Low Noise LPN: KDM Secure Public Key Encryption and Sample Amplification

Nico Döttling¹

¹Aarhus University

March 31, 2015

- Solve noisy linear decoding problem for random linear codes over 𝑘₂
- ▶ Given (A, As + e), find secret s

- Solve noisy linear decoding problem for random linear codes over 𝑘₂
- Given (A, As + e), find secret s
- Bounded Samples Version: LPN(n, m, ρ), A has n columns and m rows, e chosen component-wise by Ber(ρ)

- Solve noisy linear decoding problem for random linear codes over 𝑘₂
- Given (A, As + e), find secret s
- Bounded Samples Version: LPN(n, m, ρ), A has n columns and m rows, e chosen component-wise by Ber(ρ)
- Unbounded Samples Version: LPN(n, ρ), Given an unbounded number of samples of the form (a, ⟨a, s⟩ + e) for fresh random a and e ←_{\$} Ber(ρ), find s

- Solve noisy linear decoding problem for random linear codes over 𝑘₂
- Given (A, As + e), find secret s
- Bounded Samples Version: LPN(n, m, ρ), A has n columns and m rows, e chosen component-wise by Ber(ρ)
- Unbounded Samples Version: LPN(n, ρ), Given an unbounded number of samples of the form (a, (a, s) + e) for fresh random a and e ←_{\$} Ber(ρ), find s

Decisional Learning Parity with Noise

- Decisional Problem DLPN(n, m, ρ): distinguish (A, As + e) from (A, u) for uniformly random u
- Unbounded samples version DLPN(n, ρ): Distinguish samples (a, (a, s) + e) from (a, u) (again, u is uniformly random)

Decisional Learning Parity with Noise

- Decisional Problem DLPN(n, m, ρ): distinguish (A, As + e) from (A, u) for uniformly random u
- Unbounded samples version DLPN(n, ρ): Distinguish samples (a, (a, s) + e) from (a, u) (again, u is uniformly random)
- ▶ Hardness of DLPN follows from LPN e.g. [KS(S)06, AIK07]

Decisional Learning Parity with Noise

- Decisional Problem DLPN(n, m, ρ): distinguish (A, As + e) from (A, u) for uniformly random u
- Unbounded samples version DLPN(n, ρ): Distinguish samples (a, (a, s) + e) from (a, u) (again, u is uniformly random)
- Hardness of DLPN follows from LPN e.g. [KS(S)06, AIK07]

- ► High noise LPN (ρ < 1/2 constant): Private key crypto [BFKL93,HB01,...]
- Low noise LPN ($\rho = O(1/\sqrt{n})$): Public key crypto [Ale03]

- ► High noise LPN (ρ < 1/2 constant): Private key crypto [BFKL93,HB01,...]
- Low noise LPN ($\rho = O(1/\sqrt{n})$): Public key crypto [Ale03]
- Trick: Inner product of two random low weight vectors x and y is biased to 0

- ► High noise LPN (ρ < 1/2 constant): Private key crypto [BFKL93,HB01,...]
- Low noise LPN ($\rho = O(1/\sqrt{n})$): Public key crypto [Ale03]
- Trick: Inner product of two random low weight vectors x and y is biased to 0
- Trapdoors similar to lattice based crypto

- ► High noise LPN (ρ < 1/2 constant): Private key crypto [BFKL93,HB01,...]
- Low noise LPN ($\rho = O(1/\sqrt{n})$): Public key crypto [Ale03]
- Trick: Inner product of two random low weight vectors x and y is biased to 0
- Trapdoors similar to lattice based crypto
- Recently: IND-CCA secure public key encryption [DMN12,KMP14], composable oblivious transfer [DDN14]

- ► High noise LPN (ρ < 1/2 constant): Private key crypto [BFKL93,HB01,...]
- Low noise LPN ($\rho = O(1/\sqrt{n})$): Public key crypto [Ale03]
- Trick: Inner product of two random low weight vectors x and y is biased to 0
- Trapdoors similar to lattice based crypto
- Recently: IND-CCA secure public key encryption [DMN12,KMP14], composable oblivious transfer [DDN14]

Results in this work

- LPN Sample amplification: Base hardness of unbounded samples LPN on bounded samples LPN (modest noise increase)
- KDM secure public key encryption from low noise LPN

Results in this work

- LPN Sample amplification: Base hardness of unbounded samples LPN on bounded samples LPN (modest noise increase)
- KDM secure public key encryption from low noise LPN
- Common Theme: Computational Rerandomization of LPN instances

Results in this work

- LPN Sample amplification: Base hardness of unbounded samples LPN on bounded samples LPN (modest noise increase)
- KDM secure public key encryption from low noise LPN
- Common Theme: Computational Rerandomization of LPN instances

Goal: Given a *few* LPN samples, generate more samples
 In [Lyu05]: Given instance (A, y = As + e), set

$$\begin{aligned} \mathbf{a}' &= \mathbf{r}^\top \mathbf{A} \\ \mathbf{y}' &= \mathbf{r}^\top \mathbf{y} = \mathbf{r}^\top \mathbf{A} \mathbf{s} + \mathbf{r}^\top \mathbf{e} = \langle \mathbf{a}', \mathbf{s} \rangle + \langle \mathbf{r}, \mathbf{e} \rangle \end{aligned}$$

- ► Goal: Given a *few* LPN samples, generate more samples
- ▶ In [Lyu05]: Given instance (A, y = As + e), set

$$\mathbf{a}' = \mathbf{r}^{\top} \mathbf{A}$$

$$\mathbf{y}' = \mathbf{r}^{\top} \mathbf{y} = \mathbf{r}^{\top} \mathbf{A} \mathbf{s} + \mathbf{r}^{\top} \mathbf{e} = \langle \mathbf{a}', \mathbf{s} \rangle + \langle \mathbf{r}, \mathbf{e} \rangle$$

Given that r has ≈ n bits of entropy, LHL yields that a' is stat. close to uniform ⇒ (a', y') correct LPN sample.

- ► Goal: Given a *few* LPN samples, generate more samples
- ▶ In [Lyu05]: Given instance (A, y = As + e), set

$$\begin{aligned} \mathbf{a}' &= \mathbf{r}^\top \mathbf{A} \\ y' &= \mathbf{r}^\top \mathbf{y} = \mathbf{r}^\top \mathbf{A} \mathbf{s} + \mathbf{r}^\top \mathbf{e} = \langle \mathbf{a}', \mathbf{s} \rangle + \langle \mathbf{r}, \mathbf{e} \rangle \end{aligned}$$

- ► Given that r has ≈ n bits of entropy, LHL yields that a' is stat. close to uniform ⇒ (a', y') correct LPN sample.
- Necessary condition: r must be heavy!
- ▶ Problem: Noise term ⟨**r**, **e**⟩ is stat. close to unbiased coin.

- Goal: Given a few LPN samples, generate more samples
- ▶ In [Lyu05]: Given instance (A, y = As + e), set

$$\begin{aligned} \mathbf{a}' &= \mathbf{r}^\top \mathbf{A} \\ y' &= \mathbf{r}^\top \mathbf{y} = \mathbf{r}^\top \mathbf{A} \mathbf{s} + \mathbf{r}^\top \mathbf{e} = \langle \mathbf{a}', \mathbf{s} \rangle + \langle \mathbf{r}, \mathbf{e} \rangle \end{aligned}$$

- ► Given that r has ≈ n bits of entropy, LHL yields that a' is stat. close to uniform ⇒ (a', y') correct LPN sample.
- Necessary condition: r must be heavy!
- ▶ Problem: Noise term $\langle \mathbf{r}, \mathbf{e} \rangle$ is stat. close to unbiased coin.

- Need a computational substitute for the LHL
- Extended LPN problem [AP12,KMP14]: LPN with leakage

- Need a computational substitute for the LHL
- ► Extended LPN problem [AP12,KMP14]: LPN with leakage
- ► If advice is of the form (z, (z, e)) for a (random) low weight z, then DLPN remains hard

- Need a computational substitute for the LHL
- Extended LPN problem [AP12,KMP14]: LPN with leakage
- ► If advice is of the form (z, (z, e)) for a (random) low weight z, then DLPN remains hard
- Specifically:

 $(\mathsf{A},\mathsf{A}\mathsf{s}+\mathsf{e},\mathsf{z},\langle\mathsf{z},\mathsf{e}
angle)pprox_c(\mathsf{A},\mathsf{u},\mathsf{z},\langle\mathsf{z},\mathsf{e}
angle)$

- Need a computational substitute for the LHL
- Extended LPN problem [AP12,KMP14]: LPN with leakage
- ► If advice is of the form (z, (z, e)) for a (random) low weight z, then DLPN remains hard
- Specifically:

$$(\mathsf{A},\mathsf{As}+\mathsf{e},\mathsf{z},\langle\mathsf{z},\mathsf{e}\rangle)pprox_c(\mathsf{A},\mathsf{u},\mathsf{z},\langle\mathsf{z},\mathsf{e}\rangle)$$

Full paper (eprint): Arbitrary short leakage function γ .

 $(\mathbf{A}, \mathbf{As} + \mathbf{e}, \gamma(\mathbf{e})) \approx_c (\mathbf{A}, \mathbf{u}, \gamma(\mathbf{e}))$

- Need a computational substitute for the LHL
- Extended LPN problem [AP12,KMP14]: LPN with leakage
- ► If advice is of the form (z, (z, e)) for a (random) low weight z, then DLPN remains hard
- Specifically:

$$(\mathsf{A},\mathsf{As}+\mathsf{e},\mathsf{z},\langle\mathsf{z},\mathsf{e}\rangle)pprox_c(\mathsf{A},\mathsf{u},\mathsf{z},\langle\mathsf{z},\mathsf{e}\rangle)$$

Full paper (eprint): Arbitrary short leakage function γ .

$$(\mathsf{A},\mathsf{As}+\mathsf{e},\gamma(\mathsf{e}))\approx_c (\mathsf{A},\mathsf{u},\gamma(\mathsf{e}))$$

Can be based on standard LPN

- Need a computational substitute for the LHL
- Extended LPN problem [AP12,KMP14]: LPN with leakage
- ► If advice is of the form (z, (z, e)) for a (random) low weight z, then DLPN remains hard
- Specifically:

$$(\mathsf{A},\mathsf{As}+\mathsf{e},\mathsf{z},\langle\mathsf{z},\mathsf{e}\rangle)pprox_c(\mathsf{A},\mathsf{u},\mathsf{z},\langle\mathsf{z},\mathsf{e}\rangle)$$

Full paper (eprint): Arbitrary short leakage function γ .

$$(\mathsf{A},\mathsf{As}+\mathsf{e},\gamma(\mathsf{e}))\approx_c (\mathsf{A},\mathsf{u},\gamma(\mathsf{e}))$$

Can be based on standard LPN

Dual Formulation:

$$(\mathsf{A},\mathsf{r}^{ op}\mathsf{A},\mathsf{z},\langle\mathsf{r},\mathsf{z}
angle)pprox_{c}(\mathsf{A},\mathsf{U},\mathsf{z},\langle\mathsf{r},\mathsf{z}
angle)$$

Matrix Form

 $(\mathsf{A},\mathsf{R}\mathsf{A},\mathsf{z},\mathsf{R}\mathsf{z})\approx_c (\mathsf{A},\mathsf{U},\mathsf{z},\mathsf{R}\mathsf{z})$

Dual Formulation:

$$(\mathsf{A},\mathsf{r}^{ op}\mathsf{A},\mathsf{z},\langle\mathsf{r},\mathsf{z}
angle)pprox_{c}(\mathsf{A},\mathsf{U},\mathsf{z},\langle\mathsf{r},\mathsf{z}
angle)$$

Matrix Form

$$(\mathsf{A},\mathsf{R}\mathsf{A},\mathsf{z},\mathsf{R}\mathsf{z})\approx_c (\mathsf{A},\mathsf{U},\mathsf{z},\mathsf{R}\mathsf{z})$$

LPN with bounded samples vs. LPN with unbounded samples

Theorem DLPN(n, ρ') is as hard as DLPN($n, 2n, \rho$) whenever $\rho' \ge \rho^2 2n$

	static	volatile	samples
1.	$\mathbf{s} \leftarrow_{\$} \mathbb{F}_2^n$	$a \leftarrow_{\$} \mathbb{F}_2^n \ e \leftarrow_{\$} Ber(ho')$	$(a,\langlea,s angle+e)$

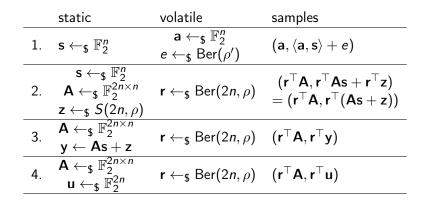
Proof Idea eDLPN: $(\mathbf{A}, \mathbf{r}^{\top}\mathbf{A}, \mathbf{z}, \mathbf{r}^{\top}\mathbf{z}) \approx_{c} (\mathbf{A}, \mathbf{a}, \mathbf{z}, \mathbf{r}^{\top}\mathbf{z}) \equiv (\mathbf{A}, \mathbf{a}, \mathbf{z}, e)$

	static	volatile	samples
1.	$\mathbf{s} \leftarrow_{\$} \mathbb{F}_2^n$	$\mathbf{a} \leftarrow_{\$} \mathbb{F}_2^n \ e \leftarrow_{\$} Ber(ho')$	$(a,\langlea,s angle+e)$
2.	$ \begin{array}{c} \mathbf{s} \leftarrow_{\$} \mathbb{F}_2^n \\ \mathbf{A} \leftarrow_{\$} \mathbb{F}_2^{2n \times n} \\ \mathbf{z} \leftarrow_{\$} S(2n, \rho) \end{array} $	$r \leftarrow_{\$} Ber(2n,\rho)$	$(\mathbf{r}^{\top}\mathbf{A}, \mathbf{r}^{\top}\mathbf{A}\mathbf{s} + \mathbf{r}^{\top}\mathbf{z})$

	static	volatile	samples
1.	$\mathbf{s} \leftarrow_{\$} \mathbb{F}_2^n$	$\mathbf{a} \leftarrow_{\$} \mathbb{F}_2^n \ e \leftarrow_{\$} Ber(ho')$	$(a,\langlea,s angle+e)$
2.		$r \leftarrow_{\$} Ber(2n,\rho)$	$(\mathbf{r}^{\top}\mathbf{A}, \mathbf{r}^{\top}\mathbf{A}\mathbf{s} + \mathbf{r}^{\top}\mathbf{z}) = (\mathbf{r}^{\top}\mathbf{A}, \mathbf{r}^{\top}(\mathbf{A}\mathbf{s} + \mathbf{z}))$

	static	volatile	samples
1.	$\mathbf{s} \leftarrow_{\$} \mathbb{F}_2^n$	$\mathbf{a} \leftarrow_{\$} \mathbb{F}_2^n \ e \leftarrow_{\$} Ber(ho')$	$(a,\langlea,s angle+e)$
2.		$r \leftarrow_{\$} Ber(2n,\rho)$	$(\mathbf{r}^{\top}\mathbf{A}, \mathbf{r}^{\top}\mathbf{A}\mathbf{s} + \mathbf{r}^{\top}\mathbf{z}) = (\mathbf{r}^{\top}\mathbf{A}, \mathbf{r}^{\top}(\mathbf{A}\mathbf{s} + \mathbf{z}))$
3.	$\begin{array}{c} A \leftarrow_{\$} \mathbb{F}_2^{2n \times n} \\ y \leftarrow As + z \end{array}$	$\mathbf{r} \leftarrow_{\$} Ber(2n,\rho)$	$(\mathbf{r}^{ op}\mathbf{A},\mathbf{r}^{ op}\mathbf{y})$

DLPN:
$$(A, As + z) \approx_c (A, u)$$



Proof Idea eDLPN: $(\mathbf{A}, \mathbf{r}^{\top}\mathbf{A}, \mathbf{u}, \mathbf{r}^{\top}\mathbf{u}) \approx_{c} (\mathbf{A}, \mathbf{a}, \mathbf{u}, \mathbf{r}^{\top}\mathbf{u}) \approx_{s} (\mathbf{A}, \mathbf{a}, \mathbf{u}, u)$

	static	volatile	samples
1.	$\mathbf{s} \leftarrow_{\$} \mathbb{F}_2^n$	$\mathbf{a} \leftarrow_{\$} \mathbb{F}_2^n \ e \leftarrow_{\$} Ber(ho')$	$(a,\langlea,s\rangle+e)$
2.		$r \leftarrow_{\$} Ber(2n,\rho)$	$(\mathbf{r}^{\top}\mathbf{A}, \mathbf{r}^{\top}\mathbf{A}\mathbf{s} + \mathbf{r}^{\top}\mathbf{z}) = (\mathbf{r}^{\top}\mathbf{A}, \mathbf{r}^{\top}(\mathbf{A}\mathbf{s} + \mathbf{z}))$
3.	$ \begin{array}{c} A \leftarrow_{\$} \mathbb{F}_2^{2n \times n} \\ y \leftarrow As + z \end{array} $	$\mathbf{r} \leftarrow_{\$} Ber(2n,\rho)$	$(\mathbf{r}^{ op}\mathbf{A},\mathbf{r}^{ op}\mathbf{y})$
4.	$ \begin{array}{c} A \leftarrow_{\$} \mathbb{F}_{2}^{2n \times n} \\ u \leftarrow_{\$} \mathbb{F}_{2}^{2n} \end{array} $	$\mathbf{r} \leftarrow_{\$} Ber(2n, \rho)$	$(\mathbf{r}^{\top}\mathbf{A},\mathbf{r}^{\top}\mathbf{u})$
5.		$\mathbf{a} \leftarrow_{\$} \mathbb{F}_2^n \ u \leftarrow_{\$} \mathbb{F}_2$	(a, u)

Key Dependent Message Secure Encryption

- Schemes that stay secure even if adversary is given encryptions of secret keys
- ▶ Simplest Case: Circular Security.

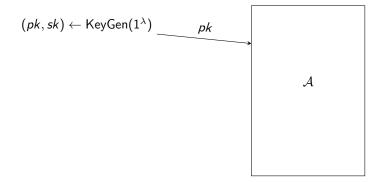
- Schemes that stay secure even if adversary is given encryptions of secret keys
- Simplest Case: Circular Security.
- ▶ Why care?

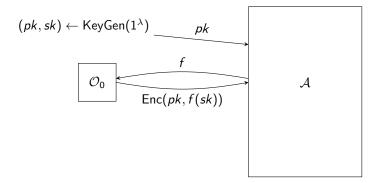
- Schemes that stay secure even if adversary is given encryptions of secret keys
- Simplest Case: Circular Security.
- Why care?
- Harddisk encryption, symbolic soundness, FHE Bootstrapping...

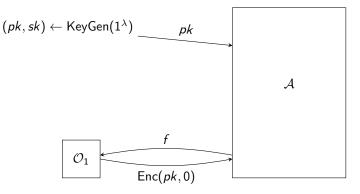
- Schemes that stay secure even if adversary is given encryptions of secret keys
- Simplest Case: Circular Security.
- Why care?
- Harddisk encryption, symbolic soundness, FHE Bootstrapping...
- Does not follow naturally from IND-CPA encryption

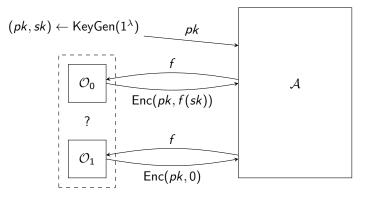
- Schemes that stay secure even if adversary is given encryptions of secret keys
- Simplest Case: Circular Security.
- Why care?
- Harddisk encryption, symbolic soundness, FHE Bootstrapping...
- Does not follow naturally from IND-CPA encryption

- Schemes that stay secure even if adversary is given encryptions of secret keys
- Simplest Case: Circular Security.
- Why care?
- Harddisk encryption, symbolic soundness, FHE Bootstrapping...
- Does not follow naturally from IND-CPA encryption

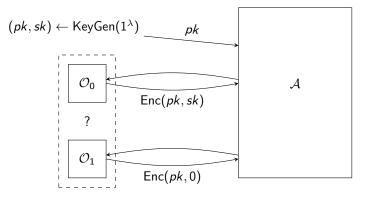




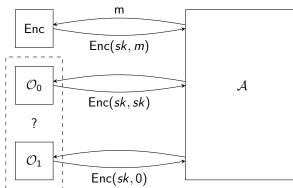




CIRC-CPA Security



CIRC-CPA Security (Private Key)



Private Key Scheme of [ACPS12]

Let **G** be the generator of an asymptotically good [k, n] code that can efficiently decode from a constant fraction of errors.

• KeyGen: $\mathbf{s} \leftarrow_{\$} \mathbb{F}_2^n$

Private Key Scheme of [ACPS12]

Let **G** be the generator of an asymptotically good [k, n] code that can efficiently decode from a constant fraction of errors.

- KeyGen: $\mathbf{s} \leftarrow_{\$} \mathbb{F}_2^n$
- Enc(s, m): $C_1 \leftarrow_{\$} \mathbb{F}_2^{k \times n}$, $e \leftarrow_{\$} \text{Ber}(k, \rho)$, $c_1 = C_1 s + e + Gm$ $c = (C_1, c_2)$

Private Key Scheme of [ACPS12]

Let **G** be the generator of an asymptotically good [k, n] code that can efficiently decode from a constant fraction of errors.

- KeyGen: $\mathbf{s} \leftarrow_{\$} \mathbb{F}_2^n$
- Enc(s, m): $C_1 \leftarrow_{\$} \mathbb{F}_2^{k \times n}$, $e \leftarrow_{\$} Ber(k, \rho)$, $c_1 = C_1 s + e + Gm$ $c = (C_1, c_2)$
- Dec(s, c): $(C_1, c_2) = c$, $z = c_2 C_1 \cdot s$ m = Decode(z)

Let (C_1, c_2) be a valid ciphertext. Consider the value z computed during decryption.

$$\mathbf{z} = \mathbf{c}_2 - \mathbf{C}_1 \cdot \mathbf{s}$$

Let (C_1, c_2) be a valid ciphertext. Consider the value z computed during decryption.

$$\begin{aligned} \mathbf{z} &= \mathbf{c}_2 - \mathbf{C}_1 \cdot \mathbf{s} \\ &= \mathbf{G}\mathbf{m} + \mathbf{C}_1 \mathbf{s} + \mathbf{e} - \mathbf{C}_1 \mathbf{s} \end{aligned}$$

Let (C_1, c_2) be a valid ciphertext. Consider the value z computed during decryption.

$$\begin{aligned} \mathbf{z} &= \mathbf{c}_2 - \mathbf{C}_1 \cdot \mathbf{s} \\ &= \mathbf{G}\mathbf{m} + \mathbf{C}_1 \mathbf{s} + \mathbf{e} - \mathbf{C}_1 \mathbf{s} \end{aligned}$$

Let (C_1, c_2) be a valid ciphertext. Consider the value z computed during decryption.

$$z = c_2 - C_1 \cdot s$$

= Gm + C_1s + e - C_1s
= Gm + e
weight $\approx \rho m$

Scheme is correct if decoding corrects ρn errors.

Game	challenge ciphertext	remark
Real	$C_1,C_1s+e+Gs$	

Game	challenge ciphertext	remark
Real	$C_1,C_1s+e+Gs$	
Real	$C_1, (C_1 + G)s + e$	

Game	challenge ciphertext	remark
Real	$C_1,C_1s+e+Gs$	
Real	$C_1, (C_1 + G)s + e$	
Real	$\textbf{C}_1 - \textbf{G}, \textbf{C}_1\textbf{s} + \textbf{e}$	C_1 uniform

Game	challenge ciphertext	remark
Real	$C_1,C_1s+e+Gs$	
Real	$C_1, (C_1 + G)s + e$	
Real	$\textbf{C}_1 - \textbf{G}, \textbf{C}_1\textbf{s} + \textbf{e}$	C_1 uniform
Ideal	C_1-G,u	DLPN

Game	challenge ciphertext	remark
Real	$C_1,C_1s+e+Gs$	
Real	$C_1, (C_1 + G)s + e$	
Real	$\textbf{C}_1 - \textbf{G}, \textbf{C}_1\textbf{s} + \textbf{e}$	C_1 uniform
Ideal	C_1-G,u	DLPN
Ideal	U, u	

- > Turn this into a public key scheme using rerandomization.
- Make public key a rerandomizable LPN instance.

- > Turn this into a public key scheme using rerandomization.
- Make public key a rerandomizable LPN instance.

• KeyGen: $\mathbf{s} \leftarrow_{\$} \mathbb{F}_{2}^{n}, \mathbf{A} \leftarrow_{\$} \mathbb{F}_{2}^{m \times n}, \mathbf{e} \leftarrow_{\$} \text{Ber}(\rho)^{m}$ $\mathbf{y} = \mathbf{A}\mathbf{s} + \mathbf{e}, \ pk = (\mathbf{A}, \mathbf{y}), \ sk = \mathbf{s}$

 KeyGen: s ←_{\$} 𝔽ⁿ, A ←_{\$} 𝔽^{m×n}, e ←_{\$} Ber(ρ)^m y = As + e, pk = (A, y), sk = s
 Enc(pk, m): R ←_{\$} Ber(ρ)^{k×m}, C₁ = RA, c₂ = Ry + Gm c = (C₁, c₂)

- KeyGen: $\mathbf{s} \leftarrow_{\$} \mathbb{F}_2^n, \mathbf{A} \leftarrow_{\$} \mathbb{F}_2^{m \times n}, \mathbf{e} \leftarrow_{\$} \text{Ber}(\rho)^m$ $\mathbf{y} = \mathbf{A}\mathbf{s} + \mathbf{e}, \ pk = (\mathbf{A}, \mathbf{y}), \ sk = \mathbf{s}$
- Enc(pk, m): $\mathbf{R} \leftarrow_{\$} \operatorname{Ber}(\rho)^{k \times m}$, $\mathbf{C}_1 = \mathbf{R}\mathbf{A}$, $\mathbf{c}_2 = \mathbf{R}\mathbf{y} + \mathbf{G}\mathbf{m}$ $c = (\mathbf{C}_1, \mathbf{c}_2)$
- Dec(sk, c): $(C_1, c_2) = c$, $z = c_2 C_1 \cdot s$ m = Decode(z)

$$\begin{tabular}{ccc} \hline public key & challenge ciphertext & remark \\ \hline 1. & (A, y = As + e) & (RA, Ry + Gs) \end{tabular}$$

	public key	challenge ciphertext	remark
1.	(A, y = As + e)	(RA, Ry + Gs)	
2.	(A, As + e)	(RA,R(As+e)+Gs)	

	public key	challenge ciphertext	remark
1.	(A, y = As + e)	(RA,Ry+Gs)	
2.	(A,As+e)	(RA,R(As+e)+Gs)	
3.	(A, As + e)	(RA, (RA + G)s + Re)	

eDLPN: (A, RA, e, Re) \approx_c (A, U, e, Re)

	public key	challenge ciphertext	remark
1.	(A, y = As + e)	(RA,Ry+Gs)	
2.	(A,As+e)	(RA,R(As+e)+Gs)	
3.	(A,As+e)	(RA, (RA + G)s + Re)	
4.	(A, As + e)	(U, (U+G)s+Re)	eDLPN

	public key	challenge ciphertext	remark
1.	(A, y = As + e)	(RA, Ry + Gs)	
2.	(A, As + e)	$(RA,R(As+\mathbf{e})+Gs)$	
3.	(A, As + e)	(RA, (RA + G)s + Re)	
4.	(A, As + e)	(U, (U+G)s + Re)	eDLPN
5.	(A, As + e)	(U' - G, U's + Re)	

eDLPN: (A, RA, e, Re) \approx_c (A, U, e, Re)

	public key	challenge ciphertext	remark
1.	(A, y = As + e)	(RA, Ry + Gs)	
2.	(A,As+e)	(RA,R(As+e)+Gs)	
3.	(A,As+e)	(RA, (RA + G)s + Re)	
4.	(A,As+e)	(U,(U+G)s+Re)	eDLPN
5.	(A,As+e)	(U' - G, U's + Re)	
6.	(A, As + e)	(RA - G, RAs + Re)	eDLPN

	public key	challenge ciphertext	remark
1.	(A, y = As + e)	(RA, Ry + Gs)	
2.	(A,As+e)	(RA,R(As+e)+Gs)	
3.	(A, As + e)	(RA, (RA + G)s + Re)	
4.	(A, As + e)	(U, (U+G)s + Re)	eDLPN
5.	(A,As+e)	(U'-G,U's+Re)	
6.	(A,As+e)	(RA-G,RAs+Re)	eDLPN
7.	(A, As + e)	(RA - G, R(As + e))	

DLPN:
$$(\mathbf{A}, \mathbf{As} + \mathbf{e}) \approx_c (\mathbf{A}, \mathbf{u})$$

	public key	challenge ciphertext	remark
1.	(A, y = As + e)	(RA, Ry + Gs)	
2.	(A, As + e)	(RA,R(As+e)+Gs)	
3.	(A,As+e)	(RA, (RA + G)s + Re)	
4.	(A,As+e)	(U,(U+G)s+Re)	eDLPN
5.	(A,As+e)	(U'-G,U's+Re)	
6.	(A,As+e)	(RA-G,RAs+Re)	eDLPN
7.	(A,As+e)	(RA - G, R(As + e))	
8.	(A, u)	(RA-G,Ru)	DLPN

Circular Security

 $\texttt{eDLPN:} \ (\textbf{A}, \textbf{R}\textbf{A}, \textbf{u}, \textbf{R}\textbf{u}) \approx (\textbf{A}, \textbf{U}, \textbf{u}, \textbf{R}\textbf{u}) \approx_{s} (\textbf{A}, \textbf{U}, \textbf{u}, \textbf{u}')$

	public key	challenge ciphertext	remark
1.	(A, y = As + e)	(RA, Ry + Gs)	
2.	(A, As + e)	(RA,R(As+e)+Gs)	
3.	(A, As + e)	(RA, (RA + G)s + Re)	
4.	(A, As + e)	(U, (U+G)s + Re)	eDLPN
5.	(A, As + e)	(U'-G,U's+Re)	
6.	(A, As + e)	(RA-G,RAs+Re)	eDLPN
7.	(A, As + e)	$(RA-G,R(As+\mathbf{e}))$	
8.	(A, u)	(RA-G,Ru)	DLPN
9.	(A, u)	(U-G,u')	eDLPN

Circular Security

	public key	challenge ciphertext	remark
1.	(A, y = As + e)	(RA,Ry+Gs)	
2.	(A, As + e)	$(RA,R(As+\mathbf{e})+Gs)$	
3.	(A,As+e)	(RA, (RA + G)s + Re)	
4.	(A, As + e)	(U, (U+G)s + Re)	eDLPN
5.	(A, As + e)	(U'-G,U's+Re)	
6.	(A, As + e)	(RA-G,RAs+Re)	eDLPN
7.	(A, As + e)	$(RA-G,R(As+\mathbf{e}))$	
8.	(A , u)	(RA-G,Ru)	DLPN
9.	(\mathbf{A}, \mathbf{u})	(U - G, u')	eDLPN
10.	(A , u)	(U, u')	

This scheme can be shown to be KDM-CPA secure (multi key setting) for affine functions under slightly stronger assumptions
 Specifically:

This scheme can be shown to be KDM-CPA secure (multi key setting) for affine functions under slightly stronger assumptions
 Specifically:

1. $\mathsf{DLPN}(n,\rho)$ for $\rho \approx 1/\sqrt{n}$

- This scheme can be shown to be KDM-CPA secure (multi key setting) for affine functions under slightly stronger assumptions
 Specifically:
 - 1. DLPN(n, ρ) for $\rho \approx 1/\sqrt{n}$
 - 2. Or: DLPN $(n, 2n, \rho)$ for $\rho \approx 1/n^{3/4}$ (implies 1 by first result)

- This scheme can be shown to be KDM-CPA secure (multi key setting) for affine functions under slightly stronger assumptions
 Specifically:
 - 1. $\mathsf{DLPN}(n,\rho)$ for $\rho \approx 1/\sqrt{n}$
 - 2. Or: DLPN($n, 2n, \rho$) for $\rho \approx 1/n^{3/4}$ (implies 1 by first result)

 Computational LPN rerandomization via extended/leaky LPN is a powerful tool

 LPN with unbounded samples implied by LPN with few samples (smaller noise)

- Computational LPN rerandomization via extended/leaky LPN is a powerful tool
- LPN with unbounded samples implied by LPN with few samples (smaller noise)
- Same technique yields KDM secure public key encryption

- Computational LPN rerandomization via extended/leaky LPN is a powerful tool
- LPN with unbounded samples implied by LPN with few samples (smaller noise)
- Same technique yields KDM secure public key encryption
- Further applications for this technique?

- Computational LPN rerandomization via extended/leaky LPN is a powerful tool
- LPN with unbounded samples implied by LPN with few samples (smaller noise)
- Same technique yields KDM secure public key encryption
- Further applications for this technique?

- Computational LPN rerandomization via extended/leaky LPN is a powerful tool
- LPN with unbounded samples implied by LPN with few samples (smaller noise)
- Same technique yields KDM secure public key encryption
- Further applications for this technique?

Low Noise LPN: KDM Secure Public Key Encryption and Sample Amplification

Thank You!