
Short Signatures with Short Public Keys
From Homomorphic Trapdoor Functions

Jacob Alperin-Sheriff

School of Computer Science
Georgia Tech

1 / 10



Stateless Standard-Model Signature Schemes

SignMessage

Signing Key

Verify

Verification Key

Accept/Reject
Signature

I Want short public key, secret key, signatures

I Under classical number-theoretic assumptions [Wat’09,HW’09]:

F Constant number of group elements in sk, sigs, vk

F Linear size in security parameter λ

I Under lattice-based assumptions (in ring setting)

F Trapdoors and pre-images already have quasilinear (Õ(λ)) size
F Best schemes require:

• Logarithmic number of pre-images in signatures [BHJ+14]

• Logarithmic number of trapdoors in the public key [DM14]

F Can we do better?

2 / 10



Stateless Standard-Model Signature Schemes

SignMessage

Signing Key

Verify

Verification Key

Accept/Reject
Signature

I Want short public key, secret key, signatures

I Under classical number-theoretic assumptions [Wat’09,HW’09]:

F Constant number of group elements in sk, sigs, vk

F Linear size in security parameter λ

I Under lattice-based assumptions (in ring setting)

F Trapdoors and pre-images already have quasilinear (Õ(λ)) size
F Best schemes require:

• Logarithmic number of pre-images in signatures [BHJ+14]

• Logarithmic number of trapdoors in the public key [DM14]

F Can we do better?

2 / 10



Stateless Standard-Model Signature Schemes

SignMessage

Signing Key

Verify

Verification Key

Accept/Reject
Signature

I Want short public key, secret key, signatures

I Under classical number-theoretic assumptions [Wat’09,HW’09]:

F Constant number of group elements in sk, sigs, vk

F Linear size in security parameter λ

I Under lattice-based assumptions (in ring setting)

F Trapdoors and pre-images already have quasilinear (Õ(λ)) size
F Best schemes require:

• Logarithmic number of pre-images in signatures [BHJ+14]

• Logarithmic number of trapdoors in the public key [DM14]

F Can we do better?

2 / 10



Stateless Standard-Model Signature Schemes

SignMessage

Signing Key

Verify

Verification Key

Accept/Reject
Signature

I Want short public key, secret key, signatures

I Under classical number-theoretic assumptions [Wat’09,HW’09]:

F Constant number of group elements in sk, sigs, vk

F Linear size in security parameter λ

I Under lattice-based assumptions (in ring setting)

F Trapdoors and pre-images already have quasilinear (Õ(λ)) size
F Best schemes require:

• Logarithmic number of pre-images in signatures [BHJ+14]

• Logarithmic number of trapdoors in the public key [DM14]

F Can we do better?

2 / 10



Stateless Standard-Model Signature Schemes

SignMessage

Signing Key

Verify

Verification Key

Accept/Reject
Signature

I Want short public key, secret key, signatures

I Under classical number-theoretic assumptions [Wat’09,HW’09]:

F Constant number of group elements in sk, sigs, vk

F Linear size in security parameter λ

I Under lattice-based assumptions (in ring setting)
F Trapdoors and pre-images already have quasilinear (Õ(λ)) size

F Best schemes require:

• Logarithmic number of pre-images in signatures [BHJ+14]

• Logarithmic number of trapdoors in the public key [DM14]

F Can we do better?

2 / 10



Stateless Standard-Model Signature Schemes

SignMessage

Signing Key

Verify

Verification Key

Accept/Reject
Signature

I Want short public key, secret key, signatures

I Under classical number-theoretic assumptions [Wat’09,HW’09]:

F Constant number of group elements in sk, sigs, vk

F Linear size in security parameter λ

I Under lattice-based assumptions (in ring setting)
F Trapdoors and pre-images already have quasilinear (Õ(λ)) size
F Best schemes require:

• Logarithmic number of pre-images in signatures [BHJ+14]

• Logarithmic number of trapdoors in the public key [DM14]

F Can we do better?

2 / 10



Stateless Standard-Model Signature Schemes

SignMessage

Signing Key

Verify

Verification Key

Accept/Reject
Signature

I Want short public key, secret key, signatures

I Under classical number-theoretic assumptions [Wat’09,HW’09]:

F Constant number of group elements in sk, sigs, vk

F Linear size in security parameter λ

I Under lattice-based assumptions (in ring setting)
F Trapdoors and pre-images already have quasilinear (Õ(λ)) size
F Best schemes require:

• Logarithmic number of pre-images in signatures [BHJ+14]

• Logarithmic number of trapdoors in the public key [DM14]

F Can we do better?

2 / 10



Our Results

I Constant number of trapdoors in public key, short signatures

I Starting Point: DM14 signature scheme

F DM14 used linear homomorphisms over trapdoor functions

F Our idea: Use full homomorphisms over trapdoor functions

I Comparison to previous work (d = ω(log log n))

Scheme pk sk Sig. SIS param
R1×k
q mat. Rk×kq mat. Rkq vec. β

Boy10,MP12 n n 1 Ω̃(n5/2)

BHJ+14 1 1 d Ω̃(n5/2)

DM14 d 1 1 Ω̃(n7/2)

This work 1 1 1 Ω̃(d2d · n11/2)

I SIS param can be (large) poly-sized if we set d = O(log n/ log logn)

3 / 10



Our Results

I Constant number of trapdoors in public key, short signatures

I Starting Point: DM14 signature scheme

F DM14 used linear homomorphisms over trapdoor functions

F Our idea: Use full homomorphisms over trapdoor functions

I Comparison to previous work (d = ω(log log n))

Scheme pk sk Sig. SIS param
R1×k
q mat. Rk×kq mat. Rkq vec. β

Boy10,MP12 n n 1 Ω̃(n5/2)

BHJ+14 1 1 d Ω̃(n5/2)

DM14 d 1 1 Ω̃(n7/2)

This work 1 1 1 Ω̃(d2d · n11/2)

I SIS param can be (large) poly-sized if we set d = O(log n/ log logn)

3 / 10



Our Results

I Constant number of trapdoors in public key, short signatures

I Starting Point: DM14 signature scheme

F DM14 used linear homomorphisms over trapdoor functions

F Our idea: Use full homomorphisms over trapdoor functions

I Comparison to previous work (d = ω(log log n))

Scheme pk sk Sig. SIS param
R1×k
q mat. Rk×kq mat. Rkq vec. β

Boy10,MP12 n n 1 Ω̃(n5/2)

BHJ+14 1 1 d Ω̃(n5/2)

DM14 d 1 1 Ω̃(n7/2)

This work 1 1 1 Ω̃(d2d · n11/2)

I SIS param can be (large) poly-sized if we set d = O(log n/ log logn)

3 / 10



Our Results

I Constant number of trapdoors in public key, short signatures

I Starting Point: DM14 signature scheme

F DM14 used linear homomorphisms over trapdoor functions

F Our idea: Use full homomorphisms over trapdoor functions

I Comparison to previous work (d = ω(log log n))

Scheme pk sk Sig. SIS param
R1×k
q mat. Rk×kq mat. Rkq vec. β

Boy10,MP12 n n 1 Ω̃(n5/2)

BHJ+14 1 1 d Ω̃(n5/2)

DM14 d 1 1 Ω̃(n7/2)

This work 1 1 1 Ω̃(d2d · n11/2)

I SIS param can be (large) poly-sized if we set d = O(log n/ log logn)

3 / 10



Our Results

I Constant number of trapdoors in public key, short signatures

I Starting Point: DM14 signature scheme

F DM14 used linear homomorphisms over trapdoor functions

F Our idea: Use full homomorphisms over trapdoor functions

I Comparison to previous work (d = ω(log log n))

Scheme pk sk Sig. SIS param
R1×k
q mat. Rk×kq mat. Rkq vec. β

Boy10,MP12 n n 1 Ω̃(n5/2)

BHJ+14 1 1 d Ω̃(n5/2)

DM14 d 1 1 Ω̃(n7/2)

This work 1 1 1 Ω̃(d2d · n11/2)

I SIS param can be (large) poly-sized if we set d = O(log n/ log logn)

3 / 10



Our Results

I Constant number of trapdoors in public key, short signatures

I Starting Point: DM14 signature scheme

F DM14 used linear homomorphisms over trapdoor functions

F Our idea: Use full homomorphisms over trapdoor functions

I Comparison to previous work (d = ω(log log n))

Scheme pk sk Sig. SIS param
R1×k
q mat. Rk×kq mat. Rkq vec. β

Boy10,MP12 n n 1 Ω̃(n5/2)

BHJ+14 1 1 d Ω̃(n5/2)

DM14 d 1 1 Ω̃(n7/2)

This work 1 1 1 Ω̃(d2d · n11/2)

I SIS param can be (large) poly-sized if we set d = O(log n/ log logn)

3 / 10



Construction Outline

Homomorphic
Trapdoor Funcs
[BGG+14,GVW14]

Puncturable
Homomorphic

Trapdoor Funcs

Our Signature
Scheme

Puncturable
Trapdoor Funcs

[Boy10,MP12]

Confined
Guessing
[BHJ+14]

DM Signature
Scheme [DM14]

4 / 10



Construction Outline

Homomorphic
Trapdoor Funcs
[BGG+14,GVW14]

Puncturable
Homomorphic

Trapdoor Funcs

Our Signature
Scheme

Puncturable
Trapdoor Funcs

[Boy10,MP12]

Confined
Guessing
[BHJ+14]

DM Signature
Scheme [DM14]

4 / 10



Puncturable Homorphic Trapdoor Functions (PHTDF)

(a1, . . . , an)

(r1, . . . , rn) Evaltdpk

Evalfnpk

g

fpk,a,x(u) v

r

fpk,a,x′(u
′)

I Trapdoor functions a with associated (hidden) tag t ∈ T .

I Tag t is invertible:

can invert f with trapdoor r.

I Distributional Equivalence:

(r, u← U , v ← fpk,a,x(u))
s
≈ (r, u← f−1

pk,a,x(v), v ← V)

I Tag t = 0: trapdoor function a is “punctured:”

F fpk,a,·(·) becomes collision resistant.

I Homomorphic Properties

F Can evaluate funcs g over tags ti associated with ai
F Yields new trapdoor function a with tag t, trapdoor r

5 / 10



Puncturable Homorphic Trapdoor Functions (PHTDF)

(a1, . . . , an)

(r1, . . . , rn) Evaltdpk

Evalfnpk

g

fpk,a,x(u) v

t = t̃−1

r

fpk,a,x′(u
′)

I Trapdoor functions a with associated (hidden) tag t ∈ T .

I Tag t is invertible:

can invert f with trapdoor r.

I Distributional Equivalence:

(r, u← U , v ← fpk,a,x(u))
s
≈ (r, u← f−1

pk,a,x(v), v ← V)

I Tag t = 0: trapdoor function a is “punctured:”

F fpk,a,·(·) becomes collision resistant.

I Homomorphic Properties

F Can evaluate funcs g over tags ti associated with ai
F Yields new trapdoor function a with tag t, trapdoor r

5 / 10



Puncturable Homorphic Trapdoor Functions (PHTDF)

(a1, . . . , an)

(r1, . . . , rn) Evaltdpk

Evalfnpk

g

fpk,a,x(u) v

t = t̃−1 r

fpk,a,x′(u
′)

I Trapdoor functions a with associated (hidden) tag t ∈ T .

I Tag t is invertible: can invert f with trapdoor r.

I Distributional Equivalence:

(r, u← U , v ← fpk,a,x(u))
s
≈ (r, u← f−1

pk,a,x(v), v ← V)

I Tag t = 0: trapdoor function a is “punctured:”

F fpk,a,·(·) becomes collision resistant.

I Homomorphic Properties

F Can evaluate funcs g over tags ti associated with ai
F Yields new trapdoor function a with tag t, trapdoor r

5 / 10



Puncturable Homorphic Trapdoor Functions (PHTDF)

(a1, . . . , an)

(r1, . . . , rn) Evaltdpk

Evalfnpk

g

fpk,a,x(u) v

t = t̃−1 r

fpk,a,x′(u
′)

I Trapdoor functions a with associated (hidden) tag t ∈ T .

I Tag t is invertible: can invert f with trapdoor r.

I Distributional Equivalence:

(r, u← U , v ← fpk,a,x(u))
s
≈ (r, u← f−1

pk,a,x(v), v ← V)

I Tag t = 0: trapdoor function a is “punctured:”

F fpk,a,·(·) becomes collision resistant.

I Homomorphic Properties

F Can evaluate funcs g over tags ti associated with ai
F Yields new trapdoor function a with tag t, trapdoor r

5 / 10



Puncturable Homorphic Trapdoor Functions (PHTDF)

(a1, . . . , an)

(r1, . . . , rn) Evaltdpk

Evalfnpk

g

fpk,a,x(u) v

t = 0

r

fpk,a,x′(u
′)

I Trapdoor functions a with associated (hidden) tag t ∈ T .

I Tag t is invertible: can invert f with trapdoor r.

I Distributional Equivalence:

(r, u← U , v ← fpk,a,x(u))
s
≈ (r, u← f−1

pk,a,x(v), v ← V)

I Tag t = 0: trapdoor function a is “punctured:”

F fpk,a,·(·) becomes collision resistant.

I Homomorphic Properties

F Can evaluate funcs g over tags ti associated with ai
F Yields new trapdoor function a with tag t, trapdoor r

5 / 10



Puncturable Homorphic Trapdoor Functions (PHTDF)

(a1, . . . , an)

(r1, . . . , rn) Evaltdpk

Evalfnpk

g

fpk,a,x(u) v

t = 0

r

fpk,a,x′(u
′)

I Trapdoor functions a with associated (hidden) tag t ∈ T .

I Tag t is invertible: can invert f with trapdoor r.

I Distributional Equivalence:

(r, u← U , v ← fpk,a,x(u))
s
≈ (r, u← f−1

pk,a,x(v), v ← V)

I Tag t = 0: trapdoor function a is “punctured:”
F fpk,a,·(·) becomes collision resistant.

I Homomorphic Properties

F Can evaluate funcs g over tags ti associated with ai
F Yields new trapdoor function a with tag t, trapdoor r

5 / 10



Puncturable Homorphic Trapdoor Functions (PHTDF)

(a1, . . . , an)

(r1, . . . , rn) Evaltdpk

Evalfnpk

g

fpk,a,x(u) v

r

fpk,a,x′(u
′)

I Trapdoor functions a with associated (hidden) tag t ∈ T .

I Tag t is invertible: can invert f with trapdoor r.

I Distributional Equivalence:

(r, u← U , v ← fpk,a,x(u))
s
≈ (r, u← f−1

pk,a,x(v), v ← V)

I Tag t = 0: trapdoor function a is “punctured:”
F fpk,a,·(·) becomes collision resistant.

I Homomorphic Properties
F Can evaluate funcs g over tags ti associated with ai

F Yields new trapdoor function a with tag t, trapdoor r

5 / 10



Puncturable Homorphic Trapdoor Functions (PHTDF)

(a1, . . . , an)

(r1, . . . , rn) Evaltdpk

Evalfnpk

g

fpk,a,x(u) v

t = g(·) r

fpk,a,x′(u
′)

I Trapdoor functions a with associated (hidden) tag t ∈ T .

I Tag t is invertible: can invert f with trapdoor r.

I Distributional Equivalence:

(r, u← U , v ← fpk,a,x(u))
s
≈ (r, u← f−1

pk,a,x(v), v ← V)

I Tag t = 0: trapdoor function a is “punctured:”
F fpk,a,·(·) becomes collision resistant.

I Homomorphic Properties
F Can evaluate funcs g over tags ti associated with ai
F Yields new trapdoor function a with tag t, trapdoor r

5 / 10



Lattice-Based Construction of PHTDFs

f(A,B),−AR+tG,x(u) v := [A | −AR + tG]u + Bx

I Construction itself is simple extension of MP12 trapdoors

I Short R lets us sample short preimage u for a given v −Bx.

I Collision resistance when punctured follows from SIS.
I Tags may be arbitrary n× n matrices

F For trapdoor multiplication, at least one must be scalar multiple of I.

I Trapdoor growth from homomorphic computations:

F Homom Addition: Trapdoor grows additively.

F Homom Multiplication: Trapdoor grows asymmetrically in R1,R2

R∗ := R1 · poly(n) + t1R2

I Larger Trapdoors → larger pre-images, larger SIS solutions.

6 / 10



Lattice-Based Construction of PHTDFs

f(A,B),−AR+tG,x(u) v := [A | −AR + tG]u + Bx

R

I Construction itself is simple extension of MP12 trapdoors

I Short R lets us sample short preimage u for a given v −Bx.

I Collision resistance when punctured follows from SIS.
I Tags may be arbitrary n× n matrices

F For trapdoor multiplication, at least one must be scalar multiple of I.

I Trapdoor growth from homomorphic computations:

F Homom Addition: Trapdoor grows additively.

F Homom Multiplication: Trapdoor grows asymmetrically in R1,R2

R∗ := R1 · poly(n) + t1R2

I Larger Trapdoors → larger pre-images, larger SIS solutions.

6 / 10



Lattice-Based Construction of PHTDFs

f(A,B),−AR+tG,x(u) v := [A | −AR + tG]u + Bx

I Construction itself is simple extension of MP12 trapdoors

I Short R lets us sample short preimage u for a given v −Bx.

I Collision resistance when punctured follows from SIS.

I Tags may be arbitrary n× n matrices

F For trapdoor multiplication, at least one must be scalar multiple of I.

I Trapdoor growth from homomorphic computations:

F Homom Addition: Trapdoor grows additively.

F Homom Multiplication: Trapdoor grows asymmetrically in R1,R2

R∗ := R1 · poly(n) + t1R2

I Larger Trapdoors → larger pre-images, larger SIS solutions.

6 / 10



Lattice-Based Construction of PHTDFs

f(A,B),−AR+tG,x(u) v

R

I Construction itself is simple extension of MP12 trapdoors

I Short R lets us sample short preimage u for a given v −Bx.

I Collision resistance when punctured follows from SIS.
I Tags may be arbitrary n× n matrices

F For trapdoor multiplication, at least one must be scalar multiple of I.

I Trapdoor growth from homomorphic computations:

F Homom Addition: Trapdoor grows additively.

F Homom Multiplication: Trapdoor grows asymmetrically in R1,R2

R∗ := R1 · poly(n) + t1R2

I Larger Trapdoors → larger pre-images, larger SIS solutions.

6 / 10



Lattice-Based Construction of PHTDFs

f(A,B),−AR+tG,x(u) v

R

I Construction itself is simple extension of MP12 trapdoors

I Short R lets us sample short preimage u for a given v −Bx.

I Collision resistance when punctured follows from SIS.
I Tags may be arbitrary n× n matrices

F For trapdoor multiplication, at least one must be scalar multiple of I.

I Trapdoor growth from homomorphic computations:

F Homom Addition: Trapdoor grows additively.

F Homom Multiplication: Trapdoor grows asymmetrically in R1,R2

R∗ := R1 · poly(n) + t1R2

I Larger Trapdoors → larger pre-images, larger SIS solutions.

6 / 10



Lattice-Based Construction of PHTDFs

f(A,B),−AR∗+tG,x(u) v

R∗

I Construction itself is simple extension of MP12 trapdoors

I Short R lets us sample short preimage u for a given v −Bx.

I Collision resistance when punctured follows from SIS.
I Tags may be arbitrary n× n matrices

F For trapdoor multiplication, at least one must be scalar multiple of I.

I Trapdoor growth from homomorphic computations:

F Homom Addition: Trapdoor grows additively.

F Homom Multiplication: Trapdoor grows asymmetrically in R1,R2

R∗ := R1 · poly(n) + t1R2

I Larger Trapdoors → larger pre-images, larger SIS solutions.

6 / 10



Lattice-Based Construction of PHTDFs

f(A,B),−AR∗+tG,x(u) v

R∗

I Construction itself is simple extension of MP12 trapdoors

I Short R lets us sample short preimage u for a given v −Bx.

I Collision resistance when punctured follows from SIS.
I Tags may be arbitrary n× n matrices

F For trapdoor multiplication, at least one must be scalar multiple of I.

I Trapdoor growth from homomorphic computations:

F Homom Addition: Trapdoor grows additively.

F Homom Multiplication: Trapdoor grows asymmetrically in R1,R2

R∗ := R1 · poly(n) + t1R2

I Larger Trapdoors → larger pre-images, larger SIS solutions.

6 / 10



Lattice-Based Construction of PHTDFs

f(A,B),−AR∗+tG,x(u) v

R∗

I Construction itself is simple extension of MP12 trapdoors

I Short R lets us sample short preimage u for a given v −Bx.

I Collision resistance when punctured follows from SIS.
I Tags may be arbitrary n× n matrices

F For trapdoor multiplication, at least one must be scalar multiple of I.

I Trapdoor growth from homomorphic computations:

F Homom Addition: Trapdoor grows additively.

F Homom Multiplication: Trapdoor grows asymmetrically in R1,R2

R∗ := R1 · poly(n) + t1R2

I Larger Trapdoors → larger pre-images, larger SIS solutions.

6 / 10



Signatures from PHTDFs

(a1, . . . , an)

(r1, . . . , rn) Evaltdpk

Evalfnpk v

= fpk,ā,x̄(ū)

fpk,ā,x̄(ū)

rt = g(·)

Signature Scheme

Gen(1λ): Choose vk = (pk, a1, . . . , an, v), sk = (r1, . . . , rn)

Sign(x): Sample g ← G. Invert to valid u. Output (u, g)

Ver(x, (u, g)): Verify that u valid, fpk,a,x(u) = v.

I Scheme security/correctness depend on properties of sampled g ← G
I Actual Scheme: t must always be invertible.

I Security reduction against A (with non-negligble probability):

1 t = g(·) must be invertible for all but one of queries made by A.

2 A chooses g∗ for forgery such that t = g∗(·) = 0

7 / 10



Signatures from PHTDFs

(a1, . . . , an)

(r1, . . . , rn) Evaltdpk

Evalfnpk

g

fpk,a,x(u) v

= fpk,ā,x̄(ū)

fpk,ā,x̄(ū)

rt = g(·)

Signature Scheme

Gen(1λ): Choose vk = (pk, a1, . . . , an, v), sk = (r1, . . . , rn)

Sign(x): Sample g ← G. Invert to valid u. Output (u, g)

Ver(x, (u, g)): Verify that u valid, fpk,a,x(u) = v.

I Scheme security/correctness depend on properties of sampled g ← G
I Actual Scheme: t must always be invertible.

I Security reduction against A (with non-negligble probability):

1 t = g(·) must be invertible for all but one of queries made by A.

2 A chooses g∗ for forgery such that t = g∗(·) = 0

7 / 10



Signatures from PHTDFs

(a1, . . . , an)

(r1, . . . , rn)

Evaltdpk

Evalfnpk

g

fpk,a,x(u) v

= fpk,ā,x̄(ū)

fpk,ā,x̄(ū)

r

t = g(·)
?

Signature Scheme

Gen(1λ): Choose vk = (pk, a1, . . . , an, v), sk = (r1, . . . , rn)

Sign(x): Sample g ← G. Invert to valid u. Output (u, g)

Ver(x, (u, g)): Verify that u valid, fpk,a,x(u) = v.

I Scheme security/correctness depend on properties of sampled g ← G
I Actual Scheme: t must always be invertible.

I Security reduction against A (with non-negligble probability):

1 t = g(·) must be invertible for all but one of queries made by A.

2 A chooses g∗ for forgery such that t = g∗(·) = 0

7 / 10



Signatures from PHTDFs

(a1, . . . , an)

(r1, . . . , rn)

Evaltdpk

Evalfnpk

g

fpk,a,x(u) v

= fpk,ā,x̄(ū)

fpk,ā,x̄(ū)

r

t = g(·)

Signature Scheme

Gen(1λ): Choose vk = (pk, a1, . . . , an, v), sk = (r1, . . . , rn)

Sign(x): Sample g ← G. Invert to valid u. Output (u, g)

Ver(x, (u, g)): Verify that u valid, fpk,a,x(u) = v.

I Scheme security/correctness depend on properties of sampled g ← G

I Actual Scheme: t must always be invertible.

I Security reduction against A (with non-negligble probability):

1 t = g(·) must be invertible for all but one of queries made by A.

2 A chooses g∗ for forgery such that t = g∗(·) = 0

7 / 10



Signatures from PHTDFs

(a1, . . . , an)

(r1, . . . , rn) Evaltdpk

Evalfnpk

g

fpk,a,x(u) v

= fpk,ā,x̄(ū)

fpk,ā,x̄(ū)

rt = g(·)

Signature Scheme

Gen(1λ): Choose vk = (pk, a1, . . . , an, v), sk = (r1, . . . , rn)

Sign(x): Sample g ← G. Invert to valid u. Output (u, g)

Ver(x, (u, g)): Verify that u valid, fpk,a,x(u) = v.

I Scheme security/correctness depend on properties of sampled g ← G
I Actual Scheme: t must always be invertible.

I Security reduction against A (with non-negligble probability):

1 t = g(·) must be invertible for all but one of queries made by A.

2 A chooses g∗ for forgery such that t = g∗(·) = 0

7 / 10



Signatures from PHTDFs

(a1, . . . , an)

(r1, . . . , rn) Evaltdpk

Evalfnpk

g

fpk,a,x(u) v = fpk,ā,x̄(ū)

fpk,ā,x̄(ū)

rt = g(·)

Signature Scheme

Gen(1λ): Choose vk = (pk, a1, . . . , an, v), sk = (r1, . . . , rn)

Sign(x): Sample g ← G. Invert to valid u. Output (u, g)

Ver(x, (u, g)): Verify that u valid, fpk,a,x(u) = v.

I Scheme security/correctness depend on properties of sampled g ← G
I Actual Scheme: t must always be invertible.

I Security reduction against A (with non-negligble probability):

1 t = g(·) must be invertible for all but one of queries made by A.

2 A chooses g∗ for forgery such that t = g∗(·) = 0

7 / 10



Signatures from PHTDFs

(a1, . . . , an)

(r1, . . . , rn) Evaltdpk

Evalfnpk

g∗

fpk,a,x(u) v = fpk,ā,x̄(ū)

fpk,ā,x̄(ū)

r

t = 0

Signature Scheme

Gen(1λ): Choose vk = (pk, a1, . . . , an, v), sk = (r1, . . . , rn)

Sign(x): Sample g ← G. Invert to valid u. Output (u, g)

Ver(x, (u, g)): Verify that u valid, fpk,a,x(u) = v.

I Scheme security/correctness depend on properties of sampled g ← G
I Actual Scheme: t must always be invertible.

I Security reduction against A (with non-negligble probability):

1 t = g(·) must be invertible for all but one of queries made by A.

2 A chooses g∗ for forgery such that t = g∗(·) = 0
7 / 10



Tags and g

t(g) = 0 1 0 1 1 0 0 1 . . .

t
(g)
1 t

(g)
2 t

(g)
3

t
(g)
4

x + x3a0

t̂i∗

I Each g ∈ G is uniquely specified by a tag t(g) ∈ {0, 1}n

I Tags decompose into prefixes t
(g)
i of length ci = 2i

F Prefixes embed into GF(2n) (higher coefficients set to 0)

F Key Point: Embedding of t(g) − t(g′) is invertible for g 6= g′.

I Trapdoor a0 in public key has random tag prefix of length ci∗ .

I Choice of i∗ via confined guessing [BHJ+14,DM14]

F A makes Q queries, succeeds with probability ε

F Choose smallest i∗ such that 2Q2/ε ≤ 2ci∗

F Q random tags will have distinct length c∗i prefixes with prob ε/2

I i∗ must be kept secret from A

8 / 10



Tags and g

t(g) = 0 1 0 1 1 0 0 1 . . .

t
(g)
1 t

(g)
2 t

(g)
3 t

(g)
4

x + x3a0

t̂i∗

I Each g ∈ G is uniquely specified by a tag t(g) ∈ {0, 1}n

I Tags decompose into prefixes t
(g)
i of length ci = 2i

F Prefixes embed into GF(2n) (higher coefficients set to 0)

F Key Point: Embedding of t(g) − t(g′) is invertible for g 6= g′.

I Trapdoor a0 in public key has random tag prefix of length ci∗ .

I Choice of i∗ via confined guessing [BHJ+14,DM14]

F A makes Q queries, succeeds with probability ε

F Choose smallest i∗ such that 2Q2/ε ≤ 2ci∗

F Q random tags will have distinct length c∗i prefixes with prob ε/2

I i∗ must be kept secret from A

8 / 10



Tags and g

t(g) = 0 1 0 1 1 0 0 1 . . .

t
(g)
1 t

(g)
2

t
(g)
3

t
(g)
4

x + x3

a0

t̂i∗

I Each g ∈ G is uniquely specified by a tag t(g) ∈ {0, 1}n

I Tags decompose into prefixes t
(g)
i of length ci = 2i

F Prefixes embed into GF(2n) (higher coefficients set to 0)

F Key Point: Embedding of t(g) − t(g′) is invertible for g 6= g′.

I Trapdoor a0 in public key has random tag prefix of length ci∗ .

I Choice of i∗ via confined guessing [BHJ+14,DM14]

F A makes Q queries, succeeds with probability ε

F Choose smallest i∗ such that 2Q2/ε ≤ 2ci∗

F Q random tags will have distinct length c∗i prefixes with prob ε/2

I i∗ must be kept secret from A

8 / 10



Tags and g

t(g) = 0 1 0 1 1 0 0 1 . . .

t
(g)
1 t

(g)
2

t
(g)
3

t
(g)
4

x + x3

a0

t̂i∗

I Each g ∈ G is uniquely specified by a tag t(g) ∈ {0, 1}n

I Tags decompose into prefixes t
(g)
i of length ci = 2i

F Prefixes embed into GF(2n) (higher coefficients set to 0)

F Key Point: Embedding of t(g) − t(g′) is invertible for g 6= g′.

I Trapdoor a0 in public key has random tag prefix of length ci∗ .

I Choice of i∗ via confined guessing [BHJ+14,DM14]

F A makes Q queries, succeeds with probability ε

F Choose smallest i∗ such that 2Q2/ε ≤ 2ci∗

F Q random tags will have distinct length c∗i prefixes with prob ε/2

I i∗ must be kept secret from A

8 / 10



Tags and g

t(g) = 0 1 0 1 1 0 0 1 . . .

t
(g)
1 t

(g)
2 t

(g)
3

t
(g)
4

x + x3

a0

t̂i∗

I Each g ∈ G is uniquely specified by a tag t(g) ∈ {0, 1}n

I Tags decompose into prefixes t
(g)
i of length ci = 2i

F Prefixes embed into GF(2n) (higher coefficients set to 0)

F Key Point: Embedding of t(g) − t(g′) is invertible for g 6= g′.

I Trapdoor a0 in public key has random tag prefix of length ci∗ .

I Choice of i∗ via confined guessing [BHJ+14,DM14]

F A makes Q queries, succeeds with probability ε

F Choose smallest i∗ such that 2Q2/ε ≤ 2ci∗

F Q random tags will have distinct length c∗i prefixes with prob ε/2

I i∗ must be kept secret from A

8 / 10



Tags and g

t(g) = 0 1 0 1 1 0 0 1 . . .

t
(g)
1 t

(g)
2 t

(g)
3

t
(g)
4

x + x3

a0

t̂i∗

I Each g ∈ G is uniquely specified by a tag t(g) ∈ {0, 1}n

I Tags decompose into prefixes t
(g)
i of length ci = 2i

F Prefixes embed into GF(2n) (higher coefficients set to 0)

F Key Point: Embedding of t(g) − t(g′) is invertible for g 6= g′.

I Trapdoor a0 in public key has random tag prefix of length ci∗ .

I Choice of i∗ via confined guessing [BHJ+14,DM14]

F A makes Q queries, succeeds with probability ε

F Choose smallest i∗ such that 2Q2/ε ≤ 2ci∗

F Q random tags will have distinct length c∗i prefixes with prob ε/2

I i∗ must be kept secret from A

8 / 10



Tags and g

t(g) = 0 1 0 1 1 0 0 1 . . .

t
(g)
1 t

(g)
2 t

(g)
3

t
(g)
4

x + x3

a0

t̂i∗

I Each g ∈ G is uniquely specified by a tag t(g) ∈ {0, 1}n

I Tags decompose into prefixes t
(g)
i of length ci = 2i

F Prefixes embed into GF(2n) (higher coefficients set to 0)

F Key Point: Embedding of t(g) − t(g′) is invertible for g 6= g′.

I Trapdoor a0 in public key has random tag prefix of length ci∗ .

I Choice of i∗ via confined guessing [BHJ+14,DM14]

F A makes Q queries, succeeds with probability ε

F Choose smallest i∗ such that 2Q2/ε ≤ 2ci∗

F Q random tags will have distinct length c∗i prefixes with prob ε/2

I i∗ must be kept secret from A

8 / 10



Tags and g

t(g) = 0 1 0 1 1 0 0 1 . . .

t
(g)
1 t

(g)
2 t

(g)
3

t
(g)
4

x + x3

a0

t̂i∗

I Each g ∈ G is uniquely specified by a tag t(g) ∈ {0, 1}n

I Tags decompose into prefixes t
(g)
i of length ci = 2i

F Prefixes embed into GF(2n) (higher coefficients set to 0)

F Key Point: Embedding of t(g) − t(g′) is invertible for g 6= g′.

I Trapdoor a0 in public key has random tag prefix of length ci∗ .

I Choice of i∗ via confined guessing [BHJ+14,DM14]

F A makes Q queries, succeeds with probability ε

F Choose smallest i∗ such that 2Q2/ε ≤ 2ci∗

F Q random tags will have distinct length c∗i prefixes with prob ε/2

I i∗ must be kept secret from A

8 / 10



Tags and g

t(g) = 0 1 0 1 1 0 0 1 . . .

t
(g)
1 t

(g)
2 t

(g)
3

t
(g)
4

x + x3

a0

t̂i∗

I Each g ∈ G is uniquely specified by a tag t(g) ∈ {0, 1}n

I Tags decompose into prefixes t
(g)
i of length ci = 2i

F Prefixes embed into GF(2n) (higher coefficients set to 0)

F Key Point: Embedding of t(g) − t(g′) is invertible for g 6= g′.

I Trapdoor a0 in public key has random tag prefix of length ci∗ .

I Choice of i∗ via confined guessing [BHJ+14,DM14]

F A makes Q queries, succeeds with probability ε

F Choose smallest i∗ such that 2Q2/ε ≤ 2ci∗

F Q random tags will have distinct length c∗i prefixes with prob ε/2

I i∗ must be kept secret from A

8 / 10



Computing g Homomorphically
a0

t̂i∗

a1 a2 . . . ai∗ . . . ad

0 0 1 0

b

i∗ i∗
?
= 1

i∗
?
= 2

i∗
?
= i∗

i∗
?
= d

I Evaluation of g: Subtract i∗th prefix of t(g) from t̂i∗ .

I Selection of prefix of t(g) needs to be done homomorphically

I Old way: [DM14] Length d indicator vector for i∗ in pk

I Our way: Store i∗ as tag in pk

F Degree d− 1 interpolation polynomial computes i
?
= i∗

F Can compute vector homomorphically from b alone.

I Asymmetric trapdoor growth in multiplication is key

F Yields dd poly(n) growth instead of ddnlog d growth

9 / 10



Computing g Homomorphically
a0

t̂i∗

a1 a2 . . . ai∗ . . . ad

0 0 1 0

b

i∗ i∗
?
= 1

i∗
?
= 2

i∗
?
= i∗

i∗
?
= d

I Evaluation of g: Subtract i∗th prefix of t(g) from t̂i∗ .

I Selection of prefix of t(g) needs to be done homomorphically

I Old way: [DM14] Length d indicator vector for i∗ in pk

I Our way: Store i∗ as tag in pk

F Degree d− 1 interpolation polynomial computes i
?
= i∗

F Can compute vector homomorphically from b alone.

I Asymmetric trapdoor growth in multiplication is key

F Yields dd poly(n) growth instead of ddnlog d growth

9 / 10



Computing g Homomorphically
a0

t̂i∗

a1 a2 . . . ai∗ . . . ad

0 0 1 0

b

i∗ i∗
?
= 1

i∗
?
= 2

i∗
?
= i∗

i∗
?
= d

I Evaluation of g: Subtract i∗th prefix of t(g) from t̂i∗ .

I Selection of prefix of t(g) needs to be done homomorphically

I Old way: [DM14] Length d indicator vector for i∗ in pk

I Our way: Store i∗ as tag in pk

F Degree d− 1 interpolation polynomial computes i
?
= i∗

F Can compute vector homomorphically from b alone.

I Asymmetric trapdoor growth in multiplication is key

F Yields dd poly(n) growth instead of ddnlog d growth

9 / 10



Computing g Homomorphically
a0

t̂i∗

a1 a2 . . . ai∗ . . . ad

0 0 1 0

b

i∗

i∗
?
= 1

i∗
?
= 2

i∗
?
= i∗

i∗
?
= d

I Evaluation of g: Subtract i∗th prefix of t(g) from t̂i∗ .

I Selection of prefix of t(g) needs to be done homomorphically

I Old way: [DM14] Length d indicator vector for i∗ in pk

I Our way: Store i∗ as tag in pk

F Degree d− 1 interpolation polynomial computes i
?
= i∗

F Can compute vector homomorphically from b alone.

I Asymmetric trapdoor growth in multiplication is key

F Yields dd poly(n) growth instead of ddnlog d growth

9 / 10



Computing g Homomorphically
a0

t̂i∗

a1 a2 . . . ai∗ . . . ad

0 0 1 0

b

i∗

i∗
?
= 1

i∗
?
= 2

i∗
?
= i∗

i∗
?
= d

I Evaluation of g: Subtract i∗th prefix of t(g) from t̂i∗ .

I Selection of prefix of t(g) needs to be done homomorphically

I Old way: [DM14] Length d indicator vector for i∗ in pk

I Our way: Store i∗ as tag in pk

F Degree d− 1 interpolation polynomial computes i
?
= i∗

F Can compute vector homomorphically from b alone.

I Asymmetric trapdoor growth in multiplication is key

F Yields dd poly(n) growth instead of ddnlog d growth

9 / 10



Computing g Homomorphically
a0

t̂i∗

a1 a2 . . . ai∗ . . . ad

0 0 1 0

b

i∗ i∗
?
= 1

i∗
?
= 2

i∗
?
= i∗

i∗
?
= d

I Evaluation of g: Subtract i∗th prefix of t(g) from t̂i∗ .

I Selection of prefix of t(g) needs to be done homomorphically

I Old way: [DM14] Length d indicator vector for i∗ in pk

I Our way: Store i∗ as tag in pk

F Degree d− 1 interpolation polynomial computes i
?
= i∗

F Can compute vector homomorphically from b alone.

I Asymmetric trapdoor growth in multiplication is key

F Yields dd poly(n) growth instead of ddnlog d growth

9 / 10



Computing g Homomorphically
a0

t̂i∗

a1 a2 . . . ai∗ . . . ad

0 0 1 0

b

i∗ i∗
?
= 1

i∗
?
= 2

i∗
?
= i∗

i∗
?
= d

I Evaluation of g: Subtract i∗th prefix of t(g) from t̂i∗ .

I Selection of prefix of t(g) needs to be done homomorphically

I Old way: [DM14] Length d indicator vector for i∗ in pk

I Our way: Store i∗ as tag in pk

F Degree d− 1 interpolation polynomial computes i
?
= i∗

F Can compute vector homomorphically from b alone.

I Asymmetric trapdoor growth in multiplication is key

F Yields dd poly(n) growth instead of ddnlog d growth

9 / 10



Computing g Homomorphically
a0

t̂i∗

a1 a2 . . . ai∗ . . . ad

0 0 1 0

b

i∗ i∗
?
= 1

i∗
?
= 2

i∗
?
= i∗

i∗
?
= d

I Evaluation of g: Subtract i∗th prefix of t(g) from t̂i∗ .

I Selection of prefix of t(g) needs to be done homomorphically

I Old way: [DM14] Length d indicator vector for i∗ in pk

I Our way: Store i∗ as tag in pk

F Degree d− 1 interpolation polynomial computes i
?
= i∗

F Can compute vector homomorphically from b alone.

I Asymmetric trapdoor growth in multiplication is key

F Yields dd poly(n) growth instead of ddnlog d growth

9 / 10



Concluding Thoughts
I Open problems:

F Short signatures with short public keys with less trapdoor growth?

F Can techniques be extended to achieve fully secure IBE?

Hiring? Talk to me!

10 / 10



Concluding Thoughts
I Open problems:

F Short signatures with short public keys with less trapdoor growth?

F Can techniques be extended to achieve fully secure IBE?

Hiring? Talk to me!

10 / 10



Concluding Thoughts
I Open problems:

F Short signatures with short public keys with less trapdoor growth?

F Can techniques be extended to achieve fully secure IBE?

Hiring? Talk to me!

10 / 10



Concluding Thoughts
I Open problems:

F Short signatures with short public keys with less trapdoor growth?

F Can techniques be extended to achieve fully secure IBE?

Hiring? Talk to me!

10 / 10


