
Scale-Invariant Fully Homomorphic
Encryption over the Integers

J.-S. Coron T. Lepoint M. Tibouchi

PKC 2014
Thursday, March 27th, 2014



FHE

x1, . . . , xn f

Enc(x1), . . . ,Enc(xn)
−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−

Enc(f (x1, . . . , xn))

Homomorphic Encryption

f ,Enc(x1), . . . ,Enc(xn) −→ Enc(f (x1, . . . , xn))

We assume w.l.o.g that xi bits and f boolean circuit

2/17



FHE Schemes

FHE

Perform operations on plaintexts by manipulating only ciphertexts,
and without knowing the private-key.

� Too many schemes existing to do an exhaustive list now...

� Main families: [Gen09], [vDGHV10], [BV11], [LTV12],
[GSW13]

3/17



FHE Schemes

FHE

Perform operations on plaintexts by manipulating only ciphertexts,
and without knowing the private-key.

� Too many schemes existing to do an exhaustive list now...

� Main families: [Gen09], [vDGHV10], [BV11], [LTV12],
[GSW13] ⇓

improved in a series of works
[CMNT11], [CNT12],

[CCKLLTY13]

3/17



FHE Schemes

FHE

Perform operations on plaintexts by manipulating only ciphertexts,
and without knowing the private-key.

� Too many schemes existing to do an exhaustive list now...

� Main families: [Gen09], [vDGHV10], [BV11], [LTV12],
[GSW13] ⇓

improved in a series of works
[CMNT11], [CNT12],

[CCKLLTY13] ⇒ Batch DGHV scheme
based on the decisional

AGCD problem

3/17



FHE Schemes

FHE

Perform operations on plaintexts by manipulating only ciphertexts,
and without knowing the private-key.

� Too many schemes existing to do an exhaustive list now...

� Main families: [Gen09], [vDGHV10], [BV11], [LTV12],
[GSW13] ⇓

improved in a series of works
[CMNT11], [CNT12],

[CCKLLTY13] ⇒ Batch DGHV scheme
based on the decisional

AGCD problem

3/17



FHE Schemes

FHE

Perform operations on plaintexts by manipulating only ciphertexts,
and without knowing the private-key.

� Too many schemes existing to do an exhaustive list now...

� Main families: [Gen09], [vDGHV10], [BV11], [LTV12],
[GSW13] ⇓

improved in a series of works
[CMNT11], [CNT12],

[CCKLLTY13] ⇒ Batch DGHV scheme
based on the decisional

AGCD problem

3/17



The DGHV Scheme [vDGHV10]

� Public xi = qi · p + 2ri and error-free modulus x0 = q0 · p
� Public encryption of m ∈ {0, 1}:

c = m + 2r ′ +
∑
i∈S

xi mod x0

where p is the secret-key, S random subset and r ′ is a “big”
random

� Decryption:
(c mod p) mod 2 = m

4/17



The DGHV Scheme [vDGHV10]

� Public xi = qi · p + 2ri and error-free modulus x0 = q0 · p
� Public encryption of m ∈ {0, 1}:

c = m + 2
(

r ′ +
∑
i∈S

ri

)
+
(∑

i∈S
qi

)
· p mod x0

where p is the secret-key, S random subset and r ′ is a “big”
random

� Decryption:
(c mod p) mod 2 = m

4/17



The DGHV Scheme [vDGHV10]

� Public xi = qi · p + 2ri and error-free modulus x0 = q0 · p
� Public encryption of m ∈ {0, 1}:

c = m + 2
(

r ′ +
∑
i∈S

ri

)
+
(∑

i∈S
qi

)
· p mod x0 = q0 · p

where p is the secret-key, S random subset and r ′ is a “big”
random
I LHL can be applied on the qi ’s
I LHL cannot be applied on the ri ’s: so we use a drowning

factor r ′

� Decryption:
(c mod p) mod 2 = m

4/17



The DGHV Scheme [vDGHV10]

� Public xi = qi · p + 2ri and error-free modulus x0 = q0 · p
� Public encryption of m ∈ {0, 1}:

c = m + 2r ′ +
∑
i∈S

xi mod x0

where p is the secret-key, S random subset and r ′ is a “big”
random
I LHL can be applied on the qi ’s
I LHL cannot be applied on the ri ’s: so we use a drowning

factor r ′

� This did not generalized easily to batch DGHV...
� Either intricate proof [CLT13, eprint 2013/036] or decisional
AGCD problem (hard to distinguish xi = qip + ri from random
modulo x0) [CCKLLTY13]

� Decryption:
(c mod p) mod 2 = m

4/17



The DGHV Scheme [vDGHV10]

� Public xi = qi · p + 2ri and error-free modulus x0 = q0 · p
� Public encryption of m ∈ {0, 1}:

c = m + 2r ′ +
∑
i∈S

xi mod x0

where p is the secret-key, S random subset and r ′ is a “big”
random

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r′ : ρ ' 80 bits

� Decryption:
(c mod p) mod 2 = m

4/17



The DGHV Scheme [vDGHV10]

� Public xi = qi · p + 2ri and error-free modulus x0 = q0 · p
� Public encryption of m ∈ {0, 1}:

c = m + 2r ′ +
∑
i∈S

xi mod x0

where p is the secret-key, S random subset and r ′ is a “big”
random

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r′ : ρ ' 80 bits

� Decryption:
(c mod p) mod 2 = m

4/17



Homomorphic Properties

� Addition:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 + c2 = q′ · p + 2r ′ + (m1 + m2)

� Multiplication:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 · c2 = q′′ · p + 2r ′′ + (m1 ·m2)

with
r ′′ = 2r1r2 + r1m2 + r2m1

p

×

ρ

×

p

2ρ

×

p

4ρ

5/17



Homomorphic Properties

� Addition:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 + c2 = q′ · p + 2r ′ + (m1 + m2)

� Multiplication:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 · c2 = q′′ · p + 2r ′′ + (m1 ·m2)

with
r ′′ = 2r1r2 + r1m2 + r2m1

p

×

ρ

×

p

2ρ

×

p

4ρ

5/17



Scale Invariance

� How to avoid exponential growth?
I Modulus Switching [BGV12]: multiply by q′/q and round;

the noise goes down by a factor ≈ q′/q
Secret key s ∈ Zn, Ciphertext c ∈ Zn

q

~c ·~s = m + 2e + qI

I Scale-Invariance [Bra12]: do not need to change modulus,
but noise growth still linear
Secret key s ∈ Zn, Ciphertext c ∈ Rn

~c ·~s = m + ε+ 2I

� ⇒ Leveled FHE: noise growth linear in mult. depth instead of
exponential

6/17



Scale Invariance

� How to avoid exponential growth?
I Modulus Switching [BGV12]: multiply by q′/q and round;

the noise goes down by a factor ≈ q′/q
Secret key s ∈ Zn, Ciphertext c ∈ Zn

q

~c ·~s = m + 2e + qI

I Scale-Invariance [Bra12]: do not need to change modulus,
but noise growth still linear
Secret key s ∈ Zn, Ciphertext c ∈ Rn

~c ·~s = m + ε+ 2I

� ⇒ Leveled FHE: noise growth linear in mult. depth instead of
exponential

6/17



Scale Invariance

� How to avoid exponential growth?
I Modulus Switching [BGV12]: multiply by q′/q and round;

the noise goes down by a factor ≈ q′/q
Secret key s ∈ Zn, Ciphertext c ∈ Zn

q

~c ·~s = m + 2e + qI

I Scale-Invariance [Bra12]: do not need to change modulus,
but noise growth still linear
Secret key s ∈ Zn, Ciphertext c ∈ Rn

~c ·~s = m + ε+ 2I

� ⇒ Leveled FHE: noise growth linear in mult. depth instead of
exponential

6/17



Our Contributions

� Equivalence between Error-Free Decisional AGCD and
Error-Free Computational AGCD
I Automatically simplifies all previous DGHV schemes

[vDGHV10,CMNT11,CNT12,CLT13a]

� Variant of DGHV and batch DGHV that is scale invariant
I Noise growth linear in the multiplicative depth
I but only one modulus: p2 instead of p

� Homomorphic Evaluation of AES with a scale invariant
scheme

7/17



Computational/Decisional AGCD

Error-Free Settings: For efficiency reason for FHE schemes, we
work with an exact multiple

x0 = q0 · p
of the secret key p.

� Computational AGCDγ,η,ρ: given x0 and polynomially many
xi = qi · p + ri , recover p

� Decisional AGCDγ,η,ρ: given x0, polynomially many
xi = qi · p + ri and

z = qz · p + rz + b · u mod x0

where u ← [0, x0), recover b

The (Error-Free) Computational and Decisional AGCD problems
are equivalent

8/17



New (Batch) DGHV Scheme

� One-Slot Scheme
I Public xi = qi · p + 2ri and error-free modulus x0 = q0 · p
I Public encryption of m ∈ {0, 1}:

c = m +
∑
i∈S

xi mod x0

I Decryption:
(c mod p) mod 2 = m

� Multi-Slots Scheme
I Encryption of ~m = (mi ) is qi · p1 × · · · × pn + CRTpi (2ri + mi )
I Public xi = Enc(0), error-free modulus x0 = q0 · p1 × · · · × pn

and elements x ′i = Enc(~ei ) (where ~ei [j ] = δi,j)
I Public encryption of ~m ∈ {0, 1}n:

c =
n∑

i=1

mi · x ′i +
∑
i∈S

xi mod x0

9/17



Scale Invariant DGHV

� Main Ideas: work with secret p2 and move bit message to
MSB modulo p instead of LSB modulo p

� Type-I ciphertext:

c = q · p2 + (2r∗ + m) · p − 1

2
+ r

� Type II ciphertext (after multiplication of Type-I):

c ′ = q′ · p2 + m · p2 − 1

2
+ r ′

� Procedure convert: similar to modulus swiching [CNT12] from
p2 to p... but we somewhat remain with a secret p2

10/17



Procedure Convert

(γ − 2η) bits 2η bits

m1r∗
1

r1q1

ρ bitsρ∗ bits

(γ − 2η) bits 2η bits

m2r∗
2

r2q2

ρ bitsρ∗ bits×

MSB

(2γ − 2η) bits 2η bits

m r′q′

(ρ + ρ∗ + η) bits

LSB

Convert
(γ − 2η) bits 2η bits

mr∗ rq

ρ∗ bits (ρ + ρ∗) bits

Lemma

Let ρ′ be such that ρ′ ≥ η + ρ+ log2(ηΘ). There exists a
procedure Convert which converts a Type-II ciphertext with noise
size ρ′ into a Type-I ciphertext with noise (ρ′ − η + 5, log2 Θ).

� Easy generalization to batching [CCKLLTY13]
11/17



Description of the leveled FHE scheme

� Public xi = qi · p2 + ri , error-free modulus x0 = q0 · p2 and

y = qy · p2 + ry +
p − 1

2
� Public encryption of m ∈ {0, 1}:

c = m · y +
∑
i∈S

xi mod x0

� Decryption:
(2 · c mod p) mod 2 = m

� Mult of c1 and c2:

c ′ = Convert(2c1c2)

12/17



Homomorphic AES?

pkFHE

{EncFHE(mi)}i

EncFHE(f(m0, . . . ,mi))

(public homomorphic computations)

f

� Typical high-level FHE use-case

� ... wait a sec! The ciphertext expansion is huge (prohibitive)!

� What if we use hybrid encryption? [NLV11]

� Now we need to homomorphically evaluate AES−1

13/17



Homomorphic AES?

pkFHE

{EncFHE(mi)}i

EncFHE(f(m0, . . . ,mi))

(public homomorphic computations)

f

� Typical high-level FHE use-case
� ... wait a sec! The ciphertext expansion is huge (prohibitive)!

I If mi is a 4MB image, using [GHS12,CCKLLTY13], the user
would have to send around 200/300GB of encrypted data

� What if we use hybrid encryption? [NLV11]
� Now we need to homomorphically evaluate AES−1

13/17



Homomorphic AES?

pkFHE

{EncAES(mi)}i

EncFHE(f(m0, . . . ,mi))

(public homomorphic computations)

f

???

� Typical high-level FHE use-case
� ... wait a sec! The ciphertext expansion is huge (prohibitive)!
� What if we use hybrid encryption? [NLV11]

I AES does not have ciphertext expansion

� Now we need to homomorphically evaluate AES−1

13/17



Homomorphic AES?

pkFHE,EncFHE(k)

{AESk(mi)}i

EncFHE(f(m0, . . . ,mi))

(public homomorphic computations)

EncFHE AES−1

f

{EncFHE(mi)}i

� Typical high-level FHE use-case
� ... wait a sec! The ciphertext expansion is huge (prohibitive)!
� What if we use hybrid encryption? [NLV11]
� Now we need to homomorphically evaluate AES−1

I Network communication from user to cloud essentially optimal
I But now we need to efficiently evaluate AES−1 before f !!

13/17



Homomorphic AES using SIBDGHV
� Use the same framework as in [CCKLLTY13]
� State-wise AES implementation: 128 ciphertexts, one per bit

of the AES state
� Batching used to perform several AES in parallel

� Compared to BDGHV ([CCKLLTY13])

14/17



Homomorphic AES using SIBDGHV
� Use the same framework as in [CCKLLTY13]
� State-wise AES implementation: 128 ciphertexts, one per bit

of the AES state
� Batching used to perform several AES in parallel

� Compared to BDGHV ([CCKLLTY13])

14/17



Homomorphic AES using SIBDGHV
� Use the same framework as in [CCKLLTY13]
� State-wise AES implementation: 128 ciphertexts, one per bit

of the AES state
� Batching used to perform several AES in parallel

� Compared to BDGHV ([CCKLLTY13])

14/17



Thoughts about Hom. Computations
Partly explicited in [LN14, eprint 2014/062]

pkFHE,EncFHE(k)

{AESk(mi)}i

EncFHE(f(m0, . . . ,mi))

(public homomorphic computations)

EncFHE AES−1

f

{EncFHE(mi)}i

� Parameter selection: either room for f or need to bootstrap :-(

� Latency vs. throughput

� Is AES such a good idea?

15/17



Thoughts about Hom. Computations
Partly explicited in [LN14, eprint 2014/062]

pkFHE,EncFHE(k)

{AESk(mi)}i

EncFHE(f(m0, . . . ,mi))

(public homomorphic computations)

EncFHE AES−1

f

{EncFHE(mi)}i

� Parameter selection: either room for f or need to bootstrap :-(

� Latency vs. throughput

� Is AES such a good idea?

15/17



Thoughts about Hom. Computations
Partly explicited in [LN14, eprint 2014/062]

pkFHE,EncFHE(k)

{AESk(mi)}i

EncFHE(f(m0, . . . ,mi))

(public homomorphic computations)

EncFHE AES−1

f

{EncFHE(mi)}i

� Parameter selection: either room for f or need to bootstrap :-(

� Latency vs. throughput

� Is AES such a good idea?

15/17



Conclusion

Conclusion

� Equivalence between Error-Free Decisional and Computational
AGCD: automatic simplification of previous FHE schemes over
the integers

� New leveled DGHV scheme that is scale invariant (no
modulus switching)

� Timings one order of magnitude faster than [CCKLLTY13]
and comparable to [GHS12] for homomorphic AES evaluation

� AGCD also used for Multilinear Maps [CLT13]: need more
cryptanalysis on this problem
I we hope that our pratical parameters practical parameters will

spur on the cryptanalysis of AGCD

16/17



Questions? or...

Copyright Grumpy Cat

Thank you for your attention

17/17



Recent Attack on Eprint?

18/17


