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Lattices

Definition (Lattice)
Given a matrix B = (bij) ∈ Rm×n with rank n, the lattice L(B)
spanned by the columns of B is

L(B) = {Bx =
n∑

i=1

xibi|xi ∈ Z},

where bi is the i-th column of B.

Lattices can also be regarded as discrete subgroups of Rm.

Gengran Hu joint work with Yanbin Pan, Feng Zhang Solving Random Subset Sum Problem by lp-norm SVP Oracle



Lattices and SVP
Random Subset Sum Problem

Solving RSSP by lp-norm SVP Oracle

Shortest Vector Problem

Definition (lp-norm SVP)

Given a lattice basis B, the lp-norm SVP asks to find a nonzero
vector in L(B) with the smallest lp-norm.

SVP is one of the most famous computational problems of
lattice.

SVP’s hardness is important in proving the security of
almost all the lattice-based cryptography.
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Hardness of SVP

The l∞-norm SVP is NP-hard under deterministic
reduction.

However, SVP for other norms can only be proved to be
NP-hard under randomized reduction.
(Ajtai 1998, Micciancio 2001, 2012)

Gengran Hu joint work with Yanbin Pan, Feng Zhang Solving Random Subset Sum Problem by lp-norm SVP Oracle



Lattices and SVP
Random Subset Sum Problem

Solving RSSP by lp-norm SVP Oracle

Outline

1 Lattices and SVP

2 Random Subset Sum Problem

3 Solving RSSP by lp-norm SVP Oracle

Gengran Hu joint work with Yanbin Pan, Feng Zhang Solving Random Subset Sum Problem by lp-norm SVP Oracle



Lattices and SVP
Random Subset Sum Problem

Solving RSSP by lp-norm SVP Oracle

Subset Sum Problem

Definition (SSP)
Given a = (a1, a2 . . . an) in [1,A]n and s =

∑n
i=1 eiai where

e = (e1e2 . . . en) ∈ {0, 1}n is independent of a, SSP refers to finding
some c = (c1c2 . . . cn) ∈ {0, 1}n s.t. s =

∑n
i=1 ciai without knowing e.

SSP is a well-known NP-hard problem.
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Random Subset Sum Problem

When all of the elements in SSP, say a1, a2 . . . an are
uniformly random over [1,A], SSP becomes RSSP, which
is also a significant computational problem.

The density of such random subset sum instance is
defined as

δ =
n

log2 A
.
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Hardness of RSSP

The hardness of RSSP is depending on its density:

If δ < 1/n, RSSP can be efficiently solved by LLL algorithm.
(Lagarias & Odlyzko, 1985)

If δ > Ω( n
log2 n ), RSSP can be efficiently solved by dynamic

programming.

The hardest instances of RSSP lie in those with δ = 1.
(Impagliazzo & Naor, 1996)
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Solving RSSP by SVP oracle

Given an lp-norm SVP oracle, RSSP can be almost solved with:

δ < 0.9408(p = 2).(Coster et al, 1992)

δ < +∞(p = +∞).

Q1:How to improve the density bound from 0.9408 to 1 or
larger?

Q2:How to explain the gap between 0.9408 and +∞?
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Solving RSSP by SVP oracle

We answer the second question:

For p ∈ Z+, p ≥ 2, given the lp-norm SVP oracle, almost all
RSSP instances can be solved with density δ s.t.

δ < δp =
1
2p log2(2p+1−2)+ log2(1+

1
(2p − 1)(1 − ( 1

2p+1−2 )(2p−1))
).

(Asymptotically, δp ≈ 2p/(p + 2))
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Solving RSSP by SVP oracle

The table below gives the values of δp for p from two to five:

p 2 3 4 5
δp 0.9408 1.4957 2.5013 4.3122

More specifically, we have δp > 1(p ≥ 3) and
δp → +∞(p→ +∞).
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Revisiting RSSP

An RSSP instance consists of a = (a1, a2 . . . an) distributed
uniformly in [1,A]n and s =

∑n
i=1 eiai with private

e = (e1e2 . . . en) ∈ {0, 1}n.

The density of this instance is

δ =
n

log2 A
.

Our goal is to find some c = (c1c2 . . . cn) ∈ {0, 1}n s.t.
s =
∑n

i=1 ciai.
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Constructing respective lattice

From RSSP instance, we construct the lattice basis matrix
to be

B =



1 0 . . . 0 1
2

0 1 . . . 0 1
2

...
...

...
...

0 0 . . . 1 1
2

0 0 . . . 0 1
2

Na1 Na2 . . . Nan Ns


,

where N > 1
2 (n + 1)

1
p is an positive integer.
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Calling SVP oracle

we see L(B) contains a corresponding short lattice vector
e′ = (e

′

1 . . . e
′

n,−
1
2 , 0) with e

′

i = ei −
1
2 ∈ {−

1
2 ,

1
2 }.

If SVP oracle returns ±e′ , we can recover our e from ±e′ .

In fact, Considering the set
Sn = {(y1, y2 . . . yn+1, 0)T | |yi| =

1
2 }, if our SVP oracle returns

an x ∈ Sn, we can also recover an solution c of RSSP.

What if x < Sn?
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Failure Probability

We fail to solve RSSP if x < Sn.

Denote P the probability of x < Sn, we can still almost solve
RSSP if P ≤ 1/2Ω(n).
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Failure Probability

Formally,

P = Pr(∃x s.t. 0 < ‖x‖p ≤ ‖e
′

‖p, x ∈ L(B)\Sn).

We can bound P as

P ≤
∑

0<‖x‖p≤‖e
′
‖p

Pr(x ∈ L(B)\Sn)

≤ max
0<‖x‖p≤‖e

′
‖p

Pr(x ∈ L(B)\Sn) · #{x ∈ Zn+1|‖x‖p ≤
1
2

(n + 1)
1
p }
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Failure Probability

Considering any x ∈ L(B)\Sn, taking zi = xi + 2xn+1ei − xn+1, then∑n
i=1 ziai = 0 and ∃j s.t. zj , 0. Let z

′

= −
∑

i,j ziai/zj, then

max
0<‖x‖p≤‖e

′
‖p

Pr(x ∈ L(B)\Sn) ≤ Pr(
n∑

i=1

ziai = 0, zj , 0)

= Pr(aj = z
′

)

=

A∑
k=1

Pr(aj = k) · Pr(z
′

= k)

=
1
A

A∑
k=1

Pr(z
′

= k)

≤
1
A
.
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Failure Probability

Thus we’ve obtained

P ≤
1
A
· #{x ∈ Zn+1|‖x‖p ≤

1
2

(n + 1)
1
p }
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Failure Probability

If we find suitable up s.t. #{x ∈ Zn|‖x‖p ≤ 1
2 n

1
p } ≤ 2upn for

every n, then

P ≤
2up(n+1)

A
=

2up(n+1)

2( 1
δ n)
.

When δ < 1/up , δp, P ≤ 1/2Ω(n), thus we can solve RSSP
with high probability.
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Estimating integer points in lp ball

We can find an upper bound

up =
1
2p log2(2p+1 − 2) + log2(1 +

1
(2p − 1)(1 − ( 1

2p+1−2 )(2p−1))
)

(Asymptotically, up ≈ (p + 2)/2p) to make sure

#{x ∈ Zn|‖x‖p ≤
1
2

n
1
p } ≤ 2upn.

On the other hand, for large enough n, there is a lower
bound:

#{x ∈ Zn|‖x‖p ≤
1
2

n
1
p } ≥

1
Ω(n3/2)

2lpn.
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Estimating integer points in lp ball

The up and lp are so close:

p 2 3 4 5
up 1.0613 0.6686 0.3998 0.2319
lp 1.0630 0.6686 0.3998 0.2319

In fact, we can prove the error bound:

up − lp
up

< (2p − 1)−(2p−1).
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Conclusion

Since RSSP with density = 1 is the hardest and δp > 1
when p ≥ 3, we have a probabilistic reduction from RSSP
to lp-norm SVP(p ≥ 3).
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Open Problems

Proving RSSP is NP-hard will lead to another probabilistic
reduction to show lp-norm SVP(p ≥ 3) is NP-hard.

Finding SVP algorithm for lp-norm is also interesting.

Gengran Hu joint work with Yanbin Pan, Feng Zhang Solving Random Subset Sum Problem by lp-norm SVP Oracle



Lattices and SVP
Random Subset Sum Problem

Solving RSSP by lp-norm SVP Oracle

Thanks!
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