Short Signatures with Short Public Keys
From Homomorphic Trapdoor Functions

Jacob Alperin-Sheriff

School of Computer Science
Georgia Tech

/10

Stateless Standard-Model Signature Schemes

Signing Key Verification Key

l Signature l
Message Accept/Reject

> Want short public key, secret key, signatures

10

Stateless Standard-Model Signature Schemes

Signing Key Verification Key

‘l' Signature l’ .
Message Accept/ReJect

> Want short public key, secret key, signatures

» Under classical number-theoretic assumptions [Wat'09,HW'09]:

N

10

Stateless Standard-Model Signature Schemes

Signing Key Verification Key

‘l' Signature l’
Message Accept/Reject

> Want short public key, secret key, signatures
» Under classical number-theoretic assumptions [Wat'09,HW'09]:

* Constant number of group elements in sk, sigs, vk

* Linear size in security parameter A

N

10

Stateless Standard-Model Signature Schemes

Signing Key Verification Key

‘l' Signature l’
Message Accept/Reject

> Want short public key, secret key, signatures
» Under classical number-theoretic assumptions [Wat'09,HW'09]:

* Constant number of group elements in sk, sigs, vk

* Linear size in security parameter A

» Under lattice-based assumptions (in ring setting)

N

10

Stateless Standard-Model Signature Schemes

Signing Key Verification Key

‘l' Signature l’
Message Accept/Reject

> Want short public key, secret key, signatures
» Under classical number-theoretic assumptions [Wat'09,HW'09]:
* Constant number of group elements in sk, sigs, vk

* Linear size in security parameter A

» Under lattice-based assumptions (in ring setting)
* Trapdoors and pre-images already have quasilinear (O()\)) size

N

10

Stateless Standard-Model Signature Schemes

Signing Key Verification Key

‘l' Signature l’
Message Accept/Reject

> Want short public key, secret key, signatures
» Under classical number-theoretic assumptions [Wat'09,HW'09]:

* Constant number of group elements in sk, sigs, vk

* Linear size in security parameter A

» Under lattice-based assumptions (in ring setting)
* Trapdoors and pre-images already have quasilinear (O())) size
* Best schemes require:

e Logarithmic number of pre-images in signatures [BHJ+-14]

e Logarithmic number of trapdoors in the public key [DM14]

N

10

Stateless Standard-Model Signature Schemes

Signing Key Verification Key

l Signature l’
Message Accept/Reject

> Want short public key, secret key, signatures
» Under classical number-theoretic assumptions [Wat'09,HW'09]:

* Constant number of group elements in sk, sigs, vk

* Linear size in security parameter A

» Under lattice-based assumptions (in ring setting)
* Trapdoors and pre-images already have quasilinear (O())) size
* Best schemes require:
e Logarithmic number of pre-images in signatures [BHJ+-14]

e Logarithmic number of trapdoors in the public key [DM14]

* Can we do better?

N

10

Our Results

» Constant number of trapdoors in public key, short signatures

/10

Our Results
» Constant number of trapdoors in public key, short signatures

P Starting Point: DM14 signature scheme

3/10

Our Results
» Constant number of trapdoors in public key, short signatures

P Starting Point: DM14 signature scheme

* DM14 used linear homomorphisms over trapdoor functions

10

Our Results
» Constant number of trapdoors in public key, short signatures

P Starting Point: DM14 signature scheme

* DM14 used linear homomorphisms over trapdoor functions

* Our idea: Use full homomorphisms over trapdoor functions

10

Our Results

» Constant number of trapdoors in public key, short signatures

» Starting Point: DM14 signature scheme

* DM14 used linear homomorphisms over trapdoor functions

* Our idea: Use full homomorphisms over trapdoor functions

» Comparison to previous work (d = w(loglogn))

Scheme pk sk Sig. SIS param
R}]Xk mat R’q‘”’C mat. R’; vec. B
Boy10,MP12 n n 1 Q(n5/?)
BHJ+14 1 1 d Q(n/?)
DM14 d 1 1 Q(n"/?)
This work 1 1 1 Q(d%d . ntl/2)

10

Our Results

» Constant number of trapdoors in public key, short signatures

» Starting Point: DM14 signature scheme

* DM14 used linear homomorphisms over trapdoor functions

* Our idea: Use full homomorphisms over trapdoor functions

» Comparison to previous work (d = w(loglogn))

Scheme pk sk Sig. SIS param
R}]Xk mat. R’q‘”’C mat. R’; vec. B
Boy10,MP12 n n 1 Q(n5/?)
BHJ+14 1 1 d Q(n/?)
DM14 d 1 1 Q(n"/?)
This work 1 1 1 Q(d%d . ntl/2)

» SIS param can be (large) poly-sized if we set d = O(logn/ loglogn)

10

Construction Outline

Puncturable
Trapdoor Funcs
[Boy10,MP12]

Confined
Guessing
[BHJ+14]

N/

DM Signature
Scheme [DM14]

10

Construction Outline

Homomorphic
Trapdoor Funcs
[BGG+14,GVW14]

Puncturable
Trapdoor Funcs
[Boy10,MP12]

Confined
Guessing
[BHJ+14]

N /N /S

Puncturable DM Signature

Homomorphic
Trapdoor Funcs Scheme [DM14]

AN

Our Signature
Scheme

Puncturable Homorphic Trapdoor Functions (PHTDF)

» Trapdoor functions a with associated (hidden) tagt € T.

/10

Puncturable Homorphic Trapdoor Functions (PHTDF)

t=1¢"1
fpk,a,az(u) v

» Trapdoor functions a with associated (hidden) tagt € T.
> Tag t is invertible:

/10

Puncturable Homorphic Trapdoor Functions (PHTDF)

~~~~~

» Trapdoor functions a with associated (hidden) tagt € T.

> Tag t is invertible: can invert f with trapdoor r.

10



Puncturable Homorphic Trapdoor Functions (PHTDF)

» Trapdoor functions a with associated (hidden) tagt € 7.
> Tag t is invertible: can invert f with trapdoor r.

» Distributional Equivalence:

(Tau — U,U — fpk,a,x(u)) é (T)u < I;ia@(v)av — V)

10



Puncturable Homorphic Trapdoor Functions (PHTDF)

» Trapdoor functions a with associated (hidden) tagt € 7.
> Tag t is invertible: can invert f with trapdoor r.

» Distributional Equivalence:

(Tau — L{,v — fpk,a,x(u)) é (T’u < I;ia@(v)av — V)

» Tag t = 0: trapdoor function a is “punctured:”

10



Puncturable Homorphic Trapdoor Functions (PHTDF)
fpk,a,m’ (U,)

» Trapdoor functions a with associated (hidden) tagt € 7.
> Tag t is invertible: can invert f with trapdoor r.

» Distributional Equivalence:

(Tau — U,U — fpk,a,w(u)) é (T)u < pik%a,gc(v)av — V)

» Tag t = 0: trapdoor function a is “punctured:”

* foka,(-) becomes collision resistant.

/10



Puncturable Homorphic Trapdoor Functions (PHTDF)

td
Eval;

(CL17 s 7a'n,) — EValgg fpk7a7$<u) _________ Ny

» Trapdoor functions a with associated (hidden) tagt € 7.
> Tag t is invertible: can invert f with trapdoor r.

» Distributional Equivalence:

(Tvu — U,v — fpk,a,x(u)) é (T’u < I;ia@(v)av — V)

» Tag t = 0: trapdoor function a is “punctured:”
* foka,(-) becomes collision resistant.
» Homomorphic Properties

* Can evaluate funcs g over tags t; associated with a;

5/10



Puncturable Homorphic Trapdoor Functions (PHTDF)

td
Eval;

(a1,...,a,) ——> Evalgg

» Trapdoor functions a with associated (hidden) tagt € T.

> Tag t is invertible: can invert f with trapdoor r.

» Distributional Equivalence:

S
(ryu U, v fpraz(uw) = (ru

1 (), v V)

pk7a7x

» Tag t = 0: trapdoor function a is “punctured:”

* foka,(-) becomes collision resistant.

» Homomorphic Properties

* Can evaluate funcs g over tags t; associated with a;

* Yields new trapdoor function a with tag ¢, trapdoor r

5/10



Lattice-Based Construction of PHTDFs

f(AB),—AR+tGx(1) ------- »v:=[A| —AR + tG]u + Bx

» Construction itself is simple extension of MP12 trapdoors

10



Lattice-Based Construction of PHTDFs

f(AB),—AR+tGx(1) ------- > v:=[A| —AR + tG]u 4+ Bx

» Construction itself is simple extension of MP12 trapdoors

» Short R lets us sample short preimage u for a given v — Bx.

10



Lattice-Based Construction of PHTDFs

f(AB),—AR+tGx(1) ------- »v:=[A| —AR + tG]u + Bx

» Construction itself is simple extension of MP12 trapdoors
» Short R lets us sample short preimage u for a given v — Bx.

P Collision resistance when punctured follows from SIS.

10



Lattice-Based Construction of PHTDFs

P Construction itself is simple extension of MP12 trapdoors
» Short R lets us sample short preimage u for a given v — Bx.

> Collision resistance when punctured follows from SIS.
» Tags may be arbitrary n x n matrices

6/10



Lattice-Based Construction of PHTDFs

PEA S
f(A,B),fAR+tG,x(u) ------- *v
P Construction itself is simple extension of MP12 trapdoors

» Short R lets us sample short preimage u for a given v — Bx.

> Collision resistance when punctured follows from SIS.
» Tags may be arbitrary n x n matrices

* For trapdoor multiplication, at least one must be scalar multiple of 1.

6/10



Lattice-Based Construction of PHTDFs

e SO

Construction itself is simple extension of MP12 trapdoors
Short R lets us sample short preimage u for a given v — Bx.

Collision resistance when punctured follows from SIS.

vvy VvVoy

Tags may be arbitrary n X n matrices
* For trapdoor multiplication, at least one must be scalar multiple of 1.
» Trapdoor growth from homomorphic computations:

* Homom Addition: Trapdoor grows additively.

6/10



Lattice-Based Construction of PHTDFs

e SO

Construction itself is simple extension of MP12 trapdoors
Short R lets us sample short preimage u for a given v — Bx.

Collision resistance when punctured follows from SIS.

vvy VvVoy

Tags may be arbitrary n X n matrices
* For trapdoor multiplication, at least one must be scalar multiple of 1.
» Trapdoor growth from homomorphic computations:

* Homom Addition: Trapdoor grows additively.
* Homom Multiplication: Trapdoor grows asymmetrically in Ry, R,

=Ry - poly(n) + t:1Re

6

10



Lattice-Based Construction of PHTDFs

e SO

Construction itself is simple extension of MP12 trapdoors
Short R lets us sample short preimage u for a given v — Bx.

Collision resistance when punctured follows from SIS.

vvy VvVoy

Tags may be arbitrary n X n matrices
* For trapdoor multiplication, at least one must be scalar multiple of 1.
» Trapdoor growth from homomorphic computations:

* Homom Addition: Trapdoor grows additively.
* Homom Multiplication: Trapdoor grows asymmetrically in R, R,

=Ry - poly(n) + t:1Re
» Larger Trapdoors — larger pre-images, larger SIS solutions.

6

10



Signatures from PHTDFs

td
Evalpk

fn
Evalpk v

Signature Scheme

Gen(1*): Choose vk = (pk,a1,...,an,v), sk = (r1,...,7)




Signatures from PHTDFs

td
Eval;

Evalgz ——— fokaz () )

Signature Scheme

Gen(1*): Choose vk = (pk,a,...,an,v), sk = (r1,...,7)
Sign(x): Sample g +— G. Invert to valid u. Output (u,g)




Signatures from PHTDFs

Eval}
............ "
g ‘ t=g()
: ?
(ar,. . an) ——— EvaIZ{Z ——— foraz(t) -------- >V

Signature Scheme

Gen(1*): Choose vk = (pk,a,...,an,v), sk = (r1,...,7)
Sign(x): Sample g +— G. Invert to valid u. Output (u,g)
Ver(z, (u,g)): Verify that w valid, fprqz(u) = v.




Signatures from PHTDFs

Evalls,
"""""""" ‘A
g ‘ t=g()
(a1, an) —— Evalll —— fpaz(1) v

Signature Scheme

Gen(1*): Choose vk = (pk,a,...,an,v), sk = (r1,...,7)
Sign(x): Sample g +— G. Invert to valid u. Output (u,g)
Ver(z, (u,g)): Verify that w valid, fprqz(u) = v.

» Scheme security/correctness depend on properties of sampled g < G



Signatures from PHTDFs

td
Eval;

Evalgg ——— fokaz () )

Signature Scheme

Gen(1*): Choose vk = (pk,a,...,an,v), sk = (r1,...,7)
Sign(x): Sample g +— G. Invert to valid u. Output (u,g)
Ver(z, (u,g)): Verify that w valid, fprqz(u) = v.

» Scheme security/correctness depend on properties of sampled g < G
» Actual Scheme: ¢ must always be invertible.



Signatures from PHTDFs

td
Eval;

EV3|£Z' fpkﬂ'ﬁ”(’“) ) V= fpk;ﬁqj(ﬁ)

Signature Scheme

Gen(1*): Choose vk = (pk,ai1,...,an,v), sk = (r1,...,7)
Sign(x): Sample g +— G. Invert to valid u. Output (u,g)
Ver(z, (u,g)): Verify that w valid, fprqz(u) = v.

» Scheme security/correctness depend on properties of sampled g < G
» Actual Scheme: ¢ must always be invertible.
» Security reduction against A (with non-negligble probability):

@ ¢ = g(-) must be invertible for all but one of queries made by A.



Signatures from PHTDFs

(P1yeeyTn) Evalff,lc fpkﬁ,ﬂ’c@)
* - oo
g ; = R
(ay,...,a,) ———> Evalgg ——— fokaz () a3y = fok,a,z(1)

Signature Scheme

Gen(1*): Choose vk = (pk,ai1,...,an,v), sk = (r1,...,7)
Sign(x): Sample g +— G. Invert to valid u. Output (u,g)
Ver(z, (u,g)): Verify that w valid, fprqz(u) = v.

» Scheme security/correctness depend on properties of sampled g < G
» Actual Scheme: ¢ must always be invertible.
» Security reduction against A (with non-negligble probability):

@ ¢ = g(-) must be invertible for all but one of queries made by A.

® A chooses g* for forgery such that t = g*(-) =0



Tags and ¢

» Each g € G is uniquely specified by a tag t\9) € {0,1}"

10



Tags and ¢
t99=01011001---

—_— e ——
JE—

QRO 19

» Each g € G is uniquely specified by a tag t\9) € {0,1}"

» Tags decompose into prefixes tgg) of length ¢; = 2°

10



Tags and ¢
t99=01011001--- x4+ 2°

» Each g € G is uniquely specified by a tag t\9) € {0,1}"

» Tags decompose into prefixes tgg) of length ¢; = 2°
* Prefixes embed into GF(2™) (higher coefficients set to 0)

10



Tags and ¢
t99=01011001--- x4+ 2°

» Each g € G is uniquely specified by a tag t\9) € {0,1}"

» Tags decompose into prefixes tgg) of length ¢; = 2°
* Prefixes embed into GF(2™) (higher coefficients set to 0)

* Key Point: Embedding of t(9) — (") is invertible for g#£g.

10



Tags and ¢
Qo

~

(7
» Each g € G is uniquely specified by a tag t\9) € {0,1}"

» Tags decompose into prefixes tgg) of length ¢; = 2°
* Prefixes embed into GF(2™) (higher coefficients set to 0)
* Key Point: Embedding of t(9) — (") is invertible for g#£g.

» Trapdoor ag in public key has random tag prefix of length c¢;«.

10



Tags and ¢
Qo

~

(7
» Each g € G is uniquely specified by a tag t\9) € {0,1}"

» Tags decompose into prefixes tgg) of length ¢; = 2°
* Prefixes embed into GF(2™) (higher coefficients set to 0)
* Key Point: Embedding of t(9) — (") is invertible for g#£g.

» Trapdoor ag in public key has random tag prefix of length c¢;«.

» Choice of ¢* via confined guessing [BHJ+14,DM14]

10



Tags and ¢
Qo

tix
» Each g € G is uniquely specified by a tag t\9) € {0,1}"

» Tags decompose into prefixes tgg) of length ¢; = 2°

* Prefixes embed into GF(2™) (higher coefficients set to 0)
* Key Point: Embedding of t(9) — (") is invertible for g#£g.

» Trapdoor ag in public key has random tag prefix of length c¢;«.

» Choice of ¢* via confined guessing [BHJ+14,DM14]
* A makes @) queries, succeeds with probability €
* Choose smallest i* such that 2Q? /e < 2%~

10



Tags and ¢
Qo

tix
» Each g € G is uniquely specified by a tag t\9) € {0,1}"

» Tags decompose into prefixes tgg) of length ¢; = 2°

* Prefixes embed into GF(2™) (higher coefficients set to 0)

* Key Point: Embedding of t(9) — (") is invertible for g#£g.
» Trapdoor ag in public key has random tag prefix of length c¢;«.
» Choice of ¢* via confined guessing [BHJ+14,DM14]

* A makes @) queries, succeeds with probability €

* Choose smallest i* such that 2Q? /e < 2%~

* () random tags will have distinct length ¢} prefixes with prob €/2

10



Tags and ¢
Qo

~

i

v

Each g € G is uniquely specified by a tag t(9) € {0,1}"

» Tags decompose into prefixes tgg) of length ¢; = 2°

* Prefixes embed into GF(2™) (higher coefficients set to 0)
* Key Point: Embedding of t(9) — (") is invertible for g#£g.

v

Trapdoor ag in public key has random tag prefix of length c¢;.

v

Choice of i* via confined guessing [BHJ414,DM14]
* A makes @) queries, succeeds with probability €
* Choose smallest i* such that 2Q? /e < 2%~
* () random tags will have distinct length ¢} prefixes with prob €/2

» * must be kept secret from A

10



Computing ¢ Homomorphically

%)

» Evaluation of ¢: Subtract i*th prefix of t(9) from ;.

/10



Computing ¢ Homomorphically

%)

» Evaluation of ¢: Subtract i*th prefix of t(9) from ;.

> Selection of prefix of t(9) needs to be done homomorphically

10



Computing ¢ Homomorphically

» Evaluation of ¢: Subtract i*th prefix of t(9) from ;.
> Selection of prefix of t(9) needs to be done homomorphically

» Old way: [DM14] Length d indicator vector for i* in pk

10



Computing ¢ Homomorphically

ag b

Evaluation of g: Subtract i*th prefix of t(9) from ;.

>
> Selection of prefix of t(9) needs to be done homomorphically
» Old way: [DM14] Length d indicator vector for i* in pk

>

Our way: Store i* as tag in pk

10



Computing ¢ Homomorphically

agp b

Evaluation of g: Subtract i*th prefix of t(9) from ;.

>
> Selection of prefix of t(9) needs to be done homomorphically
» Old way: [DM14] Length d indicator vector for i* in pk

>

Our way: Store i* as tag in pk

. . . .7
* Degree d — 1 interpolation polynomial computes i = ¢*

10



Computing ¢ Homomorphically

ao b al a2 e al* e &d

Evaluation of g: Subtract i*th prefix of t(9) from ;.

>
> Selection of prefix of t(9) needs to be done homomorphically
» Old way: [DM14] Length d indicator vector for i* in pk

>

Our way: Store i* as tag in pk

. . . .7
* Degree d — 1 interpolation polynomial computes i = ¢*

* Can compute vector homomorphically from b alone.

10



Computing ¢ Homomorphically

ao b al a2 e al* e &d

» Evaluation of ¢: Subtract i*th prefix of t(9) from ;.

> Selection of prefix of t(9) needs to be done homomorphically
» Old way: [DM14] Length d indicator vector for i* in pk

» Qur way: Store ¢* as tag in pk

. . . .7
* Degree d — 1 interpolation polynomial computes i = ¢*

* Can compute vector homomorphically from b alone.

> Asymmetric trapdoor growth in multiplication is key

10



Computing ¢ Homomorphically

ao b al a2 e al* e &d

» Evaluation of ¢: Subtract i*th prefix of t(9) from ;.

> Selection of prefix of t(9) needs to be done homomorphically
» Old way: [DM14] Length d indicator vector for i* in pk

» Qur way: Store ¢* as tag in pk

* Degree d — 1 interpolation polynomial computes g
* Can compute vector homomorphically from b alone.
> Asymmetric trapdoor growth in multiplication is key

* Yields d? poly(n) growth instead of dn'°&? growth

10



Concluding Thoughts
» Open problems:

10/10



Concluding Thoughts

» Open problems:
* Short signatures with short public keys with less trapdoor growth?

10/10



Concluding Thoughts

» Open problems:
* Short signatures with short public keys with less trapdoor growth?

* Can techniques be extended to achieve fully secure IBE?

10/10



Concluding Thoughts

» Open problems:
* Short signatures with short public keys with less trapdoor growth?

* Can techniques be extended to achieve fully secure IBE?

Hiring? Talk to me!

10/10



