

- Generic construction from HH-AOS for arbitrary-size rings
- Unforgeability against adaptively (as opposed to selectively) chosen rings
- Full Anonymity even for adversarially-chosen private keys of ID's

HH-AOS in the Standard Model

Challenges:

• Bethencourt-Boneh-Waters (NDSS'07) rely on aggregate signatures

Multi-linear maps and iO give standard-model adaptationsbut ruin the efficiency and require *ad hoc* assumptions

• Sequential aggregate signatures (e.g., based on Waters signatures [LOSSW06]) do not work here (see the full version of the paper)

Our solution: key ingredients

- Exploit the randomizability / malleability of Groth-Sahai proofs [GS08]
- Structure-preserving signatures based simple assumptions [ACD+12]
- Programmable hash functions [HK08] and a (one-time) standard-model instantiation of Boneh-Lynn-Schacham signatures [BLS01]

(a)

HH-AOS in the Standard Model

Challenges:

• Bethencourt-Boneh-Waters (NDSS'07) rely on aggregate signatures

Multi-linear maps and iO give standard-model adaptationsbut ruin the efficiency and require *ad hoc* assumptions

• Sequential aggregate signatures (e.g., based on Waters signatures [LOSSW06]) do not work here (see the full version of the paper)

Our solution: key ingredients

- Exploit the randomizability / malleability of Groth-Sahai proofs [GS08]
- Structure-preserving signatures based simple assumptions [ACD+12]
- Programmable hash functions [HK08] and a (one-time) standard-model instantiation of Boneh-Lynn-Schacham signatures [BLS01]

Our Append-Only Signature: Outline

Uses a two-tier construction: To sign a set $\{m_1, \ldots, m_n\}$

- Generate a fresh one-time key pair $(X = g^{\chi}, \chi) \in \mathbb{G} \times \mathbb{Z}_p$
- Certify the one-time public key $X = g^{\times}$ using a long term secret key SK
- Use the one-time x ∈ Z_p to sign {m₁,..., m_n} by splitting x into additive shares x = ω₁ + ··· + ω_n:

Compute $\sigma_i = H_{\mathbb{G}}(m_i)^{\omega_i}$ for each $i \in \{1, ..., n\}$ (and $\mathsf{pk}_i = g^{\omega_i}$) Commit to each $\sigma_i = H_{\mathbb{G}}(m_i)^{\omega_i}$ and prove consistency with $X = g^{\sum_{i=1}^n \omega_i}$

Inserts m_{n+1} in a signed $\{m_1, \ldots, m_n\}$ by turning a (n, n) additive sharing of $x = \sum_{i=1}^n \omega_i$ into a (n+1, n+1) sharing $x = \sum_{i=1}^{n+1} \omega'_i$ "in the exponent"

Leverages the malleability of GS proofs to derive a proof that $X=g^{\sum_{i=1}^{n+1}\omega_i'}$

Our Append-Only Signature: Outline

Uses a two-tier construction: To sign a set $\{m_1, \ldots, m_n\}$

- Generate a fresh one-time key pair $(X = g^{\chi}, \chi) \in \mathbb{G} \times \mathbb{Z}_p$
- Certify the one-time public key $X = g^{\times}$ using a long term secret key SK
- Use the one-time x ∈ Z_p to sign {m₁,..., m_n} by splitting x into additive shares x = ω₁ + ··· + ω_n:

Compute $\sigma_i = H_{\mathbb{G}}(m_i)^{\omega_i}$ for each $i \in \{1, \ldots, n\}$ (and $\mathsf{pk}_i = g^{\omega_i}$)

Commit to each $\sigma_i = H_{\mathbb{G}}(m_i)^{\omega_i}$ and prove consistency with $X = g^{\sum_{i=1}^n \omega_i}$

Inserts m_{n+1} in a signed $\{m_1, \ldots, m_n\}$ by turning a (n, n) additive sharing of $x = \sum_{i=1}^n \omega_i$ into a (n+1, n+1) sharing $x = \sum_{i=1}^{n+1} \omega'_i$ "in the exponent"

Leverages the malleability of GS proofs to derive a proof that $X=g \sum_{i=1}^{n+1} \omega_i'$

Our Append-Only Signature: Outline

Uses a two-tier construction: To sign a set $\{m_1, \ldots, m_n\}$

- Generate a fresh one-time key pair $(X = g^{\chi}, \chi) \in \mathbb{G} \times \mathbb{Z}_p$
- Certify the one-time public key $X = g^{\times}$ using a long term secret key SK
- Use the one-time x ∈ Z_p to sign {m₁,..., m_n} by splitting x into additive shares x = ω₁ + ··· + ω_n:

Compute $\sigma_i = H_{\mathbb{G}}(m_i)^{\omega_i}$ for each $i \in \{1, \ldots, n\}$ (and $\mathsf{pk}_i = g^{\omega_i}$)

Commit to each $\sigma_i = H_{\mathbb{G}}(m_i)^{\omega_i}$ and prove consistency with $X = g^{\sum_{i=1}^n \omega_i}$

Inserts m_{n+1} in a signed $\{m_1, \ldots, m_n\}$ by turning a (n, n) additive sharing of $x = \sum_{i=1}^n \omega_i$ into a (n+1, n+1) sharing $x = \sum_{i=1}^{n+1} \omega'_i$ "in the exponent"

Leverages the malleability of GS proofs to derive a proof that $X = g \sum_{i=1}^{n+1} \omega'_i$

Our Append-Only Signature: first step (non-HH) ...only achieving unforgeability

KeyGen(pp) where $pp = (\mathbb{G}, \mathbb{G}_T, p, g, e)$

- Let $(KeyGen_0, Sign_0, Verify_0)$ be a signature scheme with $\mathcal{M}_0 = \mathbb{G}$
- Let $H_{\mathbb{G}}: \{0,1\}^L o \mathbb{G}$ such that $H_{\mathbb{G}}(m) = h_0 \cdot \prod_{i=1}^L h_j^{m[j]} \in \mathbb{G}$
- Run $(pk, sk) \leftarrow \text{KeyGen}_0(pp)$ and set $PK = (H_G, pk)$ and SK = sk

Sign(SK, $M = \{m_1, ..., m_n\}$) with $m_1, ..., m_n \in \{0, 1\}^L$

- Generate a random $X = g^{\times}$, with $x \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$
- Authenticate X as $\sigma_0 \leftarrow \text{Sign}(\text{sk}, X)$
- Share x into n pieces: pick $\omega_1, \ldots, \omega_n \stackrel{R}{\leftarrow} \mathbb{Z}_p$ s.t. $x = \sum_{i=1}^n \omega_i$
- Authenticate each $m_i \in M$ using ω_i as $\sigma_{i,1} = H_{\mathbb{G}}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

Output $\Sigma=(X,\sigma_0,\{(\sigma_{i,1},\sigma_{i,2})\}_{i=1}^n)$ as the signature

< ロ > < 同 > < 三 > < 三 >

Our Append-Only Signature: first step (non-HH) ...only achieving unforgeability

KeyGen(pp) where $pp = (\mathbb{G}, \mathbb{G}_T, p, g, e)$

• Let $(KeyGen_0, Sign_0, Verify_0)$ be a signature scheme with $\mathcal{M}_0 = \mathbb{G}$

- Let $H_{\mathbb{G}}: \{0,1\}^L \to \mathbb{G}$ such that $H_{\mathbb{G}}(m) = h_0 \cdot \prod_{j=1}^{L} h_j^{m[j]} \in \mathbb{G}$
- Run $(pk, sk) \leftarrow \text{KeyGen}_0(pp)$ and set $\mathsf{PK} = (H_{\mathbb{G}}, \mathsf{pk})$ and $\mathsf{SK} = \mathsf{sk}$

Sign(SK, $M = \{m_1, \ldots, m_n\}$) with $m_1, \ldots, m_n \in \{0, 1\}^L$

- Generate a random $X = g^x$, with $x \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$
- Authenticate X as $\sigma_0 \leftarrow \operatorname{Sign}(\operatorname{sk}, X)$
- Share x into n pieces: pick $\omega_1,\ldots,\omega_n \stackrel{R}{\leftarrow} \mathbb{Z}_p$ s.t. $x = \sum_{i=1}^n \omega_i$
- Authenticate each $m_i \in M$ using ω_i as $\sigma_{i,1} = H_{
 m G}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

${f Output}\,\, {f \Sigma}=(X,\sigma_0,\{(\sigma_{i,1},\sigma_{i,2})\}_{i=1}^n)\,$ as the signature

Our Append-Only Signature: first step (non-HH) ...only achieving unforgeability

KeyGen(pp) where $pp = (\mathbb{G}, \mathbb{G}_T, p, g, e)$

- Let $(KeyGen_0, Sign_0, Verify_0)$ be a signature scheme with $\mathcal{M}_0 = \mathbb{G}$
- Let $H_{\mathbb{G}}: \{0,1\}^L \to \mathbb{G}$ such that $H_{\mathbb{G}}(m) = h_0 \cdot \prod_{j=1}^L h_j^{m[j]} \in \mathbb{G}$
- Run $(pk, sk) \leftarrow \text{KeyGen}_0(pp)$ and set $PK = (H_{\mathbb{G}}, pk)$ and SK = sk

Sign(SK, $M = \{m_1, ..., m_n\}$) with $m_1, ..., m_n \in \{0, 1\}^L$

- Generate a random $X = g^x$, with $x \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$
- Authenticate X as $\sigma_0 \leftarrow \operatorname{Sign}(\operatorname{sk}, X)$
- Share x into n pieces: pick $\omega_1, \ldots, \omega_n \stackrel{R}{\leftarrow} \mathbb{Z}_p$ s.t. $x = \sum_{i=1}^n \omega_i$
- Authenticate each $m_i \in M$ using ω_i as $\sigma_{i,1} = H_{\mathbb{G}}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

${f Output}\,\,\Sigma=(X,\sigma_0,\{(\sigma_{i,1},\sigma_{i,2})\}_{i=1}^n)\,$ as the signature

(a)

...only achieving unforgeability

KeyGen(pp) where $pp = (\mathbb{G}, \mathbb{G}_T, p, g, e)$

- Let $(KeyGen_0, Sign_0, Verify_0)$ be a signature scheme with $\mathcal{M}_0 = \mathbb{G}$
- Let $H_{\mathbb{G}}: \{0,1\}^L \to \mathbb{G}$ such that $H_{\mathbb{G}}(m) = h_0 \cdot \prod_{j=1}^L h_j^{m[j]} \in \mathbb{G}$
- Run $(pk, sk) \leftarrow \text{KeyGen}_0(pp)$ and set $PK = (H_{\mathbb{G}}, pk)$ and SK = sk

$Sign(SK, M = \{m_1, \dots, m_n\})$ with $m_1, \dots, m_n \in \{0, 1\}^L$

- Generate a random $X = g^x$, with $x \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$
- Authenticate X as $\sigma_0 \leftarrow \operatorname{Sign}(\operatorname{sk}, X)$
- Share x into n pieces: pick $\omega_1, \ldots, \omega_n \leftarrow^R \mathbb{Z}_p$ s.t. $x = \sum_{i=1}^n \omega_i$
- Authenticate each $m_i \in M$ using ω_i as $\sigma_{i,1} = H_{\mathbb{G}}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

$\mathsf{Output}\;\Sigma=(X,\sigma_0,\{(\sigma_{i,1},\sigma_{i,2})\}_{i=1}^n)\;\;$ as the signature

...only achieving unforgeability

KeyGen(pp) where $pp = (\mathbb{G}, \mathbb{G}_T, p, g, e)$

- Let $(KeyGen_0, Sign_0, Verify_0)$ be a signature scheme with $\mathcal{M}_0 = \mathbb{G}$
- Let $H_{\mathbb{G}}: \{0,1\}^L \to \mathbb{G}$ such that $H_{\mathbb{G}}(m) = h_0 \cdot \prod_{j=1}^{L} h_j^{m[j]} \in \mathbb{G}$
- Run $(pk, sk) \leftarrow \text{KeyGen}_0(pp)$ and set $\mathsf{PK} = (H_{\mathbb{G}}, pk)$ and $\mathsf{SK} = sk$

Sign(SK, $M = \{m_1, ..., m_n\}$) with $m_1, ..., m_n \in \{0, 1\}^L$

- Generate a random $X = g^x$, with $x \stackrel{R}{\leftarrow} \mathbb{Z}_p$
- Authenticate X as $\sigma_0 \leftarrow \operatorname{Sign}(\operatorname{sk}, X)$
- Share x into n pieces: pick $\omega_1, \ldots, \omega_n \stackrel{R}{\leftarrow} \mathbb{Z}_p$ s.t. $x = \sum_{i=1}^n \omega_i$
- Authenticate each $m_i \in M$ using ω_i as $\sigma_{i,1} = H_{\mathbb{G}}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

 $\mathsf{Output}\;\Sigma=(X,\sigma_0,\{(\sigma_{i,1},\sigma_{i,2})\}_{i=1}^n)\;\;$ as the signature

...only achieving unforgeability

KeyGen(pp) where $pp = (\mathbb{G}, \mathbb{G}_T, p, g, e)$

- Let $(KeyGen_0, Sign_0, Verify_0)$ be a signature scheme with $\mathcal{M}_0 = \mathbb{G}$
- Let $H_{\mathbb{G}}: \{0,1\}^L \to \mathbb{G}$ such that $H_{\mathbb{G}}(m) = h_0 \cdot \prod_{j=1}^L h_j^{m[j]} \in \mathbb{G}$
- Run $(pk, sk) \leftarrow \text{KeyGen}_0(pp)$ and set $PK = (H_G, pk)$ and SK = sk

Sign(SK, $M = \{m_1, ..., m_n\}$) with $m_1, ..., m_n \in \{0, 1\}^L$

- Generate a random $X = g^x$, with $x \stackrel{R}{\leftarrow} \mathbb{Z}_p$
- Authenticate X as $\sigma_0 \leftarrow \text{Sign}(\text{sk}, X)$
- Share x into n pieces: pick $\omega_1, \ldots, \omega_n \stackrel{R}{\leftarrow} \mathbb{Z}_p$ s.t. $x = \sum_{i=1}^n \omega_i$
- Authenticate each $m_i \in M$ using ω_i as $\sigma_{i,1} = H_{\mathbb{G}}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

 $\mathsf{Output}\; \Sigma = (X, \sigma_0, \{(\sigma_{i,1}, \sigma_{i,2})\}_{i=1}^n)\,$ as the signature

...only achieving unforgeability

KeyGen(pp) where $pp = (\mathbb{G}, \mathbb{G}_T, p, g, e)$

- Let $(KeyGen_0, Sign_0, Verify_0)$ be a signature scheme with $\mathcal{M}_0 = \mathbb{G}$
- Let $H_{\mathbb{G}}: \{0,1\}^L \to \mathbb{G}$ such that $H_{\mathbb{G}}(m) = h_0 \cdot \prod_{j=1}^{L} h_j^{m[j]} \in \mathbb{G}$
- Run $(pk, sk) \leftarrow \text{KeyGen}_0(pp)$ and set $PK = (H_G, pk)$ and SK = sk

Sign(SK, $M = \{m_1, ..., m_n\}$) with $m_1, ..., m_n \in \{0, 1\}^L$

- Generate a random $X = g^x$, with $x \stackrel{R}{\leftarrow} \mathbb{Z}_p$
- Authenticate X as $\sigma_0 \leftarrow \text{Sign}(\text{sk}, X)$
- Share x into n pieces: pick $\omega_1, \ldots, \omega_n \stackrel{R}{\leftarrow} \mathbb{Z}_p$ s.t. $x = \sum_{i=1}^n \omega_i$
- Authenticate each $m_i \in M$ using ω_i as $\sigma_{i,1} = H_{\mathbb{G}}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

Output $\Sigma = (X, \sigma_0, \{(\sigma_{i,1}, \sigma_{i,2})\}_{i=1}^n)$ as the signature

- 3

・ロト ・ 同ト ・ ヨト ・ ヨト

...only achieving unforgeability (continuing with verification)

Sign(SK, $\{m_1, ..., m_n\}$) with $m_1, ..., m_n \in \{0, 1\}^L$

- Compute $X = g^{\times}$, for $x \stackrel{R}{\leftarrow} \mathbb{Z}_p$, and $\sigma_0 \leftarrow \operatorname{Sign}(\operatorname{sk}, X)$
- Select $\omega_1, \ldots, \omega_n \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ such that $x = \sum_{i=1}^n \omega_i$
- Authenticate each m_i as $\sigma_{i,1} = H_{\mathbb{G}}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

Verify(PK, $\{m_1, \ldots, m_n\}, \Sigma$) returns 1 only in

- If Verify $(pk, X, \sigma_0) = 1$
- If $X = \prod_{i=1}^{n} \sigma_{i,2}$ (i.e. $x = \omega_1 + \dots + \omega_n$)
- If $e(\sigma_{i,1},g) = e(H_{\mathbb{G}}(m_i),\sigma_{i,2})$ for all $i = 1, \ldots, n$

...only achieving unforgeability (continuing with verification)

Sign(SK, $\{m_1, ..., m_n\}$) with $m_1, ..., m_n \in \{0, 1\}^L$

- Compute $X = g^{x}$, for $x \stackrel{R}{\leftarrow} \mathbb{Z}_{p}$, and $\sigma_{0} \leftarrow \text{Sign}(\text{sk}, X)$
- Select $\omega_1, \ldots, \omega_n \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ such that $x = \sum_{i=1}^n \omega_i$
- Authenticate each m_i as $\sigma_{i,1} = H_{\mathbb{G}}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

Verify(PK, $\{m_1, \ldots, m_n\}, \Sigma$) returns 1 only if

- If Verify $(pk, X, \sigma_0) = 1$
- If $X = \prod_{i=1}^{n} \sigma_{i,2}$ (i.e. $x = \omega_1 + \dots + \omega_n$)
- If $e(\sigma_{i,1},g) = e(H_{\mathbb{G}}(m_i),\sigma_{i,2})$ for all $i = 1, \ldots, n$

...only achieving unforgeability (continuing with verification)

Sign(SK, $\{m_1, ..., m_n\}$) with $m_1, ..., m_n \in \{0, 1\}^L$

- Compute $X = g^{x}$, for $x \stackrel{R}{\leftarrow} \mathbb{Z}_{p}$, and $\sigma_{0} \leftarrow \text{Sign}(\text{sk}, X)$
- Select $\omega_1, \ldots, \omega_n \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ such that $x = \sum_{i=1}^n \omega_i$
- Authenticate each m_i as $\sigma_{i,1} = H_{\mathbb{G}}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

Verify(PK, $\{m_1, \ldots, m_n\}, \Sigma$) returns 1 only if

- If Verify $(pk, X, \sigma_0) = 1$
- If $X = \prod_{i=1}^{n} \sigma_{i,2}$ (i.e. $x = \omega_1 + \dots + \omega_n$)
- If $e(\sigma_{i,1},g) = e(H_{\mathbb{G}}(m_i),\sigma_{i,2})$ for all $i = 1, \ldots, n$

(日) (周) (王) (王) (王)

Sign(SK, $\{m_1, \ldots, m_n\}$) with $m_1, \ldots, m_n \in \{0, 1\}^L$

- Compute $X = g^{x}$, for $x \stackrel{R}{\leftarrow} \mathbb{Z}_{p}$, and $\sigma_{0} \leftarrow \text{Sign}(\text{sk}, X)$
- Select $\omega_1, \ldots, \omega_n \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ such that $x = \sum_{i=1}^n \omega_i$
- Authenticate each m_i as $\sigma_{i,1} = H_{\mathbb{G}}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

 $\mathsf{SignDerive}(\mathsf{PK},(\{m_1,\ldots,m_n\},\Sigma),m_{n+1}) ext{ appends } m_{n+1} \in \{0,1\}^L$

• Select $\omega'_1, \ldots, \omega'_n, \omega'_{n+1} \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ such that $0 = \sum_{i=1}^{n+1} \omega'_i$

• Randomize each pair $(\sigma_{i,1}, \sigma_{i,2})$ with ω'_i :

$$\sigma'_{i,1} = \sigma_{i,1} \cdot H_{\mathbb{G}}(m_i)^{\omega'_i} \qquad \sigma'_{i,2} = \sigma_{i,2} \cdot g^{\omega'_i}$$

• Authenticate m_{n+1} as $\sigma'_{n+1,1}=H_{\mathbb{G}}(m_{n+1})^{\omega'_{n+1}}$ and $\sigma'_{n+1,2}=g^{\omega'_{n+1}}$

Correctness is obvious \dots but X is not randomizable .

Sign(SK, $\{m_1, ..., m_n\}$) with $m_1, ..., m_n \in \{0, 1\}^L$

- Compute $X = g^{x}$, for $x \stackrel{R}{\leftarrow} \mathbb{Z}_{p}$, and $\sigma_{0} \leftarrow \operatorname{Sign}(\operatorname{sk}, X)$
- Select $\omega_1, \ldots, \omega_n \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ such that $x = \sum_{i=1}^n \omega_i$
- Authenticate each m_i as $\sigma_{i,1} = H_{\mathbb{G}}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

SignDerive(PK, $(\{m_1, \ldots, m_n\}, \Sigma), m_{n+1})$ appends $m_{n+1} \in \{0, 1\}^L$

• Select $\omega'_1, \ldots, \omega'_n, \omega'_{n+1} \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ such that $0 = \sum_{i=1}^{n+1} \omega'_i$

• Randomize each pair $(\sigma_{i,1}, \sigma_{i,2})$ with ω'_i :

$$\sigma_{i,1}' = \sigma_{i,1} \cdot H_{\mathbb{G}}(m_i)^{\omega_i'} \qquad \sigma_{i,2}' = \sigma_{i,2} \cdot g^{\omega_i'}$$

• Authenticate m_{n+1} as $\sigma'_{n+1,1} = H_{\mathbb{G}}(m_{n+1})^{\omega'_{n+1}}$ and $\sigma'_{n+1,2} = g^{\omega'_{n+1}}$

Correctness is obvious \dots but X is not randomizable .

Sign(SK, $\{m_1, \ldots, m_n\}$) with $m_1, \ldots, m_n \in \{0, 1\}^L$

- Compute $X = g^{x}$, for $x \stackrel{R}{\leftarrow} \mathbb{Z}_{p}$, and $\sigma_{0} \leftarrow \text{Sign}(\text{sk}, X)$
- Select $\omega_1, \ldots, \omega_n \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ such that $x = \sum_{i=1}^n \omega_i$
- Authenticate each m_i as $\sigma_{i,1} = H_{\mathbb{G}}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

SignDerive(PK, $(\{m_1, \ldots, m_n\}, \Sigma), m_{n+1})$ appends $m_{n+1} \in \{0, 1\}^L$

- Select $\omega'_1, \ldots, \omega'_n, \omega'_{n+1} \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ such that $\mathbf{0} = \sum_{i=1}^{n+1} \omega'_i$
- Randomize each pair $(\sigma_{i,1}, \sigma_{i,2})$ with ω'_i :

$$\sigma_{i,1}' = \sigma_{i,1} \cdot H_{\mathbb{G}}(m_i)^{\omega_i'} \qquad \sigma_{i,2}' = \sigma_{i,2} \cdot g^{\omega_i'}$$

• Authenticate m_{n+1} as $\sigma'_{n+1,1} = H_{\mathbb{G}}(m_{n+1})^{\omega'_{n+1}}$ and $\sigma'_{n+1,2} = g^{\omega'_{n+1}}$

Correctness is obvious ... but X is not randomizable ...

- 12

Sign(SK, $\{m_1, ..., m_n\}$) with $m_1, ..., m_n \in \{0, 1\}^L$

- Compute $X = g^{x}$, for $x \stackrel{R}{\leftarrow} \mathbb{Z}_{p}$, and $\sigma_{0} \leftarrow \text{Sign}(\text{sk}, X)$
- Select $\omega_1, \ldots, \omega_n \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ such that $x = \sum_{i=1}^n \omega_i$
- Authenticate each m_i as $\sigma_{i,1} = H_{\mathbb{G}}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

SignDerive(PK, $(\{m_1, \ldots, m_n\}, \Sigma), m_{n+1})$ appends $m_{n+1} \in \{0, 1\}^L$

- Select $\omega'_1, \ldots, \omega'_n, \omega'_{n+1} \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ such that $0 = \sum_{i=1}^{n+1} \omega'_i$
- Randomize each pair $(\sigma_{i,1}, \sigma_{i,2})$ with ω'_i :

$$\sigma_{i,1}' = \sigma_{i,1} \cdot H_{\mathbb{G}}(m_i)^{\omega_i'} \qquad \sigma_{i,2}' = \sigma_{i,2} \cdot g^{\omega_i'}$$

• Authenticate m_{n+1} as $\sigma'_{n+1,1} = H_{\mathbb{G}}(m_{n+1})^{\omega'_{n+1}}$ and $\sigma'_{n+1,2} = g^{\omega'_{n+1}}$

Correctness is obvious ... but X is not randomizable ...

- 3

Sign(SK, $\{m_1, ..., m_n\}$) with $m_1, ..., m_n \in \{0, 1\}^L$

- Compute $X = g^{x}$, for $x \stackrel{R}{\leftarrow} \mathbb{Z}_{p}$, and $\sigma_{0} \leftarrow \operatorname{Sign}(\operatorname{sk}, X)$
- Select $\omega_1, \ldots, \omega_n \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ such that $x = \sum_{i=1}^n \omega_i$
- Authenticate each m_i as $\sigma_{i,1} = H_{\mathbb{G}}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

SignDerive(PK, $(\{m_1, \ldots, m_n\}, \Sigma), m_{n+1})$ appends $m_{n+1} \in \{0, 1\}^L$

- Select $\omega'_1, \ldots, \omega'_n, \omega'_{n+1} \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ such that $0 = \sum_{i=1}^{n+1} \omega'_i$
- Randomize each pair $(\sigma_{i,1}, \sigma_{i,2})$ with ω'_i :

$$\sigma_{i,1}' = \sigma_{i,1} \cdot H_{\mathbb{G}}(m_i)^{\omega_i'} \qquad \sigma_{i,2}' = \sigma_{i,2} \cdot g^{\omega_i'}$$

• Authenticate m_{n+1} as $\sigma'_{n+1,1} = H_{\mathbb{G}}(m_{n+1})^{\omega'_{n+1}}$ and $\sigma'_{n+1,2} = g^{\omega'_{n+1}}$

Correctness is obvious ... but X is not randomizable ...

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

...only achieving unforgeability (security)

Sign(SK, $\{m_1, ..., m_n\}$) with $m_1, ..., m_n \in \{0, 1\}^L$

- Compute $X = g^{\times}$, for $x \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$, and $\sigma_0 \leftarrow \operatorname{Sign}(\operatorname{sk}, X)$
- Select $\omega_1, \ldots, \omega_n \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ such that $x = \sum_{i=1}^n \omega_i$
- Authenticate each m_i as $\sigma_{i,1} = H_{\mathbb{G}}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

Append-Only Unforgeability

If Π₀ = (KeyGen₀, Sign₀, Verify₀) is secure against eXtended RMA
 If H_G is an (1, q)-programmable hash function (CDH)
 Then security follows...

Programmability [HK08]: The Waters hash $H_{\mathbb{G}}(m) = g^{J(m)}h^{K(m)}$

- Secretly computable $J(\cdot)$ and $K(\cdot)$ (in the reduction)
- For any m_1, \ldots, m_{q+1} only 1 has $K(m_i) = 0$ (with good probability

...only achieving unforgeability (security)

Sign(SK, $\{m_1, ..., m_n\}$) with $m_1, ..., m_n \in \{0, 1\}^L$

- Compute $X = g^{x}$, for $x \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_{p}$, and $\sigma_{0} \leftarrow \operatorname{Sign}(\operatorname{sk}, X)$
- Select $\omega_1, \ldots, \omega_n \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ such that $x = \sum_{i=1}^n \omega_i$
- Authenticate each m_i as $\sigma_{i,1} = H_{\mathbb{G}}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

Append-Only Unforgeability

If Π₀ = (KeyGen₀, Sign₀, Verify₀) is secure against eXtended RMA
 If H_G is an (1, q)-programmable hash function (CDH)

Then security follows...

Programmability [HK08]: The Waters hash $H_{\mathbb{G}}(m) = g^{J(m)}h^{K(m)}$

- Secretly computable $J(\cdot)$ and $K(\cdot)$ (in the reduction)
- For any m_1, \ldots, m_{q+1} only 1 has $K(m_i) = 0$ (with good probability)

<ロ> (日) (日) (日) (日) (日)

...only achieving unforgeability (security)

Sign(SK, $\{m_1, ..., m_n\}$) with $m_1, ..., m_n \in \{0, 1\}^L$

- Compute $X = g^{x}$, for $x \leftarrow^{R} \mathbb{Z}_{p}$, and $\sigma_{0} \leftarrow \text{Sign}(\text{sk}, X)$
- Select $\omega_1, \ldots, \omega_n \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ such that $x = \sum_{i=1}^n \omega_i$
- Authenticate each m_i as $\sigma_{i,1} = H_{\mathbb{G}}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

Append-Only Unforgeability

- If $\Pi_0 = (KeyGen_0, Sign_0, Verify_0)$ is secure against eXtended RMA
- If $H_{\mathbb{G}}$ is an (1, q)-programmable hash function (CDH)

Then security follows...

Programmability [HK08]: The Waters hash $H_{\mathbb{G}}(m) = g^{J(m)}h^{K(m)}$

- Secretly computable $J(\cdot)$ and $K(\cdot)$ (in the reduction)
- For any m_1, \ldots, m_{q+1} only 1 has $K(m_i) = 0$ (with good probability)

3

 $Sign(SK, \{m_1, \ldots, m_n\})$ with $m_1, \ldots, m_n \in \{0, 1\}^L$

- Compute $X = g^{x}$, for $x \stackrel{R}{\leftarrow} \mathbb{Z}_{p}$, and $\sigma_{0} \leftarrow \operatorname{Sign}(\operatorname{sk}, X)$
- Select $\omega_1, \ldots, \omega_n \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ such that $x = \sum_{i=1}^n \omega_i$
- Authenticate each m_i as $\sigma_{i,1} = H_{\mathbb{G}}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

Let $\Sigma^* = (X^*, \sigma_0^*, \{\sigma_{i,1}^*, \sigma_{i,2}^*\}_{i=1}^{n^*})$ be a forgery on $M^* = \{m_1^*, \dots, m_{n^*}^*\}$

If X^* is fresh, σ_0^* is a forgery on the scheme Π_0

Otherwise $X^* = X_j$ for some *j*-th query on $M_j = \{m_1, \ldots, m_{n_j}\}$

Given a CDH instance (g, g^a, g^b) , in the reduction $H_{\mathbb{G}}(m) = g^{J(m)}(g^b)^{K(m)}$

- Guess j in advance and set X_j = g^a then sign it
- Guess a message index $i \in \{1, \ldots, n_j\}$ such that $m_i \notin M^*$
- Hope m_i is the only one in $M^* \cup M_i$ such that $K(m_i) = 0$

 $Sign(SK, \{m_1, \ldots, m_n\})$ with $m_1, \ldots, m_n \in \{0, 1\}^L$

- Compute $X = g^x$, for $x \leftarrow^R \mathbb{Z}_p$, and $\sigma_0 \leftarrow \operatorname{Sign}(\operatorname{sk}, X)$
- Select $\omega_1, \ldots, \omega_n \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ such that $x = \sum_{i=1}^n \omega_i$
- Authenticate each m_i as $\sigma_{i,1} = H_{\mathbb{G}}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

Let $\Sigma^* = (X^*, \sigma_0^*, \{\sigma_{i,1}^*, \sigma_{i,2}^*\}_{i=1}^{n^*})$ be a forgery on $M^* = \{m_1^*, \dots, m_{n^*}^*\}$

- If X^* is fresh, σ_0^* is a forgery on the scheme Π_0
- Otherwise $X^* = X_j$ for some *j*-th query on $M_j = \{m_1, \dots, m_{n_j}\}$

Given a CDH instance (g, g^a, g^b) , in the reduction $H_{\mathbb{G}}(m) = g^{J(m)}(g^b)^{K(m)}$

- Guess j in advance and set $X_j = g^a$ then sign it
- Guess a message index $i \in \{1, \ldots, n_j\}$ such that $m_i \notin M^*$
- Hope m_i is the only one in $M^* \cup M_i$ such that $K(m_i) = 0$

 $Sign(SK, \{m_1, \ldots, m_n\})$ with $m_1, \ldots, m_n \in \{0, 1\}^L$

- Compute $X = g^{\times}$, for $\times \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$, and $\sigma_0 \leftarrow \operatorname{Sign}(\operatorname{sk}, X)$
- Select $\omega_1, \ldots, \omega_n \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ such that $x = \sum_{i=1}^n \omega_i$
- Authenticate each m_i as $\sigma_{i,1} = H_{\mathbb{G}}(m_i)^{\omega_i}$ and $\sigma_{i,2} = g^{\omega_i}$

Let $\Sigma^* = (X^*, \sigma_0^*, \{\sigma_{i,1}^*, \sigma_{i,2}^*\}_{i=1}^{n^*})$ be a forgery on $M^* = \{m_1^*, \dots, m_{n^*}^*\}$

- If X^* is fresh, σ_0^* is a forgery on the scheme Π_0
- Otherwise $X^* = X_j$ for some *j*-th query on $M_j = \{m_1, \dots, m_{n_j}\}$

Given a CDH instance (g, g^a, g^b) , in the reduction $H_{\mathbb{G}}(m) = g^{J(m)}(g^b)^{K(m)}$

- Guess j in advance and set $X_j = g^a$ then sign it
- Guess a message index $i \in \{1, \ldots, n_j\}$ such that $m_i
 ot\in M^*$
- Hope m_i is the only one in $M^* \cup M_j$ such that $K(m_i) = 0$

- 3

Our History-Hiding Append-Only Signature

Add a layer of Groth-Sahai proofs above $\Sigma = (X, \sigma_0, \{(\sigma_{i,1}, \sigma_{i,2})\}_{i=1}^n)$

- Mallebility of GS proofs allows keeping the derivability
- Perfectly hiding CRS provides NIWI proofs: none info. on X
- Perfect randomizability completely redistributes the proof of X

...compeletly context-hiding follows (and then history-hiding)

Hardness Assumptions

Decision Linear Problem (DLIN): given (g, g^a, g^b, g^{ac}, g^{bd}, g^η) ∈ G⁶, decide whether η = c+d or η ∈_R Z_p

First switch the CRS into a perfectly sound CRS (extractable proof)... [ACD+12]: DLIN-based instantiation of XRMA secure signature

Our History-Hiding Append-Only Signature

Add a layer of Groth-Sahai proofs above $\Sigma = (X, \sigma_0, \{(\sigma_{i,1}, \sigma_{i,2})\}_{i=1}^n)$

- Mallebility of GS proofs allows keeping the derivability
- Perfectly hiding CRS provides NIWI proofs: none info. on X
- Perfect randomizability completely redistributes the proof of X

...compeletly context-hiding follows (and then history-hiding)

Hardness Assumptions

Decision Linear Problem (DLIN): given (g, g^a, g^b, g^{ac}, g^{bd}, g^η) ∈ G⁶, decide whether η = c+d or η ∈_R Z_p

First switch the CRS into a perfectly sound CRS (extractable proof)...

 $[\mathsf{ACD}{+}12]: \ \mathsf{DLIN}{-}\mathsf{based} \ instantiation \ of \ \mathsf{XRMA} \ \mathsf{secure} \ \mathsf{signature}$

Identity-Based Ring Signatures from HH-AOS

Let (AO.Keygen, AO.Sign, AO.SignDerive, AO.Verify) be an AO Signature

Setup(λ): Output (msk, mpk) := (SK, PK) \leftarrow AO.Keygen(λ)

Keygen(msk, *id*): compute and return $d_{id} \leftarrow AO.Sign(sk, \{0 || id\})$

 $\mathsf{Sign}(\mathsf{mpk}, d_{id}, M, \mathcal{R})$: given $id \in \mathcal{R} = \{id_1, \dots, id_r\}$

- Encode M et \mathcal{R} as $L = \{0 || id_1, \dots, 0 || id_r, 1 || M || \mathcal{R} \}$
- Compute $\sigma \leftarrow AO.SignDerive(PK, \{(d_{id}, \{0 \| id\})\}, L)$

Verify(mpk, M, \mathcal{R}, σ):

- Encode M et \mathcal{R} as $L = \{0 || id_1, \dots, 0 || id_r, 1 || M || \mathcal{R} \}$
- Output AO.Verify(pk, L, σ)

(日) (同) (三) (三)

Identity-Based Ring Signatures from HH-AOS

Let (AO.Keygen, AO.Sign, AO.SignDerive, AO.Verify) be an AO Signature

Setup(λ): Output (msk, mpk) := (SK, PK) \leftarrow AO.Keygen(λ)

Keygen(msk, *id*): compute and return $d_{id} \leftarrow AO.Sign(sk, \{0 || id\})$

Sign(mpk, d_{id} , M, \mathcal{R}): given $id \in \mathcal{R} = \{id_1, \dots, id_r\}$

- Encode M et \mathcal{R} as $L = \{0 || id_1, \dots, 0 || id_r, 1 || M || \mathcal{R} \}$
- Compute $\sigma \leftarrow AO.SignDerive(PK, \{(d_{id}, \{0 || id\})\}, L)$

Verify(mpk, M, \mathcal{R}, σ):

- Encode M et \mathcal{R} as $L = \{0 || id_1, \dots, 0 || id_r, 1 || M || \mathcal{R} \}$
- Output AO.Verify(pk, L, σ)

3

(日) (周) (三) (三)

Identity-Based Ring Signatures from HH-AOS

- Let (AO.Keygen, AO.Sign, AO.SignDerive, AO.Verify) be an AO Signature
- Setup(λ): Output (msk, mpk) := (SK, PK) \leftarrow AO.Keygen(λ)

Keygen(msk, *id*): compute and return $d_{id} \leftarrow AO.Sign(sk, \{0 || id\})$

Sign(mpk, d_{id} , M, \mathcal{R}): given $id \in \mathcal{R} = \{id_1, \ldots, id_r\}$

- Encode M et \mathcal{R} as $L = \{0 || id_1, \ldots, 0 || id_r, 1 || M || \mathcal{R} \}$
- Compute $\sigma \leftarrow AO.SignDerive(PK, \{(d_{id}, \{0 || id\})\}, L)$

Verify(mpk, M, \mathcal{R}, σ):

- Encode M et \mathcal{R} as $L = \{0 || id_1, \dots, 0 || id_r, 1 || M || \mathcal{R} \}$
- Output AO. Verify (pk, L, σ)

(日) (周) (三) (三)

Conclusion

We gave:

- The first HH-AOS for abribtarily large sets with fixed-size keys in the standard model
 - Based on simple assumptions
 - Based on a new design principle (different from [BBW07])
- New application to generic identity-based ring signatures
- A new view of AOS schemes in homomorphic signatures frameworks Also gives AOS satisfying stronger privacy definitions

Open problem:

Extension supporting other set homomorphic operations (e.g., set union)

Thank you!

Questions?

Thomas	Peters	(FNS)	1

History-Hiding Append-Only Signatures