Algebraic Cryptanalysis of a Quantum Money Scheme The Noise-Free Case

Marta Conde Pena¹ Jean-Charles Faugère^{2,3,4} Ludovic Perret^{3,2,4}

¹Spanish National Research Council (CSIC)

²Sorbonne Universités, UPMC Univ Paris 06

³INRIA

⁴CNRS

Contents

2 Modeling

3 Our Contributions

- Randomized Polynomial-time Algorithm for HSP_q , with q > d
- Heuristic Randomized Polynomial-time Algorithm for HSP₂

4 Conclusions and Open Problems

Cash from a Classical vs Quantum Perspective

Classical Physics

In principle, it is impossible to make money uncopyable.

No-cloning Theorem in Quantum Mechanics

- An unknown quantum state cannot be cloned.
 - Can this be used to make unforgeable cash?

Quantum Money

S. Wiesner.

"Conjugate Coding". ACM SIGACT News, 15(1):78–88, 1983.

Wiesner's Idea for Quantum Money

A quantum banknote has a serial number and t photons.

No Forging

• Probability of successful forging exponentially small on t.

A Step Forward: Public-key Quantum Money

Ideally, anyone should be able to verify the validity of money.

• Public-key quantum money.

E. Farhi et al.

"Quantum Money from Knots". ITCS 2012.

S. Aaronson and P. Christiano.

"Quantum Money from Hidden Subspaces". *STOC 2012.*

Quantum Money Scheme of Aaronson-Christiano

• Security under a classical (non-quantum) hardness assumption.

Hardness Assumption

Hidden Subspaces Problem (HSP_q) Input :

- $p_1, \ldots, p_m, q_1, \ldots, q_m \in \mathbb{F}_q[x_1, \ldots, x_n]$ of degree d. • $d \ge 3$.
- $n \leq m \leq 2n$.

Find : n/2-dimensional subspace $A \subset \mathbb{F}_q^n$ s.t

$$p_i(\mathbf{A}) = 0$$
 and $q_i(\mathbf{A}^{\perp}) = 0$ $\forall i \in \{1, \ldots, m\}$.

- Secret key: A.
- Public key: $p_1, ..., p_m, q_1, ..., q_m$.
 - The subspace and the polynomials are chosen uniformly at random from the appropriate sets.

Security of the Scheme

Aaronson-Christiano (STOC 2012)

• Their scheme relies on HSP₂.

Open Question (STOC'2012)

Extension of the scheme to \mathbb{F}_q for any $q \neq 2$.

Challenge

• Is HSP_q really a hard problem?

Contributions

Our Contributions

- Randomized polynomial-time algorithm for HSP_q , q > d.
- Heuristic randomized polynomial-time algorithm for HSP₂.
- Experimentally verified and efficient in practice.

Technique

Algebraic cryptanalysis using Gröbner bases.

• We solve the challenge and master the complexity of solving.

Algebraic Cryptanalysis

- $\textbf{ 0 Solution of a problem} \leftrightarrow \textbf{ Solution of a multivariate polynomial system}.$
- **2** Solve the system in practice and/or control the complexity of solving.

Our Case (HSP_q)

- Algebraic modeling that allows to master the complexity.
 - Similar modeling to the one used for IP in
 - J.-C. Faugère, L. Perret.
 "Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects".
 EUROCRYPT 2006.

Gröbner Bases

F₅ Algorithm (J.-C.Faugère, 2002)

Computation of a Gröbner basis of $\langle f_1, \ldots, f_r \rangle \subset \mathbb{F}_q[x_1, \ldots, x_n]$ equivalent to succesive reductions to row echelon form of

$$\begin{array}{cccc} k_i \text{ monomials of degree } \tilde{d} & k_1 \succ & \ldots \succ & k_\ell \\ \\ M_{\tilde{d}} = & \begin{array}{cccc} t_1 f_{i_1} & \left(\begin{array}{ccccc} \cdots & \cdots & \cdots \\ t_2 f_{i_2} & \left(\begin{array}{cccccc} \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \end{array} \right) \end{array}, \quad \deg(t_j f_{i_j}) \leq \tilde{d}. \end{array}$$

until for big enough $\tilde{d} = d_{reg}$, the row echelon form of $M_{d_{reg}}$ contains a GB.

Gröbner Bases

F₅ Algorithm (J.-C.Faugère, 2002)

Computation of a Gröbner basis of $\langle f_1, \ldots, f_r \rangle \subset \mathbb{F}_q[x_1, \ldots, x_n]$ equivalent to succesive reductions to row echelon form of

until for big enough $\tilde{d} = d_{reg}$, the row echelon form of $M_{d_{reg}}$ contains a GB.

Complexity Analysis

- Complexity of $\mathcal{O}(n^{\omega d_{reg}})$, $2 \le \omega \le 3$ linear algebra constant.
- *d_{reg}* difficult to estimate in general.
 - In our case we can bound it.

Contents

2 Modeling

3) Our Contributions

- Randomized Polynomial-time Algorithm for HSP_q , with q > d
- Heuristic Randomized Polynomial-time Algorithm for HSP₂

First Approach

Toy Example

 $(p_1 = x_1x_2 + x_1 + x_2x_4 + x_4, p_2, p_3, p_4, q_1, \dots, q_4), A = \begin{pmatrix} a_{1,1} & \dots & a_{1,4} \\ a_{2,1} & \dots & a_{2,4} \end{pmatrix}$ matrix of size 2 × 4. Let (y_1, y_2) be formal variables over \mathbb{F}_2 .

$$p_1((y_1, y_2)A) = 0 = (a_{1,1}a_{2,2} + a_{2,1}a_{1,2} + a_{1,2}a_{2,4} + a_{2,2}a_{1,4})y_1y_2 + (a_{1,1}a_{1,2} + a_{1,2}a_{1,4} + a_{1,1} + a_{1,4})y_1 + (a_{2,1}a_{2,2} + a_{2,2}a_{2,4} + a_{2,1} + a_{2,4})y_2 =$$

First Approach

Toy Example

=

 $(p_1 = x_1x_2 + x_1 + x_2x_4 + x_4, p_2, p_3, p_4, q_1, \dots, q_4), A = \begin{pmatrix} a_{1,1} & \dots & a_{1,4} \\ a_{2,1} & \dots & a_{2,4} \end{pmatrix}$ matrix of size 2 × 4. Let (y_1, y_2) be formal variables over \mathbb{F}_2 .

$$p_1((y_1, y_2)A) = 0 = (a_{1,1}a_{2,2} + a_{2,1}a_{1,2} + a_{1,2}a_{2,4} + a_{2,2}a_{1,4})y_1y_2 + (a_{1,1}a_{1,2} + a_{1,2}a_{1,4} + a_{1,1} + a_{1,4})y_1 + (a_{2,1}a_{2,2} + a_{2,2}a_{2,4} + a_{2,1} + a_{2,4})y_2 = Coeff(p_1, y_1y_2)y_1y_2 + Coeff(p_1, y_1)y_1 + Coeff(p_1, y_2)y_2 \Rightarrow Coeff(p_1, y_1y_2) = Coeff(p_1, y_1) = Coeff(p_1, y_2) = 0.$$

Modeling

First Approach

Toy Example

 $(p_1 = x_1x_2 + x_1 + x_2x_4 + x_4, p_2, p_3, p_4, q_1, \dots, q_4), A = \begin{pmatrix} a_{1,1} & \dots & a_{1,4} \\ a_{2,1} & \dots & a_{2,4} \end{pmatrix}$ matrix of size 2 × 4. Let (y_1, y_2) be formal variables over \mathbb{F}_2 .

$$p_1((y_1, y_2)A) = 0 = (a_{1,1}a_{2,2} + a_{2,1}a_{1,2} + a_{1,2}a_{2,4} + a_{2,2}a_{1,4})y_1y_2 + +(a_{1,1}a_{1,2} + a_{1,2}a_{1,4} + a_{1,1} + a_{1,4})y_1 + (a_{2,1}a_{2,2} + a_{2,2}a_{2,4} + a_{2,1} + a_{2,4})y_2 = Coeff(p_1, y_1y_2)y_1y_2 + Coeff(p_1, y_1)y_1 + Coeff(p_1, y_2)y_2 \implies Coeff(p_1, y_1y_2) = Coeff(p_1, y_1) = Coeff(p_1, y_2) = 0.$$

Naive Model

A

$$\forall i \in \{1, \dots, m\}, \forall t \in \mathsf{M}\big(\mathbb{F}_{q}[y_{1}, \dots, y_{n/2}]\big),$$
$$\mathsf{SysNaive}_{\mathsf{HSP}_{q}} = \begin{cases} \mathsf{Coeff}(p_{i}, t) = 0, \\ \mathsf{Coeff}(q_{i}, t) = 0. \end{cases}$$

Optimizing the Model

Key Observation

If A is a solution of HSP_q , for any $S\in\mathrm{GL}_{n/2}(\mathbb{F}_q)$, SA is also a solution.

Naive Model Has Many Equivalent Solutions. Not optimal.

Canonical Form of the Solution of HSP_q

With probability

$$\gamma_q(n/2) = \prod_{i=1}^{n/2} \left(1 - rac{1}{q^i}
ight) pprox 1 - rac{1}{q} \; ,$$

A admits a basis in systematic form

(I|G), $G = (g_{i,j})$ is an $n/2 \times n/2$ matrix.

Our Model

Optimizing the Model

Naive system with *A* in systematic form.

Our Model

$$\forall i \in \{1,\ldots,m\}, \forall t \in \mathsf{M}(\mathbb{F}_q[y_1,\ldots,y_{n/2}]),$$

$$\mathsf{Sys}_{\mathsf{HSP}_q} = egin{cases} \mathsf{Coeff}(p_i,t) = 0, \ \mathsf{Coeff}(q_i,t) = 0. \end{cases}$$

Contents

2 Modeling

Our Contributions

- Randomized Polynomial-time Algorithm for HSP_q , with q > d
- Heuristic Randomized Polynomial-time Algorithm for HSP₂

HSP_q , with q > d

Linear Equations

For all $i \in \{1, \ldots, m\}, j \in \{1, \ldots, n\}$, denoting by

$$p_i^{(1)} = \sum_{j=1}^n \lambda_{i,j}^p x_j, \ q_i^{(1)} = \sum_{j=1}^n \lambda_{i,j}^q x_j, \quad \lambda_{i,j}^p, \lambda_{i,j}^q \in \mathbb{F}_q \ ,$$

 $\forall i \in \{1, \dots, m\}, \forall k \in \{1, \dots, n/2\}$, the following equations are linear:

$$Coeff(p_i, y_k) = \lambda_{i,k}^p + \sum_{j=1}^{n/2} \lambda_{i,j+n/2}^p g_{k,j},$$
$$Coeff(q_i, y_k) = \lambda_{i,k+n/2}^q - \sum_{j=1}^{n/2} \lambda_{i,j}^q g_{j,k}.$$

HSP_q , with q > d

Matrix of Coefficients of Size $mn \times n^2/4$ Has the Following Shape

Full Rank of the Coefficient Matrix with Overwhelming Probability The probability is $\frac{\gamma_q(m)}{\gamma_q(m-n/2)}$, *m* number of p'_is .

Randomized Polynomial-time Algorithm for HSP_q

Input: $p_1, \ldots, p_m, q_1, \ldots, q_m \in \mathbb{F}_q[x_1, \ldots, x_n]$ of degree $d \ge 3$, $n \le m \le 2n$.

Construct the linear system

{Coeff(p_i, y_k), Coeff(q_i, y_k), $\forall i \in \{1, \dots, m\}, \forall j \in \{1, \dots, n/2\}$ }.

Solve it.

Return this solution.

- Complexity $\mathcal{O}(n^{2\omega})$, $2 \le \omega \le 3$ linear algebra constant.
- Success probability

 $\frac{\gamma_q(n/2)\gamma_q(m)}{\gamma_q(m-n/2)} \ .$

Some Benchmarks for HSP_q , q > d

Table : Experiments performed for m = n with MAGMA v.19

					d = 3	d = 4
n	# Variables	#Eqs	q	Exh. search	Ti	me
12	36	1992	$2^{16} + 1$	$\mathcal{O}\left(2^{576}\right)$	0.00s	0.00s
20	100	11400	$2^{16} + 1$	$\mathcal{O}\left(2^{1600}\right)$	0.02s	0.02s

 HSP_q for big q is insecure!

- No linear equations: all equations are of degree *d* with overwhelming probability.
 - Reductions modulo the field equations.

Sys_{HSP_2} Very Overdetermined Non-Linear System

• The number of equations is at least

$$2n\left[\binom{n/2}{1}+\ldots+\binom{n/2}{d}\right]\gg n^2/4.$$

• Behaviour when computing a Gröbner basis?

Some Benchmarks for HSP₂

Table : Experiments performed for m = n with MAGMA v.19

<i>d</i> = 3									
n	# Variables	#Eqs	d _{reg}	Exh. search	Time				
14	49	1764	4	$\mathcal{O}\left(2^{49}\right)$	136s				
16	64	2944	4	$\mathcal{O}\left(2^{49}\right)$	2.30min				
18	81	4644	4	$\mathcal{O}\left(2^{81}\right)$	2h20				
d = 4									
n	# Variables	#Eqs	d _{reg}	Exh. search	Time				
12	36	1344	5	$\mathcal{O}\left(2^{36}\right)$	38s				
14	49	2744	5	$\mathcal{O}\left(2^{49}\right)$	66min				

HSP_2

Structural Symmetries in Our Model

If we order in increasing lexicographic order the monomials of degree d $m_i \in \mathbb{F}_2[x_{n/2+1}, \ldots, x_n], m^{\perp}_i \in \mathbb{F}_2[x_1, \ldots, x_{n/2}], \text{ and } t_i \in \mathbb{F}_2[y_1, \ldots, y_{n/2}],$ then

$$\operatorname{Coeff}(m_i, t_j)^{(d)} = \operatorname{Coeff}(m^{\perp}_j, t_i)^{(d)}$$

HSP_2

Structural Symmetries in Our Model

If we order in increasing lexicographic order the monomials of degree d $m_i \in \mathbb{F}_2[x_{n/2+1}, \ldots, x_n], m^{\perp}_i \in \mathbb{F}_2[x_1, \ldots, x_{n/2}], \text{ and } t_i \in \mathbb{F}_2[y_1, \ldots, y_{n/2}],$ then

$$\operatorname{Coeff}(m_i, t_j)^{(d)} = \operatorname{Coeff}(m^{\perp}_j, t_i)^{(d)}$$

Low Degree Equations

$$\operatorname{Coeff}(p, t_j) + \operatorname{Coeff}(q, t_i) + \sum_{\{k \neq i \mid \alpha_k \neq 0\}} \operatorname{Coeff}(q, t_k) + \sum_{\{\ell \neq j \mid \beta_\ell \neq 0\}} \operatorname{Coeff}(p, t_\ell) = 0$$

is of degree d - 1 and is a linear combination of the equations of Sys_{HSP2}.

HSP_2

Behaviour of Sys_{HSP2}

- Degree falls not typically occurring in a random system of equations.
- Heuristically the degree of regularity is bounded by d + 1.

Heuristic Randomized Polynomial-time Algorithm for HSP₂

Input: $p_1, \ldots, p_m, q_1, \ldots, q_m \in \mathbb{F}_q[\mathbf{x}]$ of degree $d \ge 3$, $n \le m \le 2n$.

Compute a Gröbner basis J of Sys_{HSP2}.

Return the variety of J.

• Complexity $\mathcal{O}(n^{2\omega(d+1)})$, $2 \le \omega \le 3$ linear algebra constant.

• Success probability $\gamma_2(n/2)$.

Contents

Modeling

3 Our Contributions

- Randomized Polynomial-time Algorithm for HSP_q , with q > d
- Heuristic Randomized Polynomial-time Algorithm for HSP₂

Conclusions and Open Problems

Conclusions and Open Problems

Conclusions

- HSP_q for big q is easy.
 - Randomized polynomial-time algorithm for HSP_q for big q.
- HSP₂ conjectured to be easy.
 - Heuristic randomized polynomial-time algorithm for HSP₂.

Open Problems

- Noise-free version if the polynomials are not random but more structured (e.g., homogeneous of degree d)?
- O Noisy version?