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e Logarithmic number of trapdoors in the public key [DM14]

* Can we do better?
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» Starting Point: DM14 signature scheme

* DM14 used linear homomorphisms over trapdoor functions

* Our idea: Use full homomorphisms over trapdoor functions

» Comparison to previous work (d = w(loglogn))

Scheme pk sk Sig. SIS param
R}]Xk mat. R’q‘”’C mat. R’; vec. B
Boy10,MP12 n n 1 Q(n5/?)
BHJ+14 1 1 d Q(n/?)
DM14 d 1 1 Q(n"/?)
This work 1 1 1 Q(d%d . ntl/2)

» SIS param can be (large) poly-sized if we set d = O(logn/ loglogn)
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Puncturable Homorphic Trapdoor Functions (PHTDF)

td
Eval;

(a1,...,a,) ——> Evalgg

» Trapdoor functions a with associated (hidden) tagt € T.

> Tag t is invertible: can invert f with trapdoor r.

» Distributional Equivalence:

S
(ryu U, v fpraz(uw) = (ru

1 (), v V)

pk7a7x

» Tag t = 0: trapdoor function a is “punctured:”

* foka,(-) becomes collision resistant.

» Homomorphic Properties

* Can evaluate funcs g over tags t; associated with a;

* Yields new trapdoor function a with tag ¢, trapdoor r
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Lattice-Based Construction of PHTDFs

e SO

Construction itself is simple extension of MP12 trapdoors
Short R lets us sample short preimage u for a given v — Bx.

Collision resistance when punctured follows from SIS.

vvy VvVoy

Tags may be arbitrary n X n matrices
* For trapdoor multiplication, at least one must be scalar multiple of 1.
» Trapdoor growth from homomorphic computations:

* Homom Addition: Trapdoor grows additively.
* Homom Multiplication: Trapdoor grows asymmetrically in R, R,

=Ry - poly(n) + t:1Re
» Larger Trapdoors — larger pre-images, larger SIS solutions.
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Signature Scheme

Gen(1*): Choose vk = (pk,ai1,...,an,v), sk = (r1,...,7)
Sign(x): Sample g +— G. Invert to valid u. Output (u,g)
Ver(z, (u,g)): Verify that w valid, fprqz(u) = v.

» Scheme security/correctness depend on properties of sampled g < G
» Actual Scheme: ¢ must always be invertible.
» Security reduction against A (with non-negligble probability):

@ ¢ = g(-) must be invertible for all but one of queries made by A.

® A chooses g* for forgery such that t = g*(-) =0
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Each g € G is uniquely specified by a tag t(9) € {0,1}"

» Tags decompose into prefixes tgg) of length ¢; = 2°

* Prefixes embed into GF(2™) (higher coefficients set to 0)
* Key Point: Embedding of t(9) — (") is invertible for g#£g.

v

Trapdoor ag in public key has random tag prefix of length c¢;.

v

Choice of i* via confined guessing [BHJ414,DM14]
* A makes @) queries, succeeds with probability €
* Choose smallest i* such that 2Q? /e < 2%~
* () random tags will have distinct length ¢} prefixes with prob €/2

» * must be kept secret from A
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Computing ¢ Homomorphically

ao b al a2 e al* e &d

» Evaluation of ¢: Subtract i*th prefix of t(9) from ;.

> Selection of prefix of t(9) needs to be done homomorphically
» Old way: [DM14] Length d indicator vector for i* in pk

» Qur way: Store ¢* as tag in pk

* Degree d — 1 interpolation polynomial computes g
* Can compute vector homomorphically from b alone.
> Asymmetric trapdoor growth in multiplication is key

* Yields d? poly(n) growth instead of dn'°&? growth
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