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Related-Key Attacks
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• Hardware implementation 
• Fault attacks: heat it or cut wires to inject faults.



Related-Key Attacks

s

Mx

y=M(s,x)

Leakage-proof  
and  

tamper-proof

Leakage-proof  
but  

not tamper-proof

Assumption

Composition of a system: !
• Algorithm (codes) 
• Public parameters 
• Public keys (if any) 
• Secret keys

Assumptions: 
• Algorithm (codes) and PPs in 

a tamper-proof hardware 
device 

• Only public keys and secret 
keys may be subjective to 
tampering attacks. 

• The device does not leak any 
information on the secret key.4



Related-Key Attacks
• Related-key derivation (RKD) functions (following BK03) 

• From SK space to SK space 

• If the public key pk is involved in an algorithm M, it might be subject to tampering 
attacks as well.  

• In practice, the adversary has already known pk. So, tampering with pk is just 
dependent on the adversary’s view, not the secret key.  

• pk’ is implicitly determined by RKD function f. 

• Different to the split-state model [DP08,FMNV14]: s is divided into two parts (s1,s2). 

    fxg: (s1,s2)⟼(f(s1),g(s2)), f, g are independent of each other. 

    The adversary does not know the result g(s2).

F: S ⟼ S 
f:   s ⟼ f(s)

F:  S×PK ⟼ S×PK 
f:   (s,pk) ⟼ (f(s),pk’)

Tamper functions
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Related-Key Attacks
• Related-key attacks (RKA) security [BK03] and 

Algorithmic tamper-proof (ATP) security [GLMMR04]

s0

Two security models

s1=f1(s0) s2=f2(s0)↝
f1

↝
f2 ……

s0 s1=f1(s0) s2=f2(s1)↝
f1

↝
f2 ……

s3=f3(s0)↝
f3

s3=f3(s2)↝
f3

RKA

ATP

non-persistent vs persistent [JW15]
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This paper: RKA model.!
We would like the RKD function class is as rich  as possible.



Previous Works on RKAs
• Specific primitives, specific computational assumptions 

• RKA secure: PRFs, IBE, Signature, PKE…
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Specific Constructions

2003
RKAs on ciphers

Theoretical  
treatment 
[BK03] 2010

Practical  
construction 

[BC10]

2011

Relations among  
RKA-primitives 

[BCM11] 2012

From Linear to  
polynomial RKAs 

[BPT12]

More constructions

PRFs IBE
PKE

Sig.



Previous Works on RKAs
• Limitations: 

1. Simple RKD functions: linear, affine or 
polynomials (bounded degree). 

2. Parameter depends on the RKD functions and 
based on non-standard assumptions
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Specific Constructions

Example in [BPT12]:  
To compute gf(s) without known s for polynomial  f(x)=a0+a1x
+…+adxd  public keys must provide the following elements: 
!
!

d-extended DBDH assumption

gs, gs2,…, gsd gf(s) =ga0∗(gs)a1∗…∗(gsd)ad⇒



Previous Works
• Tamper-resilient codes, mainly including  

• Algebraic Manipulation Detection codes [CDF+08] 
• Non-malleable codes [DPW10,FMVW14,…] 
• Continuous NMC [FMNV14,JW15,…]
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Generic Approach

Encodes c Decode s

c’ Decode s’=⊥ or unrelated value

• AMD and NMC: single-time tampering, but RKA multi-time non-
persistent tampering. 

• Continuous NMC: multi-time tampering (persistent or non-persistent) 
• Concurrent work [JW15]: simple and efficient, but public parameter 

depends on tamper functions, i.e. O(log |F|).



Contributions
• New notion: Continuous non-malleable key derivation 

function (cnm-KDF) 

• A generic construction from one-time lossy filter, one-
time signature and pairwise independent hash 
functions, instantiated under standard assumptions. 

• RKD functions: any bounded-degree polynomials 
(generalized to functions with high output entropy and 
input-output collision resistance (HOE&IOCR)) 

• Application to RKA-IBE, RKA-PKE, RKA-Sig.

11



Continuous Non-Malleable KDF

• Inspired by non-malleable KDF [FMVW14]
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Definition and Security

KDFs r KDFf(s) r’

KDFs r
• Standard security: r is random from Adv.’s view (given 

KDF descriptions) 
• Non-malleability: r is random even given one r’.

f(s)⧧s



Continuous Non-Malleable KDF
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Definition and Security

• cnm-KDF: Input takes an auxiliary input π. Output may be failure symbol. 
• View π as a proof or authentication of s. Failure symbol means π is 

invalid.  
•  r is random even given multiple r1, r2…

KDFs r KDFf1(s) r1

KDFf2(s) r2

KDFfk(s) rk

. . .

KDFs
π

r/⊥

π π1

π2

πk



Continuous Non-Malleable KDF

• Components: one-time lossy filter [QL13], one-time 
signature and pairwise independent hash function. 

• Properties of LF:  
• works in two indistinguishable modes. 
• hard to generate a non-injective tag.
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Generic Construction

s yLF

t=(ta,tc)

Injective Lossy

S S

Y
Y

LF(t,・) LF(t,・)

|S|=|Y| |S|>>|Y|



Continuous Non-Malleable KDF

• Sample algorithm: seed s←S and proof π. 
• (vk,sigk)← OTS.Gen
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Generic Construction

s yLF

t=(vk,tc)

OTStc

t

σ

Input Output: π=t||y||σ and s

seed

sigk



Continuous Non-Malleable KDF

• KDF: input π=(vk,tc)||y||σ, output ⊥ or r.
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Generic Construction

π Verify

s

0/1

seed

vk

tc||y||σ

LF
(vk,tc) y’=y?

0/1

KDF



Continuous Non-Malleable KDF

• KDF: input π=(vk,tc)||y||σ, output ⊥ or r.
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Generic Construction

π Verify

s

0/1

seed

vk

tc||y||σ

LF
(vk,tc) y’=y?

0/1

KDF

rh



Continuous Non-Malleable KDF

• RKD functions: all degree-d polynomials over a 
finite field. 

• Two properties of above RKD functions. 
• Lemma 3: Suppose X be any random variable over 

some finite field and H∞(X)≥n, then

Security Proof

H∞(f(X))≥n-log d Pr[f(X)=X]≤ d/2n  

f is non-constant f is not identity
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Continuous Non-Malleable KDF

• Highlight the idea of our proof: reject all non trivial queries. 
!
!
!
!
!
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Security Proof

Query: (f,π’=t’||y’||σ’)Target: π*=t*||y*||σ* and r*=h(s*) or random)

Trivial queries without s*:  
• f is a constant function, output KDFπ’(f) 
• f=id and π’=π*, output the symbol same*



Continuous Non-Malleable KDF

• Highlight the idea of our proof: 
!
!
(1) From injective to lossy:  y* reveals few information on s*. f(s*) 
has high residual entropy. 
!
!
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Security Proof

s* y*LF

t*

Query: (f,π’=t’||y’||σ’)Target: π*=t*||y*||σ* and r*=h(s*) or random)



Continuous Non-Malleable KDF

• Highlight the idea of our proof: 
!
!
(1) From injective to lossy:  y* reveals few information on s*. f(s*) 
has high residual entropy. 
!
(2) One-time signature: t* can not be re-used. 
!
(3) Hard to generate a fresh non-injective tag even given t*: t’ is 
injective. 
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Security Proof

Query: (f,π’=t’||y’||σ’)Target: π*=t*||y*||σ* and r*=h(s*) or random)



Continuous Non-Malleable KDF

• Highlight the idea of our proof: 
!
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has high residual entropy. 
!
(2) One-time signature: t* can not be re-used. 
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Security Proof

Query: (f,π’=t’||y’||σ’)Target: π*=t*||y*||σ* and r*=h(s*) or random)

f(s*) LF y’ is correct?

t’=(vk’,tc’)



Continuous Non-Malleable KDF

• From polynomial to High Output Entropy and Input-Output 
Collision Resistance. 
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Generalization

H∞(f(S))≥n-log d Pr[f(S)=S]≤ d/2n  

f is non-constant f is not identity

H∞(f(S)) is large Pr[f(S)=S] is negligible  

Polynomials

HOE&IOCR



Applications
• (mpk,msk)←IBE.Gen(Param; r)
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RKA-secure IBE, PKE, Sig.

KDFs
π

r

• mpk’=(mpk,π) and msk’=s 
• Thm.: If cnm-KDF is secure w.r.t. F, the new IBE is RKA-secure w.r.t. the 

same RKD function class. 
!

• RKA-IBE ⇒ RKA-PKE or RKA-Sig. [BCM11] 
• Or direct construct RKA-PKE and RKA-Sig.



Conclusion
• A strengthened security model for non-malleable 

KDFs 

• A generic construction of cnm-KDF w.r.t. 
polynomials or HOE&IOCR. 

• Application to RKA-secure IBE, PKE and Signature.
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