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Cash from a Classical vs Quantum Perspective

Classical Physics

In principle, it is impossible to make
money uncopyable.

No-cloning Theorem in Quantum Mechanics

@ An unknown quantum state cannot be cloned.
e Can this be used to make unforgeable cash?
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Quantum Money

[ S. Wiesner.
“Conjugate Coding”.
ACM SIGACT News, 15(1):78-88, 1983.

Wiesner's Idea for Quantum Money

A quantum banknote has a serial number and t photons. J
No Forging
@ Probability of successful forging exponentially small on t. J
]
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A Step Forward: Public-key Quantum Money

@ ldeally, anyone should be able to verify the validity of money.
o Public-key quantum money.

[3 E. Farhi et al.
“Quantum Money from Knots”.
ITCS 2012.

[3 S. Aaronson and P. Christiano.
“Quantum Money from Hidden Subspaces”.
STOC 2012.

Quantum Money Scheme of Aaronson-Christiano J

@ Security under a classical (non-quantum) hardness assumption.
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Hardness Assumption

Hidden Subspaces Problem (HSP,)
Input :

® pP1,...,Pm,q1,---,dm € Fglx1, ..., xp] of degree d.
e d>3.

o n<m<2n.

Find : n/2-dimensional subspace A C F;" s.t

pi(A) =0and gi(A*)=0Vie{1,...,m}.

@ Secret key: A.

@ Public key: p1,.-.,Pm, 91,5+, Gm-

e The subspace and the polynomials are chosen uniformly at random
from the appropriate sets.
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Security of the Scheme

Aaronson-Christiano (STOC 2012)

@ Their scheme relies on HSP».

Open Question (STOC'2012)
Extension of the scheme to Fg for any q # 2.

Challenge
@ Is HSP, really a hard problem?
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Contributions

Our Contributions
@ Randomized polynomial-time algorithm for HSP,, ¢ > d.

@ Heuristic randomized polynomial-time algorithm for HSP».

@ Experimentally verified and efficient in practice.

Technique

Algebraic cryptanalysis using Grobner bases.

@ We solve the challenge and master the
complexity of solving.
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Algebraic Cryptanalysis

@ Solution of a problem <+ Solution of a multivariate polynomial system.

@ Solve the system in practice and/or control the complexity of solving.

Our Case (HSP,)

@ Algebraic modeling that allows to master the complexity.
e Similar modeling to the one used for IP in

@ J.-C. Faugere, L. Perret.
“Polynomial Equivalence Problems: Algorithmic and Theoretical
Aspects”.
EUROCRYPT 2006.
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Grobner Bases

Fs Algorithm (J.-C.Faugere, 2002)

Computation of a Grébner basis of (fi,...,f;) C Fq[x1,...,xn] equivalent
to succesive reductions to row echelon form of

ki monomials of degree d ki= ...>= ke
t1f;

i

My = tof;, cee |, deg(tfi) < d.

until for big enough cN!:d,eg, the row echelon form of My, contains a GB.

v
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Grobner Bases
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My = tof;, cee |, deg(tfi) < d.

until for big enough cN!:d,eg, the row echelon form of My, contains a GB.

v

Complexity Analysis
o Complexity of O(n*%e), 2 < w < 3 linear algebra constant.

@ dpeg difficult to estimate in general.
e In our case we can bound it.

E /T




Modeling

Contents

© Modeling

EE o7z



Modeling

First Approach

Toy Example

a ... a
(Pl = X1x2 + X1 + XoX4 + X4, P2, P3, P4, q1, - - - q4)' A= ( b 174)
a1 ... 424
matrix of size 2 x 4. Let (y1, y2) be formal variables over 5.
p1 ((y1,y2)A) = 0 = (ar,1a22 + az1a12 + a12a24 + a22a1.4) y1y2+
+(ar1a12+a12a14+a11+a14) yi+(az1a2+az2aratari+asa)ys =
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Modeling

First Approach

Toy Example

a ... a
(Pl = X1x2 + X1 + XoX4 + X4, P2, P3, P4, q1, - - - Q4). A= ( 1.1 174)
a1 ... 424
matrix of size 2 x 4. Let (y1, y2) be formal variables over 5.

p1((y1,y2)A) = 0= (ar,1a22 + az1a12 + a12a24 + a22a1.4) y1yo+
+(a11a12+a12a14+ar1+a14) yi+(az1a22+assasatari+asa)ys =

Coeff(p1, y1y2)y1y2 + Coeff(p1, y1)y1 + Coeff(p1, y2)y2
= Coeff(p1, y1y2) = Coeff(p1, y1) = Coeff(p1, y2) = 0.
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First Approach

Toy Example

a ... a .
(p1 = x1x2 + X1 + X2Xa + Xa, P2, P3, P4s q1, - - -, Ga), A= ( Lt 1’4) matrix

a1 ... aa
of size 2 x 4. Let (yy, y») be formal variables over F,.

p1((y1,2)A) =0 = (ar,1322 + a2 1312 + 312324 + a22a1.4) 1Yo+
+(ap1a10ta12a14+a11+a14) i+ (a2 1320+ a2 0@ 4+ a2 1+a24) yo =

Coeff(p1, y1y2)y1y2 + Coeff(p1, y1)y1 + Coeff(p1, y2)y2
= Coeff(py, y1y2) = Coeff(py, y1) = Coeff(p1, y») = 0.

Naive Model
Vie{l,...,m}VteM(Fgly1, ., ¥nsl).

Coeff(p;, t) =0,

. 0
Syshaiveyp, = {Coeff(q- H=0
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Optimizing the Model

Key Observation
If A'is a solution of HSPg, for any S € GL,,/»(FF4), SA is also a solution.

.

Naive Model Has Many Equivalent Solutions.
Not optimal.

Canonical Form of the Solution of HSP,,
With probability

n/2

o2 =T (1- 5 ) ~1- 3

i=1

A admits a basis in systematic form

(I1G), G =(gij)isan n/2x n/2 matrix.
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Our Model

Optimizing the Model

Naive system with A in systematic form.

Our Model
Vi e {1, R m},Vt S M(Fq[yl,. . .,y,,/Q]) ,

Sve ] Coeff(p;, t) = 0,
YoHSPq = Coeff(gj, t) = 0.
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Our Contributions
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HSP,, with g > d

Linear Equations

Forallie {1,...,m},j€{1,...,n}, denoting by

)\q € Fq

(1)_Z>‘ x, qf(l)_ZA x,

I,J’

Vie{l,...,m},Vke{l,...,n/2}, the following equations are linear:

n/2
Coeff(pi, yx) = )‘f'j,k + Z )‘ﬁj+n/2gk,j7
Jj=1
n/2
Jj=1
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Randomized Polynomial-time Algorithm for HSPg, with g > d
HSP,, with g > d

Matrix of Coefficients of Size mn x n?/4 Has the Following Shape

N per AP o ... 0 .. 0 .. 0
0 ... 0 N, o XN, .. 0 .0

o .. 0 0o .. 0 Xy e N
A 0 AL . 0 o

0 o AL 0 X, 0

Full Rank of the Coefficient Matrix with Overwhelming Probability

The probability is % . m number of p's.
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Randomized Polynomial-time Algorithm for HSP,

Input: p1,...,Pm,q1,...,qm € Fg[x1,...,x,] of degree d > 3,
n<m<2n.

@ Construct the linear system

{Coeff(p;, yk), Coeff(q;, k) ,
@ Solve it.

Return this solution.

Vie{l,...,mhVje{l,... n/2}}

o | Complexity O(n?*), 2 < w < 3 linear algebra constant.
@ Success probability

14(1/2)7q(m)
Vq(m —n/2)
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Randomized Polynomial-time Algorithm for HSPg, with g > d
Some Benchmarks for HSP,, g > d

Table : Experiments performed for m = n with MAGMA v.19

d=3]d=4
n | # Variables | #Eqs q Exh. search Time
12 36 1992 | 2°+1 [ O(2°°) [ 0.00s | 0.00s
20 100 11400 | 216 +1 [ O (21°%9) [ 0.02s | 0.02s

HSP, for big g is insecure!
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Heuristic Randomized Polynomial-time Algorithm for HSP,
HSP,

@ No linear equations: all equations are of degree d with overwhelming
probability.
e Reductions modulo the field equations.

Syspsp, Very Overdetermined Non-Linear System

@ The number of equations is at least

2n [("{2> 4.+ <n(/12>] > n? /4.

@ Behaviour when computing a Grobner basis?
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Heuristic Randomized Polynomial-time Algorithm for HSP,
Some Benchmarks for HSP,

Table : Experiments performed for m = n with MAGMA v.19

d=3

n | # Variables | #Eqs | de, | Exh. search Time

14 49 1764 | 4 O (2%) 136s

16 64 2944 | 4 O (2*) | 2.30min

18 81 4644 | 4 O (2% 2h20
d=

n | # Variables | #Eqs | d., | Exh. search Time

12 36 1344 | 5 O (2°°) 38s

14 49 2744 | 5 O (2%) 66min
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Heuristic Randomized Polynomial-time Algorithm for HSP,
HSP,

Structural Symmetries in Our Model

If we order in increasing lexicographic order the monomials of degree d

m; € F2 [Xp/241- - Xn) s b € F2 [x1,. ., X /0], and & € Fa [y1,..., ¥y,
then

Coeff(m,-, tj)(d) = CoefF(mJ‘J-, t,-)(d) .
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Heuristic Randomized Polynomial-time Algorithm for HSP,
HSP,

Structural Symmetries in Our Model
If we order in increasing lexicographic order the monomials of degree d

mj € F2 [Xy/2415 - - Xn] ,mbi €Fy [x,.. o Xn2], and i € Fa [y1,.. ., yaa),

then
Coeff(m,-, tj)(d) = CoefF(mJ‘J-, t,-)(d)

Low Degree Equations

Coeff(p, tj)+Coeff(q, t;)+ Z Coeff(q, ty)+ Z Coeff(p, tg) =0
{k#ilax#0} {€#)]8¢#0}

is of degree d — 1 and is a linear combination of the equations of Sysygp, .
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HSP,

Behaviour of Sysysp,

@ Degree falls not typically occurring in a random system of equations.
@ Heuristically the degree of regularity is bounded by d + 1.

Heuristic Randomized Polynomial-time Algorithm for HSP,

Input: p1,...,Pm,q1,...,qm € Fg[x] of degree d > 3, n < m < 2n.
@ Compute a Grobner basis J of Sysygp, .
Return the variety of J.

o | Complexity O(n?**(4+1)) 2 < o < 3 linear algebra constant.

@ Success probability v2(n/2).
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Conclusions and Open Problems

Conclusions and Open Problems

Conclusions
@ HSP, for big q is easy.
o Randomized polynomial-time algorithm for HSP, for big q.
@ HSP, conjectured to be easy.
e Heuristic randomized polynomial-time algorithm for HSP».

Open Problems

© Noise-free version if the polynomials are not random but more
structured (e.g., homogeneous of degree d)?

@ Noisy version?
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