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Motivation

Cash from a Classical vs Quantum Perspective

Classical Physics

In principle, it is impossible to make
money uncopyable.

No-cloning Theorem in Quantum Mechanics

An unknown quantum state cannot be cloned.

Can this be used to make unforgeable cash?
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Motivation

Quantum Money

S. Wiesner.
“Conjugate Coding”.
ACM SIGACT News, 15(1):78–88, 1983.

Wiesner’s Idea for Quantum Money

A quantum banknote has a serial number and t photons.

No Forging

Probability of successful forging exponentially small on t.
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Motivation

A Step Forward: Public-key Quantum Money

Ideally, anyone should be able to verify the validity of money.

Public-key quantum money.

E. Farhi et al.
“Quantum Money from Knots”.
ITCS 2012.

S. Aaronson and P. Christiano.
“Quantum Money from Hidden Subspaces”.
STOC 2012.

Quantum Money Scheme of Aaronson-Christiano

Security under a classical (non-quantum) hardness assumption.
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Motivation

Hardness Assumption

Hidden Subspaces Problem (HSPq)
Input :

p1, . . . , pm, q1, . . . , qm ∈ Fq[x1, . . . , xn] of degree d .

d ≥ 3.

n ≤ m ≤ 2n.

Find : n/2-dimensional subspace A ⊂ Fq
n s.t

pi (A) = 0 and qi (A
⊥) = 0 ∀i ∈ {1, . . . ,m}.

Secret key: A.

Public key: p1, . . . , pm, q1, . . . , qm.

The subspace and the polynomials are chosen uniformly at random
from the appropriate sets.
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Motivation

Security of the Scheme

Aaronson-Christiano (STOC 2012)

Their scheme relies on HSP2.

Open Question (STOC’2012)

Extension of the scheme to Fq for any q 6= 2.

Challenge

Is HSPq really a hard problem?
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Motivation

Contributions

Our Contributions

Randomized polynomial-time algorithm for HSPq, q > d .

Heuristic randomized polynomial-time algorithm for HSP2.

Experimentally verified and efficient in practice.

Technique

Algebraic cryptanalysis using Gröbner bases.

We solve the challenge and master the
complexity of solving.
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Motivation

Algebraic Cryptanalysis

1 Solution of a problem↔ Solution of a multivariate polynomial system.

2 Solve the system in practice and/or control the complexity of solving.

Our Case (HSPq)

Algebraic modeling that allows to master the complexity.

Similar modeling to the one used for IP in

J.-C. Faugère, L. Perret.
“Polynomial Equivalence Problems: Algorithmic and Theoretical
Aspects”.
EUROCRYPT 2006.
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Motivation

Gröbner Bases

F5 Algorithm (J.-C.Faugère, 2002)

Computation of a Gröbner basis of 〈f1, . . . , fr 〉 ⊂ Fq[x1, . . . , xn] equivalent
to succesive reductions to row echelon form of

Md̃ =


ki monomials of degree d̃ k1 � . . . � k`

t1fi1 . . . . . . . . .
t2fi2 . . . . . . . . .
. . . . . . . . . . . .

 , deg(tj fij ) ≤ d̃ .

until for big enough d̃ =dreg , the row echelon form of Mdreg contains a GB.

Complexity Analysis

Complexity of O(nωdreg ), 2 ≤ ω ≤ 3 linear algebra constant.

dreg difficult to estimate in general.

In our case we can bound it.
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Modeling

First Approach

Toy Example

(p1 = x1x2 + x1 + x2x4 + x4, p2, p3, p4, q1, . . . , q4), A =

(
a1,1 . . . a1,4

a2,1 . . . a2,4

)
matrix of size 2× 4. Let (y1, y2) be formal variables over F2.

p1 ((y1, y2)A) = 0 = (a1,1a2,2 + a2,1a1,2 + a1,2a2,4 + a2,2a1,4) y1y2+

+(a1,1a1,2+a1,2a1,4+a1,1+a1,4) y1+(a2,1a2,2+a2,2a2,4+a2,1+a2,4) y2 =
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Modeling

First Approach

Toy Example

(p1 = x1x2 + x1 + x2x4 + x4, p2, p3, p4, q1, . . . , q4), A =

(
a1,1 . . . a1,4

a2,1 . . . a2,4

)
matrix of size 2× 4. Let (y1, y2) be formal variables over F2.

p1 ((y1, y2)A) = 0 = (a1,1a2,2 + a2,1a1,2 + a1,2a2,4 + a2,2a1,4) y1y2+

+(a1,1a1,2+a1,2a1,4+a1,1+a1,4) y1+(a2,1a2,2+a2,2a2,4+a2,1+a2,4) y2 =

Coeff(p1, y1y2)y1y2 + Coeff(p1, y1)y1 + Coeff(p1, y2)y2

=⇒ Coeff(p1, y1y2) = Coeff(p1, y1) = Coeff(p1, y2) = 0.
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Modeling

First Approach

Toy Example

(p1 = x1x2 + x1 + x2x4 + x4, p2, p3, p4, q1, . . . , q4), A =

(
a1,1 . . . a1,4

a2,1 . . . a2,4

)
matrix

of size 2× 4. Let (y1, y2) be formal variables over F2.

p1 ((y1, y2)A) = 0 = (a1,1a2,2 + a2,1a1,2 + a1,2a2,4 + a2,2a1,4) y1y2+

+(a1,1a1,2 +a1,2a1,4 +a1,1 +a1,4) y1 +(a2,1a2,2 +a2,2a2,4 +a2,1 +a2,4) y2 =

Coeff(p1, y1y2)y1y2 + Coeff(p1, y1)y1 + Coeff(p1, y2)y2

=⇒ Coeff(p1, y1y2) = Coeff(p1, y1) = Coeff(p1, y2) = 0.

Naive Model

∀i ∈{1, . . . ,m},∀t∈M
(
Fq[y1,. . ., yn/2]

)
,

SysNaiveHSPq
=

{
Coeff(pi , t) = 0,

Coeff(qi , t) = 0.
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Modeling

Optimizing the Model

Key Observation

If A is a solution of HSPq, for any S ∈ GLn/2(Fq), SA is also a solution.

Naive Model Has Many Equivalent Solutions.

Not optimal.

Canonical Form of the Solution of HSPq

With probability

γq(n/2) =

n/2∏
i=1

(
1− 1

qi

)
≈ 1− 1

q
,

A admits a basis in systematic form

(I |G ), G = (gi ,j) is an n/2× n/2 matrix.
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Modeling

Our Model

Optimizing the Model

Naive system with A in systematic form.

Our Model

∀i ∈ {1, . . . ,m},∀t ∈ M
(
Fq[y1,. . ., yn/2]

)
,

SysHSPq
=

{
Coeff(pi , t) = 0,

Coeff(qi , t) = 0.
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Our Contributions Randomized Polynomial-time Algorithm for HSPq , with q > d

HSPq, with q > d

Linear Equations

For all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, denoting by

pi
(1) =

n∑
j=1

λpi ,jxj , qi
(1) =

n∑
j=1

λqi ,jxj , λpi ,j , λ
q
i ,j ∈ Fq ,

∀i ∈{1, . . . ,m}, ∀k∈{1, . . . , n/2}, the following equations are linear:

Coeff(pi , yk) = λpi ,k +

n/2∑
j=1

λpi ,j+n/2gk,j ,

Coeff(qi , yk) = λqi ,k+n/2 −
n/2∑
j=1

λqi ,jgj ,k .
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Our Contributions Randomized Polynomial-time Algorithm for HSPq , with q > d

HSPq, with q > d

Matrix of Coefficients of Size mn × n2/4 Has the Following Shape



λpi,n/2+1 . . . λpi,n 0 . . . 0 . . . 0 . . . 0

0 . . . 0 λpi,n/2+1 . . . λpi,n . . . 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 0 . . . 0 . . . λpi,n/2+1 . . . λpi,n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−λqj,1 . . . 0 −λqj,2 . . . 0 . . . −λqj,n/2 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . −λqj,1 0 . . . −λqj,2 . . . 0 . . . −λqj,n/2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


Full Rank of the Coefficient Matrix with Overwhelming Probability

The probability is
γq(m)

γq(m−n/2) , m number of p′i s.
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Our Contributions Randomized Polynomial-time Algorithm for HSPq , with q > d

Randomized Polynomial-time Algorithm for HSPq

Input: p1, . . . , pm, q1, . . . , qm ∈ Fq[x1, . . . , xn] of degree d ≥ 3,
n ≤ m ≤ 2n.

1 Construct the linear system

{Coeff(pi , yk),Coeff(qi , yk) , ∀i ∈ {1, . . . ,m}, ∀j ∈ {1, . . . , n/2}}.

2 Solve it.

Return this solution.

Complexity O(n2ω), 2 ≤ ω ≤ 3 linear algebra constant.

Success probability
γq(n/2)γq(m)

γq(m − n/2)
.
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Our Contributions Randomized Polynomial-time Algorithm for HSPq , with q > d

Some Benchmarks for HSPq, q > d

Table : Experiments performed for m = n with MAGMA v.19

d= 3 d= 4

n # Variables #Eqs q Exh. search Time

12 36 1992 216 + 1 O
(
2576

)
0.00s 0.00s

20 100 11400 216 + 1 O
(
21600

)
0.02s 0.02s

HSPq for big q is insecure!
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Our Contributions Heuristic Randomized Polynomial-time Algorithm for HSP2

HSP2

No linear equations: all equations are of degree d with overwhelming
probability.

Reductions modulo the field equations.

SysHSP2
Very Overdetermined Non-Linear System

The number of equations is at least

2n

[(
n/2

1

)
+ . . .+

(
n/2

d

)]
� n2/4.

Behaviour when computing a Gröbner basis?
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Our Contributions Heuristic Randomized Polynomial-time Algorithm for HSP2

Some Benchmarks for HSP2

Table : Experiments performed for m = n with MAGMA v.19

d = 3

n # Variables #Eqs dreg Exh. search Time

14 49 1764 4 O
(
249
)

136s

16 64 2944 4 O
(
249
)

2.30min

18 81 4644 4 O
(
281
)

2h20

d = 4

n # Variables #Eqs dreg Exh. search Time

12 36 1344 5 O
(
236
)

38s

14 49 2744 5 O
(
249
)

66min
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Our Contributions Heuristic Randomized Polynomial-time Algorithm for HSP2

HSP2

Structural Symmetries in Our Model

If we order in increasing lexicographic order the monomials of degree d
mi ∈ F2

[
xn/2+1,. . ., xn

]
,m⊥i ∈ F2

[
x1,. . ., xn/2

]
, and ti ∈ F2

[
y1,. . ., yn/2

]
,

then
Coeff

(
mi , tj

)(d)
= Coeff

(
m⊥j , ti

)(d)
.

Low Degree Equations

Coeff(p, tj)+Coeff(q, ti )+
∑

{k 6=i |αk 6=0}

Coeff(q, tk)+
∑

{`6=j |β` 6=0}

Coeff(p, t`) = 0

is of degree d − 1 and is a linear combination of the equations of SysHSP2
.
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Our Contributions Heuristic Randomized Polynomial-time Algorithm for HSP2

HSP2

Behaviour of SysHSP2

Degree falls not typically occurring in a random system of equations.

Heuristically the degree of regularity is bounded by d + 1.

Heuristic Randomized Polynomial-time Algorithm for HSP2

Input: p1, . . . , pm, q1, . . . , qm ∈ Fq[x] of degree d ≥ 3, n ≤ m ≤ 2n.

1 Compute a Gröbner basis J of SysHSP2
.

Return the variety of J.

Complexity O(n2ω(d+1)), 2 ≤ ω ≤ 3 linear algebra constant.

Success probability γ2(n/2).
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Conclusions and Open Problems

Conclusions and Open Problems

Conclusions

HSPq for big q is easy.

Randomized polynomial-time algorithm for HSPq for big q.

HSP2 conjectured to be easy.

Heuristic randomized polynomial-time algorithm for HSP2.

Open Problems

1 Noise-free version if the polynomials are not random but more
structured (e.g., homogeneous of degree d)?

2 Noisy version?
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