
Simplified Settings for Discrete Logarithms
in Small Characteristic Finite Fields

Antoine Joux

CryptoExperts, Fondation UPMC, LIP6, INRIA/Ouragan

Joint work with Cécile Pierrot

PKC 2015
March 30th, Gaithersburg

A. Joux and C. Pierrot Simplified Settings for Discrete Logarithm



The Discrete Logarithm Problem (DLP)
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Factorisation *

Small chara
finite field *

Multiplicative group G generated by g :
solving the discrete logarithm problem
in G , is inverting the map x 7→ gx

A hard problem in general,
and used as such in cryptography.
Several groups in practice:

Two algorithmic approaches:
Generic algorithms
(Pollard’s Rho, Pohlig-Hellman...)
Specific algorithms (Index Calculus

*

)
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Generic algorithms: Pohlig-Hellman

Given a multiplicative group G with generator g
Given |G | =

∏k
i=1 p

ei
i

To compute dlogs in G , it suffices to compute dlogs in:

Gi = 〈g |G|/pi 〉 (Group of order pi)
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Generic algorithms: |G | = p

There exist algorithms with complexity O(√p) to solve:

y = gn

Baby-step giant-step (let R = d√pe):
Create list y , y/g , · · · , y/gR−1

Create list 1, h, h2, · · · , hR−1, where h = gR

Find collision
Can be improved to memoryless algorithms
using cycle finding techniques
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Index Calculus Algorithms

To compute Discrete Logs in G :

1 Collection of Relations
G
known

→ Create a lot of sparse multiplicative relations
between some (small) specific elements = the factor base∏

gei
i =

∏
ge′i

i ⇒
∑

(ei − e′i ) log(gi) = 0

→ So a lot of sparse linear equations

2 Linear Algebra
→ Recover the Discrete Logs of the factor base

3 Extension Phase (for small characteristic finite fields)
→ Recover the Discrete Logs of the extended factor base

4 Individual Logarithm Phase
→ Recover the Discrete Log of an arbitrary element
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Complexity of Index calculus algorithms (before 2013)

LQ(β, c) = exp((c + o(1))(logQ)β(log logQ)1−β).
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Index Calculus for Small Characteristic Finite Fields

G = Fpn where p is small compared to n.

Asymptotic Complexities:

Collection of Relations
Linear Algebra
Extension Phase

Polynomial time

Individual Logarithm Phase
}
Quasipolynomial time

In practice:
Linear algebra and extension phase dominate.
In this talk:
Simplified description of algorithms + additional ideas
⇒ Improve the complexity of the polynomial phases.
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Frobenius Representation Algorithms

Our goal: solve the DLP in Fpn with small characteristic.

How ? Represent Fpn as
Fpm.k = F(pm)k = Fqk ' Fq[X ]/(I(X )) where

Fqk

I(X ) is an irreducible polynomial of degree k such that:
I(X )|h1(X )Xq − h0(X )

or I(X )|h1(Xq)X − h0(Xq)

where h0 and h1 are polynomials of low degrees.
Why ? To have two equations in the finite field:∏
α∈Fq

(X−α) = Xq−X and Xq = h0(X )
h1(X )︸ ︷︷ ︸

Frobenius Representation

or X = h0(X q)
h1(X q)︸ ︷︷ ︸

Dual Frob. Rep.

What choice do we have ? Degree of h0 and h1.
Simplest choice: To take

h0 : deg 1 polynomial

or h0 : deg 2 polynomial

h1 : deg 2 polynomial

h1 : deg 1 polynomial

}
useful variant
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Creation of Relations
Our goal: multiplicative relation between small degree polynomials.

Main idea : start from
∏
α∈Fq

(X − α) = Xq − X (∗∗).

Let A and B be 2 small polynomials in Fq[X ] (i.e. of degree 6 D).

B(X)
∏
α∈Fq

(A(X)−αB(X)) =
thanks to (∗∗)

A(X )qB(X )− A(X )B(X )q

=
Frob. linearity

A(Xq)B(X )− A(X )B(Xq)

=
Frob. Rep.

A
(

h0(X)
h1(X)

)
B(X)−A(X)B

(
h0(X)
h1(X)

)
︸ ︷︷ ︸

[A,B]D
h1(X )D

We finally get:

h1(X )DB(X )
∏
α∈Fq

(A(X )− αB(X ))

︸ ︷︷ ︸
Product of small polynomials !!

= [A,B]D(X )
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Properties and simplification of [A, B]D(X )

[A,B]D is bilinear

[A,A]D = 0.
Thus, A and B can be assumed monic.
Since [A,B]D = [A,B − A]D, we may also assume
degB < degA.
Assume degA = D and degB = D − 1. Then, using
bilinearity, one may reduce the coefficient of XD−1 in A to 0.
In the sequel, we assume:

A(X ) = XD + AD−2(X ) and
B(X ) = XD−1 + BD−2(X ).
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A Small Factor Base

We have: h1(X )DB(X )
∏
α∈Fq

(A(X )− αB(X ))

︸ ︷︷ ︸
polynomials of degree 6 D

= [A,B]D(X )

A natural Factor Base: Irreducible poly in Fq[X ] of deg 6 D.

D ↘ ⇒ size of the factor base ↘ ⇒ complexity of Linear
Algebra ↘. The smaller, the better.
What is simple ? Irreducible poly in Fq[X ] of degree 6 2.
Yet, lowering D rises 2 problems:

1 Need to generate enough good equations = equations where
[A,B]2 splits in terms of degree 6 2. Pb: the probability P to
have good equations is too small w.r.t the number of
equations required (need P > 1/2).

2 Need to be able to descend large polynomials to degree 2 ones.
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A Small Factor Base: Systematic factors of [A, B]D

First goal, solving pb 1: i.e. improve the probability P.
How ? [A,B]2 is a degree 6 polynomial. The prob that it
factors into degree 2 polynomials is too low.

Yet, [A,B]D has a systematic factor of degree 3 ! Namely
X h1(X )− h0(X ).
A degree 3 polynomial factors into terms of degree at most 2
with prob P > 2/3 > 1/2.

Fqk

⇒ Linear Algebra permits to recover the DLogs of the factor base
in O((# factor base︸ ︷︷ ︸

q2

)2(# of entries︸ ︷︷ ︸
q

)) ≈ O(q5) operations.
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Extend the Factor Base to Degree 3

Second goal: Solving pb 2 i.e. extend the factor base to degree 3
BUT without performing linear algebra on a matrix of dim q3.

1 Divide the deg. 3 monic polynomials into groups.

q3 elts q2 elts q2 elts

q2 eltsq2 elts

q2 elts q2 elts

q grps

What is simple ? To consider that 2 polynomials belongs to
the same group if they have the same constant coefficient.

2 Given q2
, generate equations involving only poly in q2

and
degree 1 and 2 polynomials (whose logs are already known).
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Extend the Factor Base to Degree 3

An example: let c = {(X 3 + c) + αX 2 + β X |(α, β) ∈ Fq
2}.

c

As for degree 2: set A(X ) = (X 3 + c) + αX 2 and
B(X ) = (X 3 + c) + β X and create relations of the form:

h1(X )3 B(X )
∏
α∈Fq

(A(X )− αB(X ))

︸ ︷︷ ︸
all belongs to c !!

= [A,B]3(X )︸ ︷︷ ︸
deg 8 with these A and B
+ deg 3 systematic factor
+ divisible by X

Prob that [A,B]3 factors into deg 6 2⇒ 41%. Enough !
Complexity to recover the Dlogs of all degree 3 polynomials:
O((# c︸ ︷︷ ︸

q

)(# factor base︸ ︷︷ ︸
q2

)2(# of entries︸ ︷︷ ︸
q

)) ≈ O(q6) ops.

A. Joux and C. Pierrot Simplified Settings for Discrete Logarithm



Extend the Factor Base to Degree 3

An example: let c = {(X 3 + c) + αX 2 + β X |(α, β) ∈ Fq
2}.

Reducible Irreducible ⇒ new unknowns

As for degree 2: set A(X ) = (X 3 + c) + αX 2 and
B(X ) = (X 3 + c) + β X and create relations of the form:

h1(X )3 B(X )
∏
α∈Fq

(A(X )− αB(X ))

︸ ︷︷ ︸
all belongs to c !!

= [A,B]3(X )︸ ︷︷ ︸
deg 8 with these A and B
+ deg 3 systematic factor
+ divisible by X

Prob that [A,B]3 factors into deg 6 2⇒ 41%. Enough !
Complexity to recover the Dlogs of all degree 3 polynomials:
O((# c︸ ︷︷ ︸

q

)(# factor base︸ ︷︷ ︸
q2

)2(# of entries︸ ︷︷ ︸
q

)) ≈ O(q6) ops.

A. Joux and C. Pierrot Simplified Settings for Discrete Logarithm



Extend the Factor Base to Degree 3

An example: let c = {(X 3 + c) + αX 2 + β X |(α, β) ∈ Fq
2}.

Reducible Irreducible ⇒ new unknowns

As for degree 2: set A(X ) = (X 3 + c) + αX 2 and
B(X ) = (X 3 + c) + β X and create relations of the form:

h1(X )3 B(X )
∏
α∈Fq

(A(X )− αB(X ))

︸ ︷︷ ︸
all belongs to c !!

= [A,B]3(X )︸ ︷︷ ︸
deg 8 with these A and B
+ deg 3 systematic factor
+ divisible by X

Prob that [A,B]3 factors into deg 6 2⇒ 41%. Enough !
Complexity to recover the Dlogs of all degree 3 polynomials:
O((# c︸ ︷︷ ︸

q

)(# factor base︸ ︷︷ ︸
q2

)2(# of entries︸ ︷︷ ︸
q

)) ≈ O(q6) ops.

A. Joux and C. Pierrot Simplified Settings for Discrete Logarithm



Extend the Factor Base to Degree 3

An example: let c = {(X 3 + c) + αX 2 + β X |(α, β) ∈ Fq
2}.

Reducible Irreducible ⇒ new unknowns

As for degree 2: set A(X ) = (X 3 + c) + αX 2 and
B(X ) = (X 3 + c) + β X and create relations of the form:

h1(X )3 B(X )
∏
α∈Fq

(A(X )− αB(X ))

︸ ︷︷ ︸
all belongs to c !!

= [A,B]3(X )︸ ︷︷ ︸
deg 8 with these A and B
+ deg 3 systematic factor
+ divisible by X

Prob that [A,B]3 factors into deg 6 2⇒ 41%. Enough !

Complexity to recover the Dlogs of all degree 3 polynomials:
O((# c︸ ︷︷ ︸

q

)(# factor base︸ ︷︷ ︸
q2

)2(# of entries︸ ︷︷ ︸
q

)) ≈ O(q6) ops.

A. Joux and C. Pierrot Simplified Settings for Discrete Logarithm



Extend the Factor Base to Degree 3

An example: let c = {(X 3 + c) + αX 2 + β X |(α, β) ∈ Fq
2}.

Reducible Irreducible ⇒ new unknowns

As for degree 2: set A(X ) = (X 3 + c) + αX 2 and
B(X ) = (X 3 + c) + β X and create relations of the form:

h1(X )3 B(X )
∏
α∈Fq

(A(X )− αB(X ))

︸ ︷︷ ︸
all belongs to c !!

= [A,B]3(X )︸ ︷︷ ︸
deg 8 with these A and B
+ deg 3 systematic factor
+ divisible by X

Prob that [A,B]3 factors into deg 6 2⇒ 41%. Enough !
Complexity to recover the Dlogs of all degree 3 polynomials:
O((# c︸ ︷︷ ︸

q

)(# factor base︸ ︷︷ ︸
q2

)2(# of entries︸ ︷︷ ︸
q

)) ≈ O(q6) ops.

A. Joux and C. Pierrot Simplified Settings for Discrete Logarithm



Extend the Factor Base to Degree 4

Third goal: extend the factor base to degree 4
by performing smaller linear algebra steps.

1

q4 elts q3 elts q3 elts

q3 eltsq3 elts

q3 elts q3 elts

q grps q2q2
q2q2

q2q2
q gr

What is simple ? To consider that:
2 poly belongs to the same q3

if same constant coefficient.
AND 2 poly belongs to the same q2 if same coeff before X .

2 Given q2 , generate equations involving only poly in it and
degree 1, 2 and 3 polynomials.
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Extend the Factor Base to Degree 4

How ? Previous techniques (bilinear descent from 4 to 3) +
additional equations + systematic factors of [A,B]4.

Complexity of DLogs computation of ONE q3
:

O((# q2 in q3︸ ︷︷ ︸
q

) · (# q2︸ ︷︷ ︸
q2

)2 (#entries︸ ︷︷ ︸
q

)) = O(q6) ops.

Final complexity dominated by the first q3
computation:

Unknown
Reducible
Bili. desc.
4 → 3
Bili. desc.
4 → 4

⇒ Final complexity of extension to deg 4
in O(q6) operations.

Main Result
Final asymptotic complexity of the three first phases:

O(q6) operations – to be compared with previous O(q7).
Fqk
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Individual Logarithms (Descent strategies)

Continued fractions (high degrees)

Classical descent (for high to mid degrees, need subfield)
Bilinear descent (for mid to low degrees)
Quasi-polynomial descent (all degrees)
ZigZag descent (all even degrees)
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General principle

Given target z(x) in finite field, write:

z(x) =
∏

i
zi(x)ei , with smaller zis

z(x)

z1(x) z2(x) · · · zr−1(x) zr (x)
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Classical descent

Need two variables x and y

If q = p`, let:

y = xp`1 then

yp`2 = xp` = h0(x)
h1(x) .

Let F (x , y) be a (low degree) bivariate polynomial in Fq[x , y ],
then:

F (x , xp`1 )p`2 = F (xp`2 , h0(x)/h1(x)) in Fqk .

Force z(x) as divisor of F (x , xp`1 ) or F (xp`2 , h0(x)/h1(x))
(linear algebra)
Low arity in descent but can’t go very low
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F (x , xp`1 )p`2 = F (xp`2 , h0(x)/h1(x)) in Fqk .

Force z(x) as divisor of F (x , xp`1 ) or F (xp`2 , h0(x)/h1(x))
(linear algebra)
Low arity in descent but can’t go very low
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Modern descent strategies

Remember basic Equation:

h1(X )DB(X )
∏
α∈Fq

(A(X )− αB(X )) = [A,B]D(X )

Make z(x) appear on the right or left
On the right: bilinear descent
On the left: quasi-polynomial
On the right (powers of two): ZigZag descent [GKZ14]
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Descent Tree

Continued fractions, at most one application
Classical descent, many levels possible
Bilinear descent (or [GKZ14]), in practice 4-5 levels max.
Quasi-polynomial descent in practice 2 levels max.
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Practical application

Record in characteristic 3 on F35·479 , a finite field of cardinality
a 3796-bit integer.

Not a special extension field such as Kummer extension !
Make use of the Dual Frobenius Representation combined with
the useful variant (both not presented here).

To be compared with previous record in characteristic 3
by Adj, Menezes, Oliveira and Rodriguez-Henriquez on a
1551-bit finite field.
Time : 8600 CPU-hours ≈ 1 CPU-year
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Complexities of Index Calculus Algorithms
Co
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pl
ex
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3

2
3 1 lp

Quasi-Polynomial FFS NFS and variants

LQ
( 1
3

)
LQ
(
1
3 , ´
)

LQ
( 1
3 , ´)

LQ (α + o(1))
when p = LQ (α)

medium p high psmall p
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Questions ?

Co
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ity

ex
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nt
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su
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ex
po

ne
nt
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l

qu
as
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ol
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om
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General group

Elliptic curve

Hyperelliptic
curve *

Medium chara
finite field *

High chara
finite field *

Factorisation *

Small chara
finite field *
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