Continuous Non-Malleable Key Derivation and Its Application to Related-Key Security

Baodong Qin^{1,2}, Shengli Liu¹, Tsz Hon Yuen³, Robert H. Deng⁴, Kefei Chen⁵

Shanghai Jiao Tong University, China
 Southwest University of Science and Technology, China
 Huawei, Singapore
 Singapore Management University, Singapore
 Hangzhou Normal Unvierity, China

PKC 2015 March 31, NIST

Contents

- Related-Key Attacks
- Previous works
- Continuous NM-KDFs: Definition, construction and security proof
- Application to RKA-security
- Conclusion

Scenario

- Hardware implementation
- Fault attacks: heat it or cut wires to inject faults.

Assumption

• The device does not leak any information on the secret key.

Tamper functions

- Related-key derivation (RKD) functions (following BK03)
 - From SK space to SK space
- If the public key pk is involved in an algorithm M, it might be subject to tampering attacks as well.
- In practice, the adversary has already known pk. So, tampering with pk is just dependent on the adversary's view, not the secret key.
 - pk' is implicitly determined by RKD function f.

fxg: $(s_1,s_2) \mapsto (f(s_1),g(s_2))$, f, g are independent of each other.

The adversary does not know the result $g(s_2)$.

F:
$$S \times PK \longrightarrow S \times PK$$

f: $(s,pk) \longmapsto (f(s),pk')$

$$\begin{array}{c} F: S \longmapsto S \\ f: s \longmapsto f(s) \end{array}$$

Two security models

 Related-key attacks (RKA) security [BK03] and Algorithmic tamper-proof (ATP) security [GLMMR04]

Two security models

 Related-key attacks (RKA) security [BK03] and Algorithmic tamper-proof (ATP) security [GLMMR04]

This paper: RKA model. We would like the RKD function class is as rich as possible.

Previous Works on RKAs

Specific Constructions

- Specific primitives, specific computational assumptions
- RKA secure: PRFs, IBE, Signature, PKE...

Previous Works on RKAs

Specific Constructions

- Limitations:
 - 1. Simple RKD functions: linear, affine or **polynomials** (bounded degree).
 - 2. Parameter depends on the RKD functions and based on non-standard assumptions

Example in [BPT12]: To compute $g^{f(s)}$ without known s for polynomial $f(x)=a_0+a_1x$ $+\ldots+a_dx^d$ public keys must provide the following elements: $g^s, g^{s^2}, \ldots, g^{s^d} \Rightarrow g^{f(s)}=g^{a_0}*(g^s)^{a_1}*\ldots*(g^{s^d})^{a_d}$ d-extended DBDH assumption

Previous Works

Generic Approach

- Tamper-resilient codes, mainly including
 - Algebraic Manipulation Detection codes [CDF+08]
 - Non-malleable codes [DPW10,FMVW14,...]
 - Continuous NMC [FMNV14,JW15,...]

$$S \longrightarrow Encode \longrightarrow c \longrightarrow Decode \longrightarrow S$$

$$c' \longrightarrow Decode \longrightarrow S' = \bot \text{ or unrelated value}$$

- AMD and NMC: single-time tampering, but RKA multi-time nonpersistent tampering.
- Continuous NMC: multi-time tampering (persistent or non-persistent)
- Concurrent work [JW15]: simple and efficient, but public parameter depends on tamper functions, i.e. O(log |F|).

Contributions

- New notion: Continuous non-malleable key derivation function (cnm-KDF)
- A generic construction from one-time lossy filter, onetime signature and pairwise independent hash functions, instantiated under standard assumptions.
- RKD functions: any bounded-degree polynomials (generalized to functions with high output entropy and input-output collision resistance (HOE&IOCR))
- Application to RKA-IBE, RKA-PKE, RKA-Sig.

Definition and Security

• Inspired by non-malleable KDF [FMVW14]

- Standard security: r is random from Adv.'s view (given KDF descriptions)
- Non-malleability: r is random even given one r'.

Definition and Security

- cnm-KDF: Input takes an auxiliary input π . Output may be failure symbol.
- View π as a proof or authentication of s. Failure symbol means π is invalid.
- r is random even given multiple $r_1, r_2...$

Generic Construction

• Components: one-time lossy filter [QL13], one-time signature and pairwise independent hash function.

 $t=(t_a,t_c)$

S_____

- Properties of LF:
 - works in two indistinguishable modes.
 - hard to generate a non-injective tag.

Generic Construction

- Sample algorithm: seed s+S and proof π .
- (vk,sigk)← OTS.Gen

Generic Construction

• KDF: input $\pi = (vk,t_c)||y||\sigma$, output \perp or r.

Generic Construction

• KDF: input $\pi = (vk,t_c)||y||\sigma$, output \perp or r.

Security Proof

- RKD functions: all degree-d polynomials over a finite field.
- Two properties of above RKD functions.
- Lemma 3: Suppose X be any random variable over some finite field and H_∞(X)≥n, then

H∞(f(X))≥n-log d

f is non-constant

f is not identity

Security Proof

• Highlight the idea of our proof: reject all non trivial queries.

Target: $\pi^* = t^* ||y^*||\sigma^*$ and $r^* = h(s^*)$ or random) **Query**: $(f,\pi'=t'||y'||\sigma')$

Trivial queries without s*:

- f is a constant function, output KDFπ'(f)
- f=id and $\pi'=\pi^*$, output the symbol same*

Security Proof

• Highlight the idea of our proof:

Target: $\pi^* = t^* ||y^*||\sigma^*$ and $r^* = h(s^*)$ or random) Query: $(f,\pi'=t'||y'||\sigma')$

(1) From injective to lossy: y* reveals few information on s*. f(s*) has high residual entropy.

Security Proof

• Highlight the idea of our proof:

Target: $\pi^* = t^* ||y^*||\sigma^*$ and $r^* = h(s^*)$ or random) Query: $(f,\pi'=t'||y'||\sigma')$

(1) From injective to lossy: y* reveals few information on s*. f(s*) has high residual entropy.

(2) One-time signature: t* can not be re-used.

(3) Hard to generate a fresh non-injective tag even given t*: t' is injective.

Security Proof

• Highlight the idea of our proof:

Target: $\pi^* = t^* ||y^*||\sigma^*$ and $r^* = h(s^*)$ or random) Query: $(f,\pi'=t'||y'||\sigma')$

(1) From injective to lossy: y* reveals few information on s*. f(s*) has high residual entropy.

(2) One-time signature: t* can not be re-used.

(3) Hard to generate a fresh non-injective tag even given t*: t' is injective.

$$t'=(vk',t_c')$$

 $f(s^*) \longrightarrow LF \longrightarrow y' \text{ is correct?}$

Generalization

 From polynomial to High Output Entropy and Input-Output Collision Resistance.

Applications

RKA-secure IBE, PKE, Sig.

(mpk,msk)←IBE.Gen(Param; r)

- mpk'=(mpk, π) and msk'=s
- Thm.: If cnm-KDF is secure w.r.t. F, the new IBE is RKA-secure w.r.t. the same RKD function class.
- RKA-IBE \Rightarrow RKA-PKE or RKA-Sig. [BCM11]
- Or direct construct RKA-PKE and RKA-Sig.

Conclusion

- A strengthened security model for non-malleable KDFs
- A generic construction of cnm-KDF w.r.t. polynomials or HOE&IOCR.
- Application to RKA-secure IBE, PKE and Signature.

Thanks!

http://eprint.iacr.org/2015/003