Digital Signatures from Strong RSA
without Prime Generation

David Cash
Rafael Dowsley
Eike Kiltz

Digital Signatures

Digital signatures are one of mostly deployed cryptographic primitives.

Digital Signatures

Digital signatures are one of mostly deployed cryptographic primitives.

The proved-secure schemes with the best security guarantees are not nearly as
efficient as the (unbroken) schemes used in practice.

Digital Signatures

Digital signatures are one of mostly deployed cryptographic primitives.

The proved-secure schemes with the best security guarantees are not nearly as
efficient as the (unbroken) schemes used in practice.

The best provable security evidence for the most practical schemes are in the
random oracle model (ROM). For instance, the RSA full domain hash [BR96]:

Sign(sk=(n,d), m) = H{(m)“ mod

Digital Signatures

Digital signatures are one of mostly deployed cryptographic primitives.

The proved-secure schemes with the best security guarantees are not nearly as
efficient as the (unbroken) schemes used in practice.

The best provable security evidence for the most practical schemes are in the
random oracle model (ROM). For instance, the RSA full domain hash [BR96]:

Sign(sk=(n,d), m) = H{(m)“ mod

Problem: In practice non-random hash functions like SHA-256 are used, which
implies some theoretical limitations of these results [CGH98,DOPO5].

RSA-based Signatures in the Standard Model

There is a line of work on designing provable secure, efficient signatures based on
the (strong) RSA problem in the standard model. The aim is to decrease the
efficiency gap between these solutions and the ones in the ROM.

RSA-based Signatures in the Standard Model

There is a line of work on designing provable secure, efficient signatures based on
the (strong) RSA problem in the standard model. The aim is to decrease the
efficiency gap between these solutions and the ones in the ROM.

In common: the signing algorithm generates primes.

RSA-based Signatures in the Standard Model

There is a line of work on designing provable secure, efficient signatures based on
the (strong) RSA problem in the standard model. The aim is to decrease the
efficiency gap between these solutions and the ones in the ROM.

In common: the signing algorithm generates primes.

Generating primes is expensive and it is not an intrinsic step for the signing
algorithm, thus it is desirable to avoid it.

Our Work

Strong RSA-based signature without prime generation for signing.

Our Work

Strong RSA-based signature without prime generation for signing.

Public key and signature sizes competitive with prior schemes, the verification is
much slower.

Our Work

Strong RSA-based signature without prime generation for signing.

Public key and signature sizes competitive with prior schemes, the verification is
much slower.

Not competitive with ROM solutions.

Our Work

Strong RSA-based signature without prime generation for signing.

Public key and signature sizes competitive with prior schemes, the verification is
much slower.

Not competitive with ROM solutions.

Conceptual contribution towards the goal of practical schemes from conservative
hardness assumptions without random oracles.

Strong RSA Problem and Sighatures

Challenger Adversary

(sk, plk=n=pq) <€=$ RSA-Keygen
y €«$ 7° i

Strong RSA Problem and Sighatures

Challenger

(sk, plk=n=pq) <€=$ RSA-Keygen
y €«$ 7° Yy

<€

Wins if xX¢=y mod 1 and e>1.

Adversary

Strong RSA Problem and Signatures

Challenger Adversary
(sk, plk=n=pq) <€=$ RSA-Keygen
* Y
Yy €«$ Z "
e, X
<

Wins if x*=y mod 1 and e>1.

Natural approach for embedding it into digital signatures: the signature is (e, x)
where x is the e-th root of a value y that depends on the message.

Strong RSA Problem and Signatures

Challenger Adversary
(sk, pk=n=pqg) <€=$ RSA-Keygen
* Y
Yy €«$ Z .
e, X
<

Wins if x*=y mod 1 and e>1.

Natural approach for embedding it into digital signatures: the signature is (e, x)
where x is the e-th root of a value y that depends on the message.

In order to apply known techniques that prevent an adversary from assembling
several signatures into a new signature, e is typically required to be prime or a
product of primes.

Current Schemes

Many existing schemes [cs99,F03,HK08,201,203,CL04] USE
Sign(sk, m) = (H(m)¥¢mod n, e)

where e is a random prime and is H some (algebraic) hash function.

Current Schemes

Many existing schemes [cs99,F03,HK08,201,203,CL04] USE
Sign(sk, m) = (H(m)¥¢mod n, e)

where e is a random prime and is H some (algebraic) hash function.

Other schemes [GHR99,HW09,HIK11] based on the strong/standard RSA problem use
Sign(sk, m) = g¥11h{m mod

where h;are independent hash functions that hash into primes.

Our Scheme

Uses the prefix signing technique of Hohenberger-Waters [HW09].

Our Scheme

Uses the prefix signing technique of Hohenberger-Waters [HW09].

Let p and g be large safe primes and F a be pseudorandom function that outputs
random odds numbers.

Our Scheme

Uses the prefix signing technique of Hohenberger-Waters [HW09].

Let p and g be large safe primes and F a be pseudorandom function that outputs
random odds numbers.

= (n,0,k) where n=pq, ¢ is a random element of Z,“ and K is a key for F

Our Scheme

Uses the prefix signing technique of Hohenberger-Waters [HW09].

Let p and g be large safe primes and F a be pseudorandom function that outputs
random odds numbers.

= (n,0,k) where n=pq, ¢ is a random element of Z,“ and K is a key for F

sk =(p,q,0k)

Our Scheme

Uses the prefix signing technique of Hohenberger-Waters [HW09].

Let p and g be large safe primes and F a be pseudorandom function that outputs
random odds numbers.

= (n,0,k) where n=pq, ¢ is a random element of Z,“ and K is a key for F

sk =(p,q,0k)

The signature on a message m of L-bits is

Sign(sk, m) = g¥¢mod

e= HF(,m[1...i])HF(m| i)

Our Scheme

To verify a signature o on a message m first compute

e = HF(,m[l...i])HF(m| i)

Accept if

o= g mod

Our Scheme

To verify a signature o on a message m first compute

e = HF(,m[l...i])HF(m| i)

Accept if

o= g mod

We show that this scheme is secure against weak chosen message attacks.

Weak CMA Security

Challenger Adversary

(sk, nk) €«=$ Keygen

Weak CMA Security

Challenger Adversary

(sk, nk) €«=$ Keygen

Weak CMA Security

Challenger Adversary

(sk, k) <=$ Keygen

o <=5S Sign(sk, m,-) pk, oy, ..., O

I

Weak CMA Security

Challenger Adversary

(sk, nk) €«=$ Keygen

mli e mt
<
o, <=$ Sign(sk, m)) O s O
>
m*, o*
<

Wins if Verify(pl, m*, *)=1 and m* was not queried.

CMA Security

Challenger Adversary

(sk, nk) €«=$ Keygen

CMA Security

Challenger Adversary

(sk, nk) <=$ Keygen

pk
=
my
o, <$ Sign(sk,m;) <
0,
>
mt
o, <=$ Sign(sk, m,) < -
t

CMA Security

Challenger Adversary

(sk, nk) €«=$ Keygen

=
m
o, <$ Sign(sk,m,))
O;
>
mi’
o, <=$ Sign(sk,m)
Gt
=
m* o*
<

Wins if Verify(pl, m*, c*)=1 and m* was not queried.

CMA Security

Challenger Adversary

(sk, pl) €«=$ Keygen

>
my
o, <$ Sign(sk,m,))
0y
>
mt
o, <=$ Sign(sk,m)
at
=
m*, o*
<

Wins if Verify(pl, m*, c*)=1 and m* was not queried.

A chameleon hash function can be used to get from weak CMA to CMA [kRroo,HW09].

Prefix Signing Technique [HW09] Sign(sk, m) = o¥emod 1

e :ﬁ F(k,m[ll])

Prefix Signing Technique [HW09] Sign(sk, m) = o¥emod 1

e =H F(le,m[1...i])

GQO GOG QO G: : 1 Goﬂ @QO Qeﬂ

Each branch has an associated number that is determined by F.

Prefix Signing Technique [HW09]

Sign(sk, m) = g*¢mod

Each branch has an associated number that is determined by F.

To sign a message m=0011, for instance, compute e as the product of the
numbers associated with the branches in green.

Prefix Signing Technique [HW09] Sign(sk, m) = o mod

O e =ﬂ F(l,m[1...1])

Let the sub-tree in green be the branches associated with the parallel signing
query of the adversary.

Prefix Signing Technique [HW09] Sign(sk, m) = o/¢ mod

e e =n F(l<,m[1...1])

o £
o N ONROENOERE
GGGQQOQGGG (o) (1) (o) (1)
Let the sub-tree in green be the branches associated with the parallel signing
query of the adversary.

Exit branch: non-green, but only has green branches on path from root until it.

Prefix Signing Technique [HW09] Sign(sk, m) = o/¢ mod

e e =n F(l<,m[1...1])

(o]
(——-Guess
OlRe a ORNOBRO
o) (1) (o) (1) (o) (1)(0)(1)(0)(2)(0) (1) (0)(1)(0) (1)

Let the sub-tree in green be the branches associated with the parallel signing
query of the adversary.

Exit branch: non-green, but only has green branches on path from root until it.

Prefix Signing Technique [HW09] Sign(sk, m) = o mod

e e =H F(l<,m[1...1])

We also use this structure, but with F that outputs random odd numbers and
based on the strong RSA problem.

Prefix Signing Technique [HW09] Sign(sk, m) = o/¢ mod

e e =n F(l<,m[1...1])

We also use this structure, but with F that outputs random odd numbers and

based on the strong RSA problem.

We do not try to guess the exit branch.

Naive Approach
PP Sign(sk, m) = g¥¢mod

e e =n F(l<,m[1...1])

Let o be a sufficiently large integer and set the outputs of F to be large enough so
that they are a-smooth with negligible probability only.

Naive Approach
PP Sign(sk, m) = g¥¢mod

e e =n F(l<,m[1...1])

Let o be a sufficiently large integer and set the outputs of F to be large enough so
that they are a-smooth with negligible probability only.

With overwhelming probability all exit branches are good. Very bad parameters.

Our Scheme ,
Sign(sk, m) = g¥¢mod

O e =ﬂ F(l,m[1...1])

Only require the numbers to be non-a-smooth with constant probability.

Proof Idea |
Sign(sk, m) = g¥¢mod

e e =n F(l<,m[1...1])

For every possible valid forgery, there should be a non-a-smooth number in its
root to message path that is not in the sub-tree of queried messages.

Proof Idea |
Sign(sk, m) = g¥¢mod

O e =ﬂ F(l,m[1...1])

For every possible valid forgery, there should be a non-a-smooth number in its
root to message path that is not in the sub-tree of queried messages.

Proof Idea |
Sign(sk, m) = g¥¢mod

e e =n F(l<,m[1...1])

For every possible valid forgery, there should be a non-a-smooth number in its
root to message path that is not in the sub-tree of queried messages.

Proof Idea |
Sign(sk, m) = g¥¢mod

e e =n F(l<,m[1...1])

Adapt analysis technique from Gennaro et al. [GHR99] to analyze the probability
that a non-smooth number divides the product of some random numbers.

Proof Idea |
Sign(sk, m) = g¥¢mod

e e =ﬁ F(l<,m[1...1])
0 1)

Adapt analysis technique from Gennaro et al. [GHR99] to analyze the probability
that a non-smooth number divides the product of some random numbers.

If the number associated with the branch in purple does not divide the product of
the ones in green, then it is possible to solve the strong RSA problem.

Proof Idea |
Sign(sk, m) = g¥¢mod

e e =H F(l<,m[1...1])

o £
o N OEROBNOENG
GGQQGGQGGG (1) () (1) (o) (1)
Given an strong RSA instance (1, y) and the signature query, compute
backwards:

=yngeen numbers mod

Proof Idea |
Sign(sk, m) = g¥¢mod

e e =n F(l<,m[1...1])

Given a forged signature (m*, o), it is possible to solve the strong RSA problem if

gcd(e*,ngreen numbers)>1
e*=| | F(,m*[1...00)

Smoothness Analysis |
Sign(sk, m) = g¥¢mod

e e =n F(l<,m[1...1])

Start analysis with the exit branches. If one of them is smooth, analyze its
children and repeat this process recursively.

Smoothness Analysis |
Sign(sk, m) = g¥¢mod

e e =l£[F(l<,m[1...1])
o
o, 1)

Start analysis with the exit branches. If one of them is smooth, analyze its
children and repeat this process recursively.

Smoothness Analysis |
Sign(sk, m) = g¥¢mod

O e =ﬂ F(l,m[1...1])

Start analysis with the exit branches. If one of them is smooth, analyze its
children and repeat this process recursively.

Smoothness Analysis |
Sign(sk, m) = g¥¢mod

O e =ﬂ F(l,m[1...1])

Start analysis with the exit branches. If one of them is smooth, analyze its
children and repeat this process recursively.

Smoothness Analysis |
Sign(sk, m) = g¥¢mod

O e =ﬂ F(l,m[1...1])

Start analysis with the exit branches. If one of them is smooth, analyze its
children and repeat this process recursively.

Smoothness Analysis |
Sign(sk, m) = g¥¢mod

O e =ﬂ F(l,m[1...1])

Start analysis with the exit branches. If one of them is smooth, analyze its
children and repeat this process recursively.

Smoothness Analysis |
Sign(sk, m) = g¥¢mod

O e =ﬂ F(l,m[1...1])

Start analysis with the exit branches. If one of them is smooth, analyze its
children and repeat this process recursively.

Smoothness Analysis |
Sign(sk, m) = g¥¢mod

O e =ﬂ F(l,m[1...1])

Start analysis with the exit branches. If one of them is smooth, analyze its
children and repeat this process recursively.

Smoothness Analysis |
Sign(sk, m) = g¥¢mod

e e =ﬁ F(,m[1...i])
o £
o £ o £
DS) B €S B B € B OO R €S
-/ \=> (5
) (1)(0) () @ OOOEW WO E

Start analysis with the exit branches. If one of them is smooth, analyze its
children and repeat this process recursively.

Problem: How to deal with exit branches in the last level/non-finished recursions.

Smoothness Analysis

“o

Sign(sk, m) = g¥¢mod

e = HF(,m[l.@-‘(,mD

Smoothness Analysis

&
o1 1) (o, h
eao eeoaweeoeo
Sign(sk, m) = g¥¢mod
o0 el gl

HRecursions

For each exit branch of the tree with
overwhelming probability there are at
most 2L2 recursive calls.

HRecursions

For each exit branch of the tree with
overwhelming probability there are at
most 2L2 recursive calls.

Upper bound at each level: 2L.

HRecursions

For each exit branch of the tree with
overwhelming probability there are at
most 2L2 recursive calls.

Upper bound at each level: 2L.

Each level can have at most double
the calls as the previous one.

HRecursions

For each exit branch of the tree with
overwhelming probability there are at
most 2L2 recursive calls.

Upper bound at each level: 2L.

Each level can have at most double
the calls as the previous one.

If the previous level had at most L calls, then the current one has at most 2L.
Otherwise the previous level had between L and 2L calls and we apply the
Chernoff bound to these Bernoulli random variables.

Smoothness Analysis

In the context of elliptic-curve signatures Coron, Handschuh and Naccache [CHN99]
avoided point counting by working over larger underlying fields.

Smoothness Analysis

In the context of elliptic-curve signatures Coron, Handschuh and Naccache [CHN99]
avoided point counting by working over larger underlying fields.

As in our case a naive analysis of the smoothness property would result in very
bad parameters, so they only increased the size of the underlying field enough to
get smooth curves with low probability.

Smoothness Analysis

In the context of elliptic-curve signatures Coron, Handschuh and Naccache [CHN99]
avoided point counting by working over larger underlying fields.

As in our case a naive analysis of the smoothness property would result in very
bad parameters, so they only increased the size of the underlying field enough to
get smooth curves with low probability.

Iterate the protocol over many independent curves to guarantee that at least one
of them is not smooth.

Smoothness Analysis

In the context of elliptic-curve signatures Coron, Handschuh and Naccache [CHN99]
avoided point counting by working over larger underlying fields.

As in our case a naive analysis of the smoothness property would result in very
bad parameters, so they only increased the size of the underlying field enough to
get smooth curves with low probability.

Iterate the protocol over many independent curves to guarantee that at least one
of them is not smooth.

Summary

<> Our scheme does not need to generate primes while signing.

Summary

<> Our scheme does not need to generate primes while signing.

<> Public-key and signature size competitive with other schemes.

Summary

<> Our scheme does not need to generate primes while signing.
<> Public-key and signature size competitive with other schemes.

<> Weakness: verification performance.

Summary

<> Our scheme does not need to generate primes while signing.
<> Public-key and signature size competitive with other schemes.
<> Weakness: verification performance.

<> Could be a stepping-stone to more practical signatures in the standard model.

