Short Signatures with Short Public Keys From Homomorphic Trapdoor Functions

Jacob Alperin-Sheriff

School of Computer Science Georgia Tech

Want short public key, secret key, signatures

- Want short public key, secret key, signatures
- Under classical number-theoretic assumptions [Wat'09,HW'09]:

- Want short public key, secret key, signatures
- Under classical number-theoretic assumptions [Wat'09,HW'09]:
 - * Constant number of group elements in sk, sigs, vk
 - ***** Linear size in security parameter λ

- Want short public key, secret key, signatures
- Under classical number-theoretic assumptions [Wat'09,HW'09]:
 - * Constant number of group elements in sk, sigs, vk
 - * Linear size in security parameter λ
- Under lattice-based assumptions (in ring setting)

- Want short public key, secret key, signatures
- Under classical number-theoretic assumptions [Wat'09,HW'09]:
 - ★ Constant number of group elements in sk, sigs, vk
 - * Linear size in security parameter λ
- Under lattice-based assumptions (in ring setting)
 - * Trapdoors and pre-images already have quasilinear $(\tilde{O}(\lambda))$ size

- Want short public key, secret key, signatures
- Under classical number-theoretic assumptions [Wat'09,HW'09]:
 - ★ Constant number of group elements in sk, sigs, vk
 - * Linear size in security parameter λ
- Under lattice-based assumptions (in ring setting)
 - * Trapdoors and pre-images already have quasilinear $(\tilde{O}(\lambda))$ size
 - ★ Best schemes require:
 - Logarithmic number of pre-images in signatures [BHJ+14]
 - Logarithmic number of trapdoors in the public key [DM14]

- Want short public key, secret key, signatures
- Under classical number-theoretic assumptions [Wat'09,HW'09]:
 - * Constant number of group elements in sk, sigs, vk
 - * Linear size in security parameter λ
- Under lattice-based assumptions (in ring setting)
 - * Trapdoors and pre-images already have quasilinear $(\tilde{O}(\lambda))$ size
 - ★ Best schemes require:
 - Logarithmic number of pre-images in signatures [BHJ+14]
 - Logarithmic number of trapdoors in the public key [DM14]
 - ★ Can we do better?

Constant number of trapdoors in public key, short signatures

- Constant number of trapdoors in public key, short signatures
- Starting Point: DM14 signature scheme

- Constant number of trapdoors in public key, short signatures
- Starting Point: DM14 signature scheme
 - * DM14 used linear homomorphisms over trapdoor functions

- Constant number of trapdoors in public key, short signatures
- Starting Point: DM14 signature scheme
 - ★ DM14 used linear homomorphisms over trapdoor functions
 - * Our idea: Use full homomorphisms over trapdoor functions

- Constant number of trapdoors in public key, short signatures
- Starting Point: DM14 signature scheme
 - ★ DM14 used linear homomorphisms over trapdoor functions
 - ★ Our idea: Use full homomorphisms over trapdoor functions
- Comparison to previous work $(d = \omega(\log \log n))$

Scheme	pk	sk	Sig.	SIS param
	$R_q^{1 imes k}$ mat.	$R_q^{k imes k}$ mat.	R^k_q vec.	eta
Boy10,MP12	n	n	1	$ ilde{\Omega}(n^{5/2})$
BHJ+14	1	1	d	$ ilde{\Omega}(n^{5/2})$
DM14	d	1	1	$ ilde{\Omega}(n^{7/2})$
This work	1	1	1	$\tilde{\Omega}(d^{2d} \cdot n^{11/2})$

- Constant number of trapdoors in public key, short signatures
- Starting Point: DM14 signature scheme
 - ★ DM14 used linear homomorphisms over trapdoor functions
 - ★ Our idea: Use full homomorphisms over trapdoor functions
- Comparison to previous work $(d = \omega(\log \log n))$

Scheme	pk	sk	Sig.	SIS param
	$R_q^{1 imes k}$ mat.	$R_q^{k imes k}$ mat.	R^k_q vec.	eta
Boy10,MP12	n	n	1	$ ilde{\Omega}(n^{5/2})$
BHJ+14	1	1	d	$ ilde{\Omega}(n^{5/2})$
DM14	d	1	1	$ ilde{\Omega}(n^{7/2})$
This work	1	1	1	$\tilde{\Omega}(d^{2d} \cdot n^{11/2})$

SIS param can be (large) poly-sized if we set $d = O(\log n / \log \log n)$

Construction Outline

Construction Outline

$$f_{pk,a,x}(u) \dashrightarrow v$$

Trapdoor functions a with associated (hidden) tag $t \in \mathcal{T}$.

$$t = \tilde{t}^{-1}$$
$$f_{pk,a,x}(u) \qquad v$$

Trapdoor functions a with associated (hidden) tag t ∈ T.
Tag t is invertible:

- Trapdoor functions a with associated (hidden) tag $t \in \mathcal{T}$.
- ▶ Tag t is invertible: can invert f with trapdoor r.

- Trapdoor functions a with associated (hidden) tag $t \in \mathcal{T}$.
- ► Tag t is invertible: can invert f with trapdoor r.
- Distributional Equivalence:

$$(r, u \leftarrow \mathcal{U}, v \leftarrow f_{pk,a,x}(u)) \stackrel{s}{\approx} (r, u \leftarrow f_{pk,a,x}^{-1}(v), v \leftarrow \mathcal{V})$$

$$t = 0$$

$$f_{pk,a,x}(u) \dashrightarrow v$$

- Trapdoor functions a with associated (hidden) tag $t \in \mathcal{T}$.
- ► Tag t is invertible: can invert f with trapdoor r.
- Distributional Equivalence:

$$(r, u \leftarrow \mathcal{U}, v \leftarrow f_{pk,a,x}(u)) \stackrel{s}{\approx} (r, u \leftarrow f_{pk,a,x}^{-1}(v), v \leftarrow \mathcal{V})$$

▶ Tag *t* = 0: trapdoor function *a* is "punctured:"

- Trapdoor functions a with associated (hidden) tag $t \in \mathcal{T}$.
- ► Tag t is invertible: can invert f with trapdoor r.
- Distributional Equivalence:

$$(r, u \leftarrow \mathcal{U}, v \leftarrow f_{pk,a,x}(u)) \stackrel{s}{\approx} (r, u \leftarrow f_{pk,a,x}^{-1}(v), v \leftarrow \mathcal{V})$$

► Tag t = 0: trapdoor function a is "punctured:"
 ★ f_{pk,a,·}(·) becomes collision resistant.

- Trapdoor functions a with associated (hidden) tag $t \in \mathcal{T}$.
- ▶ Tag t is invertible: can invert f with trapdoor r.
- Distributional Equivalence:

$$(r, u \leftarrow \mathcal{U}, v \leftarrow f_{pk,a,x}(u)) \stackrel{s}{\approx} (r, u \leftarrow f_{pk,a,x}^{-1}(v), v \leftarrow \mathcal{V})$$

- ► Tag t = 0: trapdoor function a is "punctured:"
 - ★ $f_{pk,a,\cdot}(\cdot)$ becomes collision resistant.
- Homomorphic Properties
 - * Can evaluate funcs g over tags t_i associated with a_i

- Frapdoor functions a with associated (hidden) tag $t \in \mathcal{T}$.
- ▶ Tag t is invertible: can invert f with trapdoor r.
- Distributional Equivalence:

$$(r, u \leftarrow \mathcal{U}, v \leftarrow f_{pk,a,x}(u)) \stackrel{s}{\approx} (r, u \leftarrow f_{pk,a,x}^{-1}(v), v \leftarrow \mathcal{V})$$

- Tag t = 0: trapdoor function a is "punctured:"
 - ★ $f_{pk,a,\cdot}(\cdot)$ becomes collision resistant.
- Homomorphic Properties
 - * Can evaluate funcs g over tags t_i associated with a_i
 - ***** Yields new trapdoor function a with tag t, trapdoor r

$$f_{(\mathbf{A},\mathbf{B}),-\mathbf{AR}+t\mathbf{G},\mathbf{x}}(\mathbf{u}) \dashrightarrow \mathbf{v} := [\mathbf{A} \mid -\mathbf{AR}+t\mathbf{G}]\mathbf{u} + \mathbf{Bx}$$

Construction itself is simple extension of MP12 trapdoors

- Construction itself is simple extension of MP12 trapdoors
- Short R lets us sample short preimage u for a given v Bx.

$$f_{(\mathbf{A},\mathbf{B}),-\mathbf{A}\mathbf{R}+t\mathbf{G},\mathbf{x}}(\mathbf{u}) \dashrightarrow \mathbf{v} := [\mathbf{A} \mid -\mathbf{A}\mathbf{R}+t\mathbf{G}]\mathbf{u} + \mathbf{B}\mathbf{x}$$

- Construction itself is simple extension of MP12 trapdoors
- Short \mathbf{R} lets us sample short preimage \mathbf{u} for a given $\mathbf{v} \mathbf{B}\mathbf{x}$.
- Collision resistance when punctured follows from SIS.

$$\mathbf{R}$$

$$f_{(\mathbf{A},\mathbf{B}),-\mathbf{A}\mathbf{R}+t\mathbf{G},\mathbf{x}}(\mathbf{u}) \xrightarrow{\mathbf{v}} \mathbf{v}$$

- Construction itself is simple extension of MP12 trapdoors
- Short \mathbf{R} lets us sample short preimage \mathbf{u} for a given $\mathbf{v} \mathbf{B}\mathbf{x}$.
- Collision resistance when punctured follows from SIS.
- Tags may be arbitrary $n \times n$ matrices

$$\mathbf{R}$$

$$f_{(\mathbf{A},\mathbf{B}),-\mathbf{A}\mathbf{R}+t\mathbf{G},\mathbf{x}}(\mathbf{u}) \xrightarrow{\mathbf{v}} \mathbf{v}$$

- Construction itself is simple extension of MP12 trapdoors
- Short \mathbf{R} lets us sample short preimage \mathbf{u} for a given $\mathbf{v} \mathbf{B}\mathbf{x}$.
- Collision resistance when punctured follows from SIS.
- Tags may be arbitrary $n \times n$ matrices
 - \star For trapdoor multiplication, at least one must be scalar multiple of I.

$$\begin{array}{c} \mathbf{R}^* \\ \mathbf{f}_{(\mathbf{A},\mathbf{B}),-\mathbf{A}\mathbf{R}^*+t\mathbf{G},\mathbf{x}}(\mathbf{u}) & \cdots & \mathbf{v} \end{array}$$

- Construction itself is simple extension of MP12 trapdoors
- Short \mathbf{R} lets us sample short preimage \mathbf{u} for a given $\mathbf{v} \mathbf{B}\mathbf{x}$.
- Collision resistance when punctured follows from SIS.
- Tags may be arbitrary n × n matrices
 - \star For trapdoor multiplication, at least one must be scalar multiple of I.
- Trapdoor growth from homomorphic computations:
 - * Homom Addition: Trapdoor grows additively.

$$f_{(\mathbf{A},\mathbf{B}),-\mathbf{AR}^*+t\mathbf{G},\mathbf{x}}(\mathbf{u}) \xrightarrow{\mathbf{C}} \mathbf{v}$$

- Construction itself is simple extension of MP12 trapdoors
- Short \mathbf{R} lets us sample short preimage \mathbf{u} for a given $\mathbf{v} \mathbf{B}\mathbf{x}$.
- Collision resistance when punctured follows from SIS.
- Tags may be arbitrary n × n matrices
 - \star For trapdoor multiplication, at least one must be scalar multiple of I.
- Trapdoor growth from homomorphic computations:
 - *** Homom Addition:** Trapdoor grows additively.
 - ★ Homom Multiplication: Trapdoor grows asymmetrically in R₁, R₂

 $\mathbf{R}^* := \mathbf{R}_1 \cdot \operatorname{poly}(n) + t_1 \mathbf{R}_2$

$$\begin{array}{c} \mathbf{R}^* \\ \mathbf{f}_{(\mathbf{A},\mathbf{B}),-\mathbf{A}\mathbf{R}^*+t\mathbf{G},\mathbf{x}}(\mathbf{u}) & \cdots & \mathbf{v} \end{array}$$

- Construction itself is simple extension of MP12 trapdoors
- Short \mathbf{R} lets us sample short preimage \mathbf{u} for a given $\mathbf{v} \mathbf{B}\mathbf{x}$.
- Collision resistance when punctured follows from SIS.
- Tags may be arbitrary n × n matrices
 - \star For trapdoor multiplication, at least one must be scalar multiple of I.
- Trapdoor growth from homomorphic computations:
 - *** Homom Addition:** Trapdoor grows additively.
 - ***** Homom Multiplication: Trapdoor grows asymmetrically in $\mathbf{R}_1, \mathbf{R}_2$

 $\mathbf{R}^* := \mathbf{R}_1 \cdot \operatorname{poly}(n) + t_1 \mathbf{R}_2$

• Larger Trapdoors \rightarrow larger pre-images, larger SIS solutions.

Signature Scheme

Gen
$$(1^{\lambda})$$
: Choose $vk = (pk, a_1, \dots, a_n, v)$, $sk = (r_1, \dots, r_n)$

v

Signature Scheme

Gen(1^{λ}): Choose $vk = (pk, a_1, \dots, a_n, v)$, $sk = (r_1, \dots, r_n)$ **Sign**(x): Sample $g \leftarrow \mathcal{G}$. Invert to valid u. Output (u, g)

Signature Scheme

Gen (1^{λ}) : Choose $vk = (pk, a_1, \dots, a_n, v)$, $sk = (r_1, \dots, r_n)$ Sign(x): Sample $g \leftarrow \mathcal{G}$. Invert to valid u. Output (u, g)Ver(x, (u, g)): Verify that u valid, $f_{pk,a,x}(u) = v$.

Signature Scheme

Gen
$$(1^{\lambda})$$
: Choose $vk = (pk, a_1, \dots, a_n, v)$, $sk = (r_1, \dots, r_n)$
Sign (x) : Sample $g \leftarrow \mathcal{G}$. Invert to valid u . Output (u, g)
/er $(x, (u, g))$: Verify that u valid, $f_{pk,a,x}(u) = v$.

▶ Scheme security/correctness depend on properties of sampled $g \leftarrow \mathcal{G}$

Signature Scheme

Gen
$$(1^{\lambda})$$
: Choose $vk = (pk, a_1, \dots, a_n, v)$, $sk = (r_1, \dots, r_n)$
Sign (x) : Sample $g \leftarrow \mathcal{G}$. Invert to valid u . Output (u, g)
/er $(x, (u, g))$: Verify that u valid, $f_{pk,a,x}(u) = v$.

Scheme security/correctness depend on properties of sampled g ← G
 Actual Scheme: t must always be invertible.

Signature Scheme

Gen
$$(1^{\lambda})$$
: Choose $vk = (pk, a_1, \dots, a_n, v)$, $sk = (r_1, \dots, r_n)$
Sign (x) : Sample $g \leftarrow \mathcal{G}$. Invert to valid u . Output (u, g)
/er $(x, (u, g))$: Verify that u valid, $f_{pk,a,x}(u) = v$.

- Scheme security/correctness depend on properties of sampled $g \leftarrow \mathcal{G}$
- Actual Scheme: t must always be invertible.
- Security reduction against A (with non-negligble probability):
 1 t = g(·) must be invertible for all but one of queries made by A.

Signature Scheme

Gen
$$(1^{\lambda})$$
: Choose $vk = (pk, a_1, \dots, a_n, v)$, $sk = (r_1, \dots, r_n)$
Sign (x) : Sample $g \leftarrow \mathcal{G}$. Invert to valid u . Output (u, g)
/er $(x, (u, g))$: Verify that u valid, $f_{pk,a,x}(u) = v$.

- ▶ Scheme security/correctness depend on properties of sampled $g \leftarrow \mathcal{G}$
- Actual Scheme: t must always be invertible.
- Security reduction against A (with non-negligble probability):

t = g(·) must be invertible for all but one of queries made by A.
 A chooses g* for forgery such that t = g*(·) = 0

Tags and \boldsymbol{g}

 \blacktriangleright Each $g \in \mathcal{G}$ is uniquely specified by a tag $t^{(g)} \in \{0,1\}^n$

$$t^{(g)} = \underbrace{\underbrace{\texttt{0101}}_{t_1^{(g)}t_2^{(g)}} \underbrace{\texttt{01}}_{t_3^{(g)}} \underbrace{\texttt{1001}}_{t_4^{(g)}} \underbrace{\texttt{001}}_{t_4^{(g)}} \cdots$$

• Each $g \in \mathcal{G}$ is uniquely specified by a tag $t^{(g)} \in \{0,1\}^n$

▶ Tags decompose into prefixes $t_i^{(g)}$ of length $c_i = 2^i$

• Each $g \in \mathcal{G}$ is uniquely specified by a tag $t^{(g)} \in \{0,1\}^n$

- ▶ Tags decompose into prefixes $t_i^{(g)}$ of length $c_i = 2^i$
 - * Prefixes embed into $GF(2^n)$ (higher coefficients set to 0)

• Each $g \in \mathcal{G}$ is uniquely specified by a tag $t^{(g)} \in \{0,1\}^n$

- ▶ Tags decompose into prefixes $t_i^{(g)}$ of length $c_i = 2^i$
 - * Prefixes embed into $GF(2^n)$ (higher coefficients set to 0)
 - ★ Key Point: Embedding of $t^{(g)} t^{(g')}$ is invertible for $g \neq g'$.

Tags and \boldsymbol{g}

- Each $g \in \mathcal{G}$ is uniquely specified by a tag $t^{(g)} \in \{0,1\}^n$
- Tags decompose into prefixes $t_i^{(g)}$ of length $c_i = 2^i$
 - * Prefixes embed into $GF(2^n)$ (higher coefficients set to 0)
 - ★ Key Point: Embedding of $t^{(g)} t^{(g')}$ is invertible for $g \neq g'$.
- Trapdoor a_0 in public key has random tag prefix of length c_{i^*} .

Tags and \boldsymbol{g}

- Each $g \in \mathcal{G}$ is uniquely specified by a tag $t^{(g)} \in \{0,1\}^n$
- ▶ Tags decompose into prefixes $t_i^{(g)}$ of length $c_i = 2^i$
 - * Prefixes embed into $GF(2^n)$ (higher coefficients set to 0)
 - ★ Key Point: Embedding of $t^{(g)} t^{(g')}$ is invertible for $g \neq g'$.
- ▶ Trapdoor *a*⁰ in public key has random tag prefix of length *c*_{*i**}.
- Choice of i* via confined guessing [BHJ+14,DM14]

- Each $g \in \mathcal{G}$ is uniquely specified by a tag $t^{(g)} \in \{0,1\}^n$
- Tags decompose into prefixes $t_i^{(g)}$ of length $c_i = 2^i$
 - * Prefixes embed into $GF(2^n)$ (higher coefficients set to 0)
 - ★ Key Point: Embedding of $t^{(g)} t^{(g')}$ is invertible for $g \neq g'$.
- Frapdoor a_0 in public key has random tag prefix of length c_{i^*} .
- Choice of i* via confined guessing [BHJ+14,DM14]
 - \star ${\cal A}$ makes Q queries, succeeds with probability ϵ

Tags and \boldsymbol{g}

- Each $g \in \mathcal{G}$ is uniquely specified by a tag $t^{(g)} \in \{0,1\}^n$
- Tags decompose into prefixes $t_i^{(g)}$ of length $c_i = 2^i$
 - * Prefixes embed into $GF(2^n)$ (higher coefficients set to 0)
 - ★ Key Point: Embedding of $t^{(g)} t^{(g')}$ is invertible for $g \neq g'$.
- ▶ Trapdoor *a*⁰ in public key has random tag prefix of length *c*_{*i**}.
- Choice of i* via confined guessing [BHJ+14,DM14]

 - $\star~Q$ random tags will have distinct length c_i^* prefixes with prob $\epsilon/2$

Tags and \boldsymbol{g}

- Each $g \in \mathcal{G}$ is uniquely specified by a tag $t^{(g)} \in \{0,1\}^n$
- Tags decompose into prefixes $t_i^{(g)}$ of length $c_i = 2^i$
 - * Prefixes embed into $GF(2^n)$ (higher coefficients set to 0)
 - ★ Key Point: Embedding of $t^{(g)} t^{(g')}$ is invertible for $g \neq g'$.
- ▶ Trapdoor *a*⁰ in public key has random tag prefix of length *c*_{*i**}.
- Choice of i* via confined guessing [BHJ+14,DM14]
 - \star ${\cal A}$ makes Q queries, succeeds with probability ϵ

 - $\star~Q$ random tags will have distinct length c_i^{\star} prefixes with prob $\epsilon/2$
- i^* must be kept secret from ${\cal A}$

 a_0

 \hat{t}_{i^*}

- Evaluation of g: Subtract i^* th prefix of $t^{(g)}$ from \hat{t}_{i^*} .
- Selection of prefix of $t^{(g)}$ needs to be done homomorphically

- Evaluation of g: Subtract i^* th prefix of $t^{(g)}$ from \hat{t}_{i^*} .
- Selection of prefix of $t^{(g)}$ needs to be done homomorphically
- ▶ Old way: [DM14] Length d indicator vector for i^* in pk

- Evaluation of g: Subtract i^* th prefix of $t^{(g)}$ from \hat{t}_{i^*} .
- Selection of prefix of $t^{(g)}$ needs to be done homomorphically
- ▶ Old way: [DM14] Length d indicator vector for i^* in pk
- Our way: Store i* as tag in pk

- Evaluation of g: Subtract i^* th prefix of $t^{(g)}$ from \hat{t}_{i^*} .
- Selection of prefix of $t^{(g)}$ needs to be done homomorphically
- ▶ Old way: [DM14] Length d indicator vector for i^* in pk
- Our way: Store i* as tag in pk
 - ★ Degree d-1 interpolation polynomial computes $i \stackrel{?}{=} i^*$

- Evaluation of g: Subtract i^* th prefix of $t^{(g)}$ from \hat{t}_{i^*} .
- Selection of prefix of $t^{(g)}$ needs to be done homomorphically
- Old way: [DM14] Length d indicator vector for i^* in pk
- Our way: Store i* as tag in pk
 - ★ Degree d-1 interpolation polynomial computes $i \stackrel{?}{=} i^*$
 - \star Can compute vector homomorphically from b alone.

- Evaluation of g: Subtract i^* th prefix of $t^{(g)}$ from \hat{t}_{i^*} .
- Selection of prefix of $t^{(g)}$ needs to be done homomorphically
- Old way: [DM14] Length d indicator vector for i^* in pk
- Our way: Store i* as tag in pk
 - ★ Degree d-1 interpolation polynomial computes $i \stackrel{?}{=} i^*$
 - \star Can compute vector homomorphically from b alone.
- Asymmetric trapdoor growth in multiplication is key

- Evaluation of g: Subtract i^* th prefix of $t^{(g)}$ from \hat{t}_{i^*} .
- Selection of prefix of $t^{(g)}$ needs to be done homomorphically
- Old way: [DM14] Length d indicator vector for i^* in pk
- Our way: Store i* as tag in pk
 - ★ Degree d-1 interpolation polynomial computes $i \stackrel{?}{=} i^*$
 - \star Can compute vector homomorphically from b alone.
- Asymmetric trapdoor growth in multiplication is key
 - \star Yields $d^d\operatorname{poly}(n)$ growth instead of $d^dn^{\log d}$ growth

Open problems:

Open problems:

* Short signatures with short public keys with less trapdoor growth?

- Open problems:
 - * Short signatures with short public keys with less trapdoor growth?
 - * Can techniques be extended to achieve fully secure IBE?

- Open problems:
 - * Short signatures with short public keys with less trapdoor growth?
 - * Can techniques be extended to achieve fully secure IBE?

Hiring? Talk to me!