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The best provable security evidence for the most practical schemes are in the
random oracle model (ROM). For instance, the RSA full domain hash [BR96]:

Sign(sk=(n,d), m) = H{(m)“ mod

Problem: In practice non-random hash functions like SHA-256 are used, which
implies some theoretical limitations of these results [CGH98,DOPO5].
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RSA-based Signatures in the Standard Model

There is a line of work on designing provable secure, efficient signatures based on
the (strong) RSA problem in the standard model. The aim is to decrease the
efficiency gap between these solutions and the ones in the ROM.

In common: the signing algorithm generates primes.

Generating primes is expensive and it is not an intrinsic step for the signing
algorithm, thus it is desirable to avoid it.
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Our Work

Strong RSA-based signature without prime generation for signing.

Public key and signature sizes competitive with prior schemes, the verification is
much slower.

Not competitive with ROM solutions.

Conceptual contribution towards the goal of practical schemes from conservative
hardness assumptions without random oracles.
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Challenger Adversary
(sk, pk=n=pqg) <€=$ RSA-Keygen
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Wins if x*=y mod 1 and e>1.

Natural approach for embedding it into digital signatures: the signature is (e, x)
where x is the e-th root of a value y that depends on the message.

In order to apply known techniques that prevent an adversary from assembling
several signatures into a new signature, e is typically required to be prime or a
product of primes.
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Current Schemes

Many existing schemes [cs99,F03,HK08,201,203,CL04] USE
Sign(sk, m) = (H(m)¥¢mod n, e)

where e is a random prime and is H some (algebraic) hash function.

Other schemes [GHR99,HW09,HIK11] based on the strong/standard RSA problem use
Sign(sk, m) = g¥11h{m mod

where h;are independent hash functions that hash into primes.
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Our Scheme

Uses the prefix signing technique of Hohenberger-Waters [HW09].

Let p and g be large safe primes and F a be pseudorandom function that outputs
random odds numbers.

= (n,0,k) where n=pq, ¢ is a random element of Z,“ and K is a key for F

sk =(p,q,0k)

The signature on a message m of L-bits is

Sign(sk, m) = g¥¢mod

e= HF( ,m[1...i])HF( m| i)
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To verify a signature o on a message m first compute

e = HF( ,m[l...i])HF( m| i)

Accept if

o= g mod

We show that this scheme is secure against weak chosen message attacks.
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Wins if Verify(pl, m*, c*)=1 and m* was not queried.

A chameleon hash function can be used to get from weak CMA to CMA [kRroo,HW09].
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Prefix Signing Technique [HW09]

Sign(sk, m) = g*¢mod

Each branch has an associated number that is determined by F.

To sign a message m=0011, for instance, compute e as the product of the
numbers associated with the branches in green.
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Let the sub-tree in green be the branches associated with the parallel signing
query of the adversary.

Exit branch: non-green, but only has green branches on path from root until it.
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e e =n F(l<,m[1...1])

We also use this structure, but with F that outputs random odd numbers and

based on the strong RSA problem.

We do not try to guess the exit branch.
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PP Sign(sk, m) = g¥¢mod

e e =n F(l<,m[1...1])

Let o be a sufficiently large integer and set the outputs of F to be large enough so
that they are a-smooth with negligible probability only.

With overwhelming probability all exit branches are good. Very bad parameters.



Our Scheme ,
Sign(sk, m) = g¥¢mod

O e =ﬂ F(l,m[1...1])

Only require the numbers to be non-a-smooth with constant probability.
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Proof Idea |
Sign(sk, m) = g¥¢mod

e e =ﬁ F(l<,m[1...1])
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Adapt analysis technique from Gennaro et al. [GHR99] to analyze the probability
that a non-smooth number divides the product of some random numbers.

If the number associated with the branch in purple does not divide the product of
the ones in green, then it is possible to solve the strong RSA problem.
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Given an strong RSA instance (1, y) and the signature query, compute
backwards:

=yngeen numbers mod



Proof Idea |
Sign(sk, m) = g¥¢mod

e e =n F(l<,m[1...1])

Given a forged signature (m*, o), it is possible to solve the strong RSA problem if

gcd(e*,ngreen numbers)>1
e*=| | F(,m*[1...00)
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Start analysis with the exit branches. If one of them is smooth, analyze its
children and repeat this process recursively.

Problem: How to deal with exit branches in the last level/non-finished recursions.
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HRecursions

For each exit branch of the tree with
overwhelming probability there are at
most 2L2 recursive calls.

Upper bound at each level: 2L.

Each level can have at most double
the calls as the previous one.

If the previous level had at most L calls, then the current one has at most 2L.
Otherwise the previous level had between L and 2L calls and we apply the
Chernoff bound to these Bernoulli random variables.
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Summary

<> Our scheme does not need to generate primes while signing.
<> Public-key and signature size competitive with other schemes.
<> Weakness: verification performance.

<> Could be a stepping-stone to more practical signatures in the standard model.






