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Computer-Aided Cryptography

I Motivation for synthesis:
I Find new and improved schemes
I Improve theoretical understanding through exhaustive search
I Prove theorems and make conjectures

I Two approaches to synthesis:
I Transformational synthesis: modify existing schemes; security relies on

security of original construction
I Full synthesis: generate schemes and automatically prune insecure ones

I Transformational synthesis only useful for finding new schemes
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Computer-Aided Cryptography cont.

I Generic Group Analyzer (GGA) of CRYPTO 2014:
I Automated verification tool, starting point for this work
I Language for expressing assumptions in the generic group model
I Language supports oracles, complex winning conditions
I Expressive enough for (s)EUF-CMA allowing analysis of e.g. SPS and

SPS-EQ

I Main challenges of current work:
I Extend GGA to handle Laurent polynomials as input
I Extend GGA to handle group elements as oracle parameters
I Prove results conjectured as a result of extensive search
I Narrow down search spaces through flexible template system
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From Automated Verification to Synthesis

I From verification to synthesis:
I Generate large amount of potential candidate schemes
I Prune insecure candidates with verification tool
I Analyze remaining schemes

I Previous method has its challenges:
I Need fast verification in comparison to search space size
I Might require manual analysis in order to cut search space a priori

I In practice though:
I Combined workflow of manual analysis and automated search is fast

and reduces the tedious part of the work
I Not just useful for synthesis, but also for improving theoretical

understanding as well as making conjectures
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Current Work

I Synthesis of SPS schemes in the Type II setting

I Uses the “verifier to synthesizer” method from the previous slides

I Leverages the Generic Group Analyzer as the verification tool

I Develop template system to specify candidate SPS schemes

I Find improvements on previously known SPS schemes

I Prove new minimality results on Type II SPS schemes derived from
conjectures based on search results
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Structure-Preserving Cryptography

Typical mathematical structure in cryptography:

I A finite cyclic group G
I A bilinear group e : G1 ×G2 → GT

I Type I if G1 = G2

I Type II if there is an efficient isomorphism φ : G2 → G1, but none
G1 → G2

I Type III if no known efficient isomorphism between G1 and G2

Structure-preserving cryptography is a design philosophy:

I Use only generic group operations

I All transmitted data consists of tuples of group elements

I Allows composability and modular design
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Structure-Preserving Signatures

Definition (Pairing-Product Equation)

Given bilinear group e : G1 ×G2 → GT a pairing-product equation (PPE)
is an equation∏

i

∏
j

e(Xi ,Yj)
aij = 1, Xi ∈ G1, Yj ∈ G2, aij ∈ Z,

if in the Type II setting, we can also have Xi = φ(Yj).

Definition (Structure-Preserving Signature Scheme)

Signature scheme given bilinear group (G1,G2,GT , e), such that

I Verification key consist of elements of G1,G2.

I Messages/Signatures consist of elements of G1,G2.

I Verification algorithm checks PPEs in the bilinear group.
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Previous Work on SPS schemes

Much of previous work has concentrated on proving minimality results:

I Minimal number of verification and signing keys

I Minimal number of group elements in signature

I Minimal number of PPEs for verification

Setting Signature Verification Key PPEs

Type I 3 3 2
Type II 2 2 1
Type III 3 2 2

I For all types we know how to simultaneously minimize all parameters

I Also minimality result for schemes based on noninteractive
assumptions
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A Closer Look at the Type II Case

Achieving the lower bounds for a Type II group e : G1 ×G2 → GT ?

I Two verification key elements: V ,W ∈ G1 or V ∈ G1, W ∈ G2

I Signing key: the discrete logarithms

I Message M ∈ G2

What can be said about the verification equation?

I Pairings expensive to compute

I Efficient verification requires few pairings in PPE

I Want to minimize number of pairings in PPE
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A Closer Look at Pairings

I A Type II SPS is defined by a tuple (Setup,KeyGen,Sign,Verify)

I Setup returns the public parameters

I KeyGen returns the signing/verification key pair

I Data returned by Setup and KeyGen can be reused

I A pairing in the PPE is called offline if it only depends on the public
parameters as well as the verification key elements

I Other pairings are called online
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A Closer Look at Pairings cont.

An example SPS scheme

I PP = (p,G1,G2,GT , e, ψ,G ,H)← Setup(1k)

I (VK ,SK )← KeyGen(PP), SK = (v ,w)← Z2
p, VK = (G v ,Gw )

I (R,S) = (H r , (MvHw )1/r )← Sign(PP, SK ,M), M ∈ G2, r ← Z∗p
I Verify(PP,VK ,M, (R,S)): accept if e(ψ(R),S) = e(V ,M)e(W ,H)

Classifying pairings in example SPS scheme

I e(ψ(R),S) online: depends on (R,S)

I e(V ,M) online: depends on M

I e(W ,H) offline: depends on verification keys and public parameters

Point is that e(W ,H) needs to be computed once, if we must verify
multiple messages signed by the same key
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Search Templates

I Search space defined by polynomials and guards on coefficients

I Uses the standard discrete logarithm notation
I Example: schemes of the form

Sign(PP,SK ,M) = (r , vf (r ,m)+g(w ,r ,m)
r ) = (R,S) with guards

I f , g of degree one
I f must contain a term containing m
I g must contain a term containing w
I Coefficients of f , g in the set {−1, 0, 1}

I To provide an input for GGA tool, we need the verification equation
I Same completion procedure as in GGA tool used to compute a basis for

all linear relations in the group GT given V ,W ,R,S ,M
I Dimension of relation space determines number of PPEs needed
I May extract PPEs from basis

I Given extracted verification equation(s), generate EUF-CMA winning
condition for analysis by interactive solver of GGA tool
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I To provide an input for GGA tool, we need the verification equation

I Same completion procedure as in GGA tool used to compute a basis for
all linear relations in the group GT given V ,W ,R,S ,M

I Dimension of relation space determines number of PPEs needed
I May extract PPEs from basis

I Given extracted verification equation(s), generate EUF-CMA winning
condition for analysis by interactive solver of GGA tool
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Search Results

We find e.g. the following randomizable EUF-CMA secure Type II scheme:

I Setup(1k): return PP = (p,G1,G2,GT , e, ψ,G ,H)

I KeyGen(PP): choose random v ,w ← Zp, return VK = (G v ,Gw ),
SK = (v ,w)

I Sign(PP,SK ,M): given M ∈ G2, choose r ← Z∗p and return

(R,S) = (H r , (MvHw )1/r )

I Verify(PP,VK ,M, (R,S)): accept if and only if M,R,S ∈ G2 and

e(ψ(R), S) = e(V ,M)e(W ,H)

I Rerand(PP,VK ,M, (R,S)): choose α← Z∗p, return

(R ′,S ′) = (Rα,S1/α)
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Conjectures Based on Search Results

There exists no secure Type II SPS with the following properties

I minimal signature size,

I minimal number of verification keys,

I one PPE in verification equation,

such that the verification equation requires less than 3 pairings. For any
verification equation requiring 3 pairings at least two of the pairings must
be online.
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From Conjecture to Theorem

I We prove that conjecture is true

I Proof technique depends on classifying all possible verification
equations with two pairings

I Verification equations ruled out case-by-case

There are three cases for proving the theorem:

I V ,W ∈ G2

I V ,W ∈ G1

I V ∈ G1, W ∈ G2

I Can be found in full version on eprint
I Complicated case distinction
I Gröbner basis computations for ruling out cases

From our proofs, we extract a minimal EUF-RMA secure Type II SPS

Penn, IMDEA and NTT Strongly-Optimal SPS March 31, 2015 15 / 19



From Conjecture to Theorem

I We prove that conjecture is true

I Proof technique depends on classifying all possible verification
equations with two pairings

I Verification equations ruled out case-by-case

There are three cases for proving the theorem:

I V ,W ∈ G2

I V ,W ∈ G1

I V ∈ G1, W ∈ G2

I Can be found in full version on eprint
I Complicated case distinction
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Converting Type II Schemes to Type III

I There is a simple heuristic for converting Type II to Type III schemes
I For each use of ψ, we “copy” the argument from G2 to G1

I Replace any Y ∈ G2 and ψ(Y ) in verification equation by a fresh
Y ′ ∈ G1

I Add PPE e(Y ′,H) = e(G ,Y ) to verification equation
I In signature algorithm add corresponding elements to G1

I For each variable that the isomorphism is applied to we need to add a
new group element to the corresponding Type III scheme as well as a
new PPE

I Using this method we can translate our new randomizable Type II
SPS to a Type III scheme

I One may even think of Type II synthesis as a search of Type III
schemes of a certain form
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Criticism of Type II/III by Chatterjee and Menezes

I Care is needed when comparing schemes using currently available
instantiations of Type II and Type III pairings

I Denote pairing by e : G1 ×G2 → GT

I Group operations and pairings of roughly equivalent complexity
I In the Type II setting, membership testing in G2 (currently) requires

two pairings and is much slower

I Concrete implementations of the optimal schemes found in the paper
have to compute the additional pairings required for group
membership testing

I However, a Type II scheme with fewer pairings will still need fewer
pairings once group membership testing is accounted for
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Conclusions and Future Work

I Contributions of paper:

I Template system for specifying SPS candidates
I Tool to prune SPS schemes insecure in the GGM
I A new minimal bandwidth rerandomizable EUF-CMA-secure Type II

SPS with optimal efficiency
I Tight bounds for the efficiency of Type II SPS of minimal bandwidth
I A new minimal bandwidth EUF-RMA-secure Type II SPS with optimal

efficiency

I Future work:
I Our template system supports Type I and III settings out-of-the-box
I However, more group elements in signature/verification key implies

larger search spaces
I Need more manual guidance as well as ideas on what to look for
I Find better SPS under other constraints, e.g. automorphic signatures?
I Other cryptographic constructions with security games expressible in

GGA tool language?
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Questions?
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