Practical Cryptanalysis of a Public-Key
Encryption Scheme Based on New Multivariate
Quadratic Assumptions

Martin R. Albrecht?, Jean-Charles Faugere?34,
Robert Fitzpatrick>, Ludovic Perret?34,

Yosuke Todo®, Keita Xagawa®

1 Technical University of Denmark, 2 Sorbonne Universités, 3 INRIA, 4 CNRS,

5 Royal Holloway, University of London, 6 NTT Secure Platform Laboratories



Summary

We revisit an MQ-based cryptosystem
proposed by Huang, Liu and Yang at PKC2012.

We can regard HLY12 as lattice-based
cryptosystems.

A Core i7 PC finds the secret keys in 5 - 16 min
by using LLL for proposed parameter sets.

Recommendation parameters.



Agenda

* Introduction
— MQ-based cryptography



MQ (Multivariate Quadratic Polynomials)

* Quantum computers break RSA, DH and so on.

 We are working on Post-Quantum cryptography
— Code-based cryptography
— Lattice-based cryptography
— Multivariate-based cryptography



MQ (Multivariate Quadratic Polynomials)

We let Q = {f € F[xq, ..., x,]| deg(f) <2}

MQ Problem A

Input: F = (fy, ... fp) €EQ™andy = (yq, ..., V) € F™

Output: 5 = (S,...,5,) EF"st. F(s) =y
g /
* This problem is NP-hard.
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Agenda

* The HLY12 Cryptosystem



Several MQ-based cipher’s Idea

 Make F as a trapdoor function

— Choose G € Q™ which is easily invertible
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Several MQ-based cipher’s Idea

Several schemes are broken!
e.g. C*, SFLASH, MQQ, ¢-IC, ...
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HLY12's Idea #1

e [ should be chosen randomly as possible
— F is NOT a trapdoor function.

— Change the roles of F,y, s
s 2
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e F consists of two parts

HLY12’s Idea
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HLY12’s Encryption

e Choose random 7

[, | |#|modq—>u
y - Fmodq—>+<—%m
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HLY12’s Decryption

e The 1stterm of (s, u) is the same as that of ¢

Qi) || 7 [+

Linear Quadratic



* If Q(S) - 7 is short, m can be recovered.

(5,u)=

a
1

HLY12’s Decryption
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Suggested Parameters
IS S S T

~ 274- 2256 (2156 2—100)

2 256 512 ~ 276 PEVE p2iE H-lbay

{ L 1+ Q) ] modgq

U(-22D) UZy) (BQsSE, ..., 3Qpmst)

<<
1
vy

Given (L, Q,) € 7™ x (z2*™)™ x 71", finding §.

(T, i) : no solver running in time less than T can solve the system with prob. > p.
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e Attack for Lattice



Security of the HLY12

* The security is estimated by the XL algorithm.

— Two recommendation parameters were given.

 We can regard HLY12 as lattice-based
cryptosystems.

— Q(S) is very small vectors



Lattice-based cryptography?

e We can regard Q(S) as error vectors
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If we regard Q(S) as error vectors,

HLY12 is similar to the Regev Cryptosystem J




First Lattice (g-Ary Lattice)
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Casel 26 hours
Case 2 3 days

We can attack HLY12 in practical time
by using lattice reduction algorithms
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Second Lattice (NTRU-like lattice)

* Sisvery short compared with Q(5)

Q(s); € [N(0,10)]
. T ) N s; € U([—2,2])

< | mm)(e® JTE 1

\_ 2\ J
y 1

~
~

Observation The dimension is so huge...




Third Lattice (Truncated lattice)

e We can truncate the matrix

Q(s); € [N(0,10)]
s; € U([-2,2])

eE) J s 1

|
Case 1 5 min
Case 2 16 min

We should choose s; from |N(0,10)] to

avoid our lattice attack.

|
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* New Security Estimation

Robert will talk the remaining contents
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@ Estimating LWE Security
e Security Conditions for HLY
e Implications for HLY Key Sizes

e Conclusion
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Estimating LWE Security

Estimating LWE Security (i)

If we view HLY from an LWE perspective...

How to estimate the practical security of LWE/LWE-like

functions?
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Estimating LWE Security

Estimating LWE Security (i)

If we view HLY from an LWE perspective...

How to estimate the practical security of LWE/LWE-like

functions?

@ In practise, by examining the cost of: dual-lattice-reduction
+ distinguishing (MRO09); lattice-reduction + decoding
(LP10, LN13) or embedding lattice reduction (AFG13).

@ Dual-lattice distinguishing

@ Reduction + decoding

@ Embedding

@ (and BKW)

@ In general, security closely related to g/o.
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Estimating LWE Security
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Estimating LWE Security

Dual-Lattice Distinguishing

@ Find a short y € £ (scaled dual g-ary lattice): check if
<.}7’ 6> = <.}77 AT§+ é> = <y, é> is short.
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Estimating LWE Security

Dual-Lattice Distinguishing

@ Find a short y € £ (scaled dual g-ary lattice): check if
<.}7’ 6> = <.}77 AT§+ é> = <y, é> is short.

@ Distinguishing advantage: ¢ ~ exp (—77 (¥l - a\/27r/q)2>

Robert Fitzpatrick PKC 2014, Buenos Aires
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Estimating LWE Security

Reduction + Decoding

@ Reduce the primal basis

@ Then carry out Klein’s algorithm to find closest vector (or a
pruned version [LN13])

@ Most effective method in practice

Robert Fitzpatrick PKC 2014, Buenos Aires
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Estimating LWE Security

Embedding and BKW

@ Embedding attack: Given a matrix-LWE sample (A, ¢) we
construct

Then construct

@ [t (] shortest vectorin £L(B). Second minimum is first
minimum of £(A"). Resulting unique-SVP instance
somehow easier...

@ BKW: previous talk - also breaks the proposed parameters
but not as effectively as lattice attacks

Robert Fitzpatrick PKC 2014, Buenos Aires
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Estimating LWE Security

Estimating LWE Security (ii)

Simply, characterise ‘strength’ of lattice reduction by Hermite
root factor, dg. o5 ~ 1.0219, 555“** ~ 1.0128

0o = 1.009: roughly limit of current algorithms. Jo = 1.005:
“well-beyond reach".

Running time of BKZ?

@ Still problematic to predict - too many variables. Block-size,
choice of SVP sub-routine (further variables),
pre-processing of local bases, early termination etc.

@ BKZ 2.0 simulator, simple model of Lindner & Peikert

@ log, Teee = 1.8/10g, 69 — 110
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Security Conditions for HLY

HLY Security Conditions (i)

HLY Conditions
@ k-(¢ - .m- 3% < g/4 (correct decryption)

@ m-log(2m* +1) > (n+ 1)log g + 2k (hardness of subset
sum problem)

@ n,m,q,(, s satisfy MQ hardness assumption

For security against the distinguishing attack:

LWE-derived Conditions

2 — T .
o exp (_ér? -(ck)=2. p~*4 . 23:60n/(r+78 9)) —d
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Implications for HLY Key Sizes

Implications for Required Key Sizes

To reconcile HLY with security against the distinguishing attack,
we have the following:

@ 80-bit security = (n = 1140) = public-key size: 1.03 GB
@ 128-bit security = (n = 1530) = public-key size: 2.49 GB

Robert Fitzpatrick PKC 2014, Buenos Aires



Conclusion

Conclusions

@ Scheme of HLY represents an interesting and rigorous
approach to construct a provably-secure MQ PKC.

@ Commendable that concrete parameters were proposed.

@ However the extra structure required to describe it as MQ
instead of LWE leads to prohibitive key sizes

@ Ring-LWE analogue?
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Conclusion

Questions?
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