

Scale-Invariant Fully Homomorphic Encryption over the Integers J.-S. Coron *T. Lepoint* M. Tibouchi

PKC 2014 Thursday, March 27th, 2014 FHE

 x_1, \ldots, x_n

 $\operatorname{Enc}(x_1),\ldots,\operatorname{Enc}(x_n)$

 $\operatorname{Enc}(f(x_1,\ldots,x_n))$

Homomorphic Encryption

$$f$$
, Enc (x_1) ,..., Enc $(x_n) \longrightarrow$ Enc $(f(x_1,...,x_n))$

We assume w.l.o.g that x_i bits and f boolean circuit

FHE

Perform operations on plaintexts by manipulating only ciphertexts, and without knowing the private-key.

- Too many schemes existing to do an exhaustive list now...
- Main families: [Gen09], [vDGHV10], [BV11], [LTV12], [GSW13]

FHE

Perform operations on plaintexts by manipulating only ciphertexts, and without knowing the private-key.

- Too many schemes existing to do an exhaustive list now...
- Main families: [Gen09], [vDGHV10], [BV11], [LTV12], [GSW13] ↓
 improved in a series of works [CMNT11], [CNT12],

[CCKL**L**TY13]

FHE

Perform operations on plaintexts by manipulating only ciphertexts, and without knowing the private-key.

- Too many schemes existing to do an exhaustive list now...
- Main families: [Gen09], [vDGHV10], [BV11], [LTV12], [GSW13] ↓

improved in a series of works [CMNT11], [CNT12],

 $[CCKLLTY13] \Rightarrow Batch DGHV scheme$

based on the decisional AGCD problem

FHE

Perform operations or and without knowing

- Too many schem
- Main families: [G [GSW13]

NOT SO FAST! YOU'LL KILL US BOTH!

y ciphertexts,

list now... V12],

DGHV scheme the decisional D problem

- Public $x_i = q_i \cdot p + 2r_i$ and error-free modulus $x_0 = q_0 \cdot p$
- Public encryption of $m \in \{0, 1\}$:

$$c = m + 2r' + \sum_{i \in S} x_i \bmod x_0$$

- Public $x_i = q_i \cdot p + 2r_i$ and error-free modulus $x_0 = q_0 \cdot p$
- Public encryption of $m \in \{0, 1\}$:

$$c = m + 2\left(r' + \sum_{i \in S} r_i\right) + \left(\sum_{i \in S} q_i\right) \cdot p \mod x_0$$

Public x_i = q_i · p + 2r_i and error-free modulus x₀ = q₀ · p
Public encryption of m ∈ {0,1}:

$$c = m + 2\left(r' + \sum_{i \in S} r_i\right) + \left(\sum_{i \in S} q_i\right) \cdot p \mod x_0 = q_0 \cdot p$$

- ▶ LHL can be applied on the q_i's
- LHL cannot be applied on the r_i's: so we use a drowning factor r'

Public x_i = q_i · p + 2r_i and error-free modulus x₀ = q₀ · p
Public encryption of m ∈ {0,1}:

$$c = m + 2r' + \sum_{i \in S} x_i \bmod x_0$$

- ▶ LHL can be applied on the q_i's
- LHL cannot be applied on the r_i's: so we use a drowning factor r'
 - This did not generalized easily to batch DGHV...
 - Either intricate proof [CLT13, eprint 2013/036] or decisional AGCD problem (hard to distinguish x_i = q_ip + r_i from random modulo x₀) [CCKLLTY13]

Public x_i = q_i · p + 2r_i and error-free modulus x₀ = q₀ · p
Public encryption of m ∈ {0,1}:

$$c = m + 2r' + \sum_{i \in S} x_i \bmod x_0$$

Public x_i = q_i · p + 2r_i and error-free modulus x₀ = q₀ · p
Public encryption of m ∈ {0, 1}:

$$c = m + 2r' + \sum_{i \in S} x_i \bmod x_0$$

where p is the secret-key, S random subset and r' is a "big" random

Decryption:

 $(c \mod p) \mod 2 = m$

Homomorphic Properties

Addition:

$$c_1 = q_1 \cdot p + 2r_1 + m_1$$

 $c_2 = q_2 \cdot p + 2r_2 + m_2$ $\Rightarrow c_1 + c_2 = q' \cdot p + 2r' + (m_1 + m_2)$

Homomorphic Properties

Addition:

$$c_1 = q_1 \cdot p + 2r_1 + m_1$$

 $c_2 = q_2 \cdot p + 2r_2 + m_2$ $\Rightarrow c_1 + c_2 = q' \cdot p + 2r' + (m_1 + m_2)$

Multiplication:

$$c_1 = q_1 \cdot p + 2r_1 + m_1 \\ c_2 = q_2 \cdot p + 2r_2 + m_2 \Rightarrow c_1 \cdot c_2 = q'' \cdot p + 2r'' + (m_1 \cdot m_2)$$

with

$$r'' = 2r_1r_2 + r_1m_2 + r_2m_1$$

Scale Invariance

How to avoid exponential growth?

► Modulus Switching [BGV12]: multiply by q'/q and round; the noise goes down by a factor ≈ q'/q Secret key s ∈ Zⁿ, Ciphertext c ∈ Zⁿ_a

$$\vec{c}\cdot\vec{s}=m+2e+ql$$

Scale Invariance

How to avoid exponential growth?

► Modulus Switching [BGV12]: multiply by q'/q and round; the noise goes down by a factor ≈ q'/q Secret key s ∈ Zⁿ, Ciphertext c ∈ Zⁿ_a

$$\vec{c} \cdot \vec{s} = m + 2e + qI$$

Scale-Invariance [Bra12]: do not need to change modulus, but noise growth still linear Secret key s ∈ Zⁿ, Ciphertext c ∈ ℝⁿ

$$\vec{c} \cdot \vec{s} = m + \epsilon + 2I$$

Scale Invariance

How to avoid exponential growth?

► Modulus Switching [BGV12]: multiply by q'/q and round; the noise goes down by a factor ≈ q'/q Secret key s ∈ Zⁿ, Ciphertext c ∈ Zⁿ_a

$$\vec{c} \cdot \vec{s} = m + 2e + qI$$

Scale-Invariance [Bra12]: do not need to change modulus, but noise growth still linear Secret key s ∈ Zⁿ, Ciphertext c ∈ ℝⁿ

$$\vec{c} \cdot \vec{s} = m + \epsilon + 2I$$

■ ⇒ Leveled FHE: noise growth linear in mult. depth instead of exponential

Our Contributions

- Equivalence between Error-Free Decisional AGCD and Error-Free Computational AGCD
 - Automatically simplifies all previous DGHV schemes [vDGHV10,CMNT11,CNT12,CLT13a]
- Variant of DGHV and batch DGHV that is scale invariant
 - Noise growth linear in the multiplicative depth
 - but only one modulus: p² instead of p
- Homomorphic Evaluation of AES with a scale invariant scheme

Computational/Decisional AGCD

Error-Free Settings: For efficiency reason for FHE schemes, we work with an exact multiple

$$x_0 = q_0 \cdot p$$

of the secret key p.

- Computational $AGCD_{\gamma,\eta,\rho}$: given x_0 and polynomially many $x_i = q_i \cdot p + r_i$, recover p
- Decisional $AGCD_{\gamma,\eta,\rho}$: given x_0 , polynomially many $x_i = q_i \cdot p + r_i$ and

$$z = q_z \cdot p + r_z + b \cdot u \mod x_0$$

where $u \leftarrow [0, x_0)$, recover b

The (Error-Free) Computational and Decisional AGCD problems are equivalent

New (Batch) DGHV Scheme

One-Slot Scheme

- ▶ Public $x_i = q_i \cdot p + 2r_i$ and error-free modulus $x_0 = q_0 \cdot p$
- Public encryption of $m \in \{0, 1\}$:

$$c = m + \sum_{i \in S} x_i \bmod x_0$$

Decryption:

$$(c \mod p) \mod 2 = m$$

- Multi-Slots Scheme
 - Encryption of $\vec{m} = (m_i)$ is $q_i \cdot p_1 \times \cdots \times p_n + CRT_{p_i}(2r_i + m_i)$
 - Public x_i = Enc(0), error-free modulus x₀ = q₀ · p₁ × · · · × p_n and elements x'_i = Enc(e_i) (where e_i[j] = δ_{i,j})
 - Public encryption of $\vec{m} \in \{0,1\}^n$:

6

$$c = \sum_{i=1}^{n} m_i \cdot x'_i + \sum_{i \in S} x_i \mod x_0$$

Scale Invariant DGHV

- Main Ideas: work with secret p² and move bit message to MSB modulo p instead of LSB modulo p
- Type-I ciphertext:

$$c=q\cdot p^2+(2r^*+m)\cdot \frac{p-1}{2}+r$$

• Type II ciphertext (after multiplication of Type-I):

$$c' = q' \cdot p^2 + m \cdot \frac{p^2 - 1}{2} + r'$$

Procedure convert: similar to modulus switching [CNT12] from p² to p... but we somewhat remain with a secret p²

Procedure Convert

Lemma

Let ρ' be such that $\rho' \ge \eta + \rho + \log_2(\eta\Theta)$. There exists a procedure Convert which converts a Type-II ciphertext with noise size ρ' into a Type-I ciphertext with noise $(\rho' - \eta + 5, \log_2 \Theta)$.

Easy generalization to batching [CCKLLTY13]
 11/17 CRYPTOEXPERTS

Description of the leveled FHE scheme

• Public $x_i = q_i \cdot p^2 + r_i$, error-free modulus $x_0 = q_0 \cdot p^2$ and

$$y = q_y \cdot p^2 + r_y + \frac{p-1}{2}$$

• Public encryption of $m \in \{0, 1\}$:

$$c = m \cdot y + \sum_{i \in S} x_i \bmod x_0$$

Decryption:

$$(2 \cdot c \mod p) \mod 2 = m$$

Mult of c₁ and c₂:

$$c' = \text{Convert}(2c_1c_2)$$

Typical high-level FHE use-case

- Typical high-level FHE use-case
 ... wait a sec! The ciphertext expansion is HUGE (prohibitive)!
 - ▶ If m_i is a 4MB image, using [GHS12,CCKLLTY13], the user would have to send around 200/300GB of encrypted data

- Typical high-level FHE use-case
- ... wait a sec! The ciphertext expansion is HUGE (prohibitive)!
- What if we use hybrid encryption? [NLV11]
 - AES does not have ciphertext expansion

- Typical high-level FHE use-case
- ... wait a sec! The ciphertext expansion is HUGE (prohibitive)!
- What if we use hybrid encryption? [NLV11]
- Now we need to homomorphically evaluate AES⁻¹
 - Network communication from user to cloud essentially optimal
 - But now we need to efficiently evaluate AES^{-1} before f!!

Homomorphic AES using SIBDGHV

- Use the same framework as in [CCKLLTY13]
- State-wise AES implementation: 128 ciphertexts, one per bit of the AES state
- Batching used to perform several AES in parallel

Homomorphic AES using SIBDGHV

- Use the same framework as in [CCKLLTY13]
- State-wise AES implementation: 128 ciphertexts, one per bit of the AES state
- Batching used to perform several AES in parallel

Instance	λ	$\ell = \#$ of enc.	AddRoundKey	SubBytes	ShiftRows	MixColumns	Total	Time/AES
		in parallel					Time	block
Toy	42	9	0.0s	1.5s	0.0s	0.0s	15.1s	1.7s
Small	52	35	0.1s	9.9s	0.0s	0.0s	$1 \min 40 s$	2.9s
Medium	62	140	0.3s	80.5s	0.0s	0.1s	$13\min 29s$	5.8s
Large	72	569	2.1s	21min	0.0s	0.6s	3h 35min	23s
Extra	80	1875	6.9s	10h 9min	0.1s	1.6s	102h	195s

Homomorphic AES using SIBDGHV

- Use the same framework as in [CCKLLTY13]
- State-wise AES implementation: 128 ciphertexts, one per bit of the AES state
- Batching used to perform several AES in parallel

Instance	λ	$\ell = \#$ of enc.	AddRoundKey	SubBytes	ShiftRows	MixColumns	Total	Time/AES
		in parallel					Time	block
Toy	42	9	0.0s	1.5s	0.0s	0.0s	15.1s	1.7s
Small	52	35	0.1s	9.9s	0.0s	0.0s	$1 \min 40 s$	2.9s
Medium	62	140	0.3s	80.5s	0.0s	0.1s	$13\min 29s$	5.8s
Large	72	569	2.1s	21min	0.0s	0.6s	3h 35min	23s
Extra	80	1875	6.9s	10h 9min	0.1s	1.6s	102h	195s

Compared to BDGHV ([CCKLLTY13])

Instance	λ	l	# of enc.	AddRoundKey	SubBytes	ShiftRows	MixColumns	Total AES	Relative
			in parallel	,	,			(in hours)	time
Toy	42	10	10	0.06s	33s	0s	0.02s	0.08	29s
Small	52	37	37	0.06s	309s	0s	0.09s	0.74	$1 \min 12 s$
Medium	62	138	138	4.5s	3299s	0s	0.44s	7.86	$3\min 25s$
Large	72	531	531	27s	47656s	0.04s	2.8s	113	$12\min 46s$

Thoughts about Hom. Computations

Partly explicited in [LN14, eprint 2014/062]

Parameter selection: either room for f or need to bootstrap :-(

Thoughts about Hom. Computations

Partly explicited in [LN14, eprint 2014/062]

- Parameter selection: either room for f or need to bootstrap :-(
- Latency vs. throughput

Thoughts about Hom. Computations

Partly explicited in [LN14, eprint 2014/062]

- Parameter selection: either room for f or need to bootstrap :-(
- Latency vs. throughput
- Is AES such a good idea?

Conclusion

Conclusion

- Equivalence between Error-Free Decisional and Computational AGCD: automatic simplification of previous FHE schemes over the integers
- New leveled DGHV scheme that is scale invariant (no modulus switching)
- Timings one order of magnitude faster than [CCKLLTY13] and comparable to [GHS12] for homomorphic AES evaluation
- AGCD also used for Multilinear Maps [CLT13]: need more cryptanalysis on this problem
 - we hope that our pratical parameters practical parameters will spur on the cryptanalysis of AGCD

Questions? or...

Copyright Grumpy Cat

Thank you for your attention

Recent Attack on Eprint?

[Revised] A New Algorithm for Solving the General Approximate Common Divisors Problem and Cryptanalysis of the FHE... eprint.iacr.org/2014/042

1:00 PM - 24 Feb 2014

