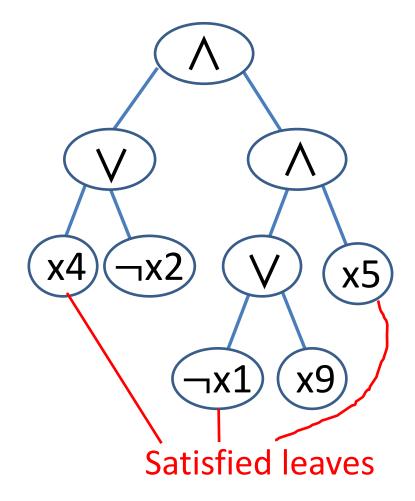
A Framework and Compact Constructions for Non-monotonic Attribute-Based Encryption

Shota Yamada

Nuttapong Attrapadung Goichiro Hanaoka Noboru Kunihiro PKC2014, eprint 181

Summary of Our Results

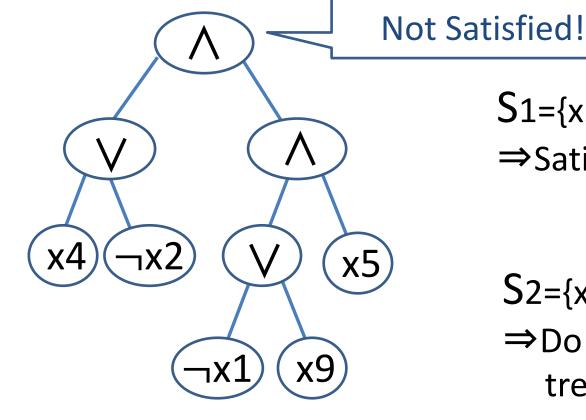

- Non-monotonic KP-ABE schemes
 - with shortest ciphertext length
 - from the DBDH assumption
 with better (space) efficiency
 than previous scheme [OSW07]
 - with completely unbounded attributes (for the first time)
- The first completely unbounded non-monotonic CP-ABE scheme

Constructed by our new framework

Definitions

Access Tree

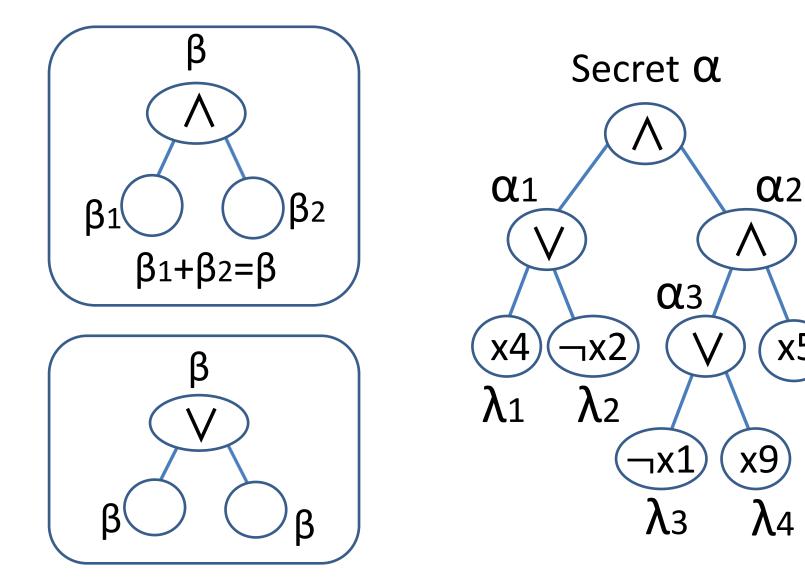
Non monotone Boolean formula $F=(x4 \vee \neg x2) \wedge ((\neg x1 \vee x9) \wedge x5)$



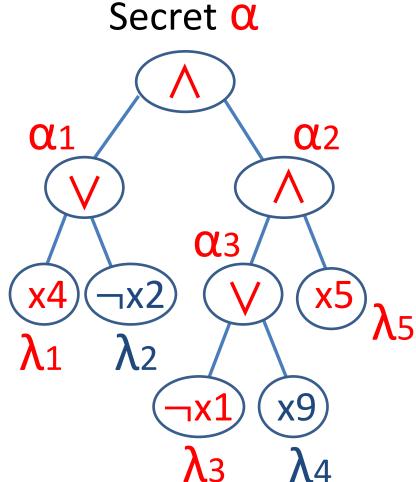
 $S1=\{x2,x4,x5\}$ \Rightarrow Satisfy the access tree

S2={x1,x5} ⇒Do not satisfy the access tree

Access Tree


Non monotone Boolean formula F=(x4 \vee ¬x2) \wedge ((¬x1 \vee x9) \wedge x5)

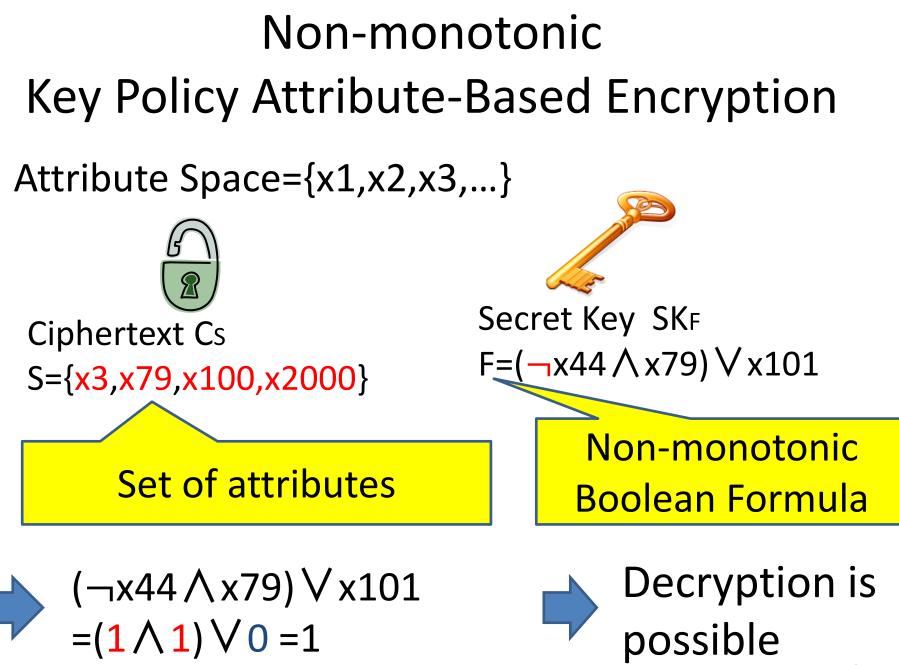
 $S1=\{x2,x4,x5\}$ \Rightarrow Satisfy the access tree


S2={x1,x5} ⇒Do not satisfy the access tree

Secret Sharing for Access Tree

x5

Property of the Secret Sharing Scheme



Select Sharing Scheme $S = \{x^2, x^4, x^5\}$ \Rightarrow Satisfy the access tree \Rightarrow From shares corresponding to satisfied leaves ($\lambda 1$, $\lambda 3$, $\lambda 5$), one can recover α .

i.e,
$$\alpha_1 = \lambda_1$$
, $\alpha_3 = \lambda_3$
 $\alpha_2 = \alpha_3 + \lambda_5$
 $\alpha = \alpha_1 + \alpha_2$

If S' does not satisfy the access tree, one cannot recover α from shares corresponding to satisfied nodes. Predicate Encryption (KEM version) Setup $(1^{\lambda}) \rightarrow (PK, MSK)$ KeyGen(MSK,X)→SKx $Enc(PK,Y) \rightarrow (CY,K)$ Certain $Dec(PK,Y,CY,SKx) \rightarrow K$ relation Decryption is possible when R(X, Y) = 1KP-ABE, CP-ABE, spatial encryption etc. are all captured as a special case of predicate encryption by defining R appropriately.

8

Two-mode Identity-Based Broadcast Encryption(TIBBE)

ID Space={x1,x2,x3,...}

Ciphertext Cs

e.g., S={x3,x79,x100,x2000}

Two types of Keys

Type: IBBE

Secret Key SKIBBE,ID can decrypt Cs Iff IDES

Type: IBR

Set of IDs

Secret Key SKIBR, ID

can decrypt Cs Iff ID∉S

Our Framework to Construct Non-monotonic KP-ABE

Our Framework to construct non-monotonic KP-ABE

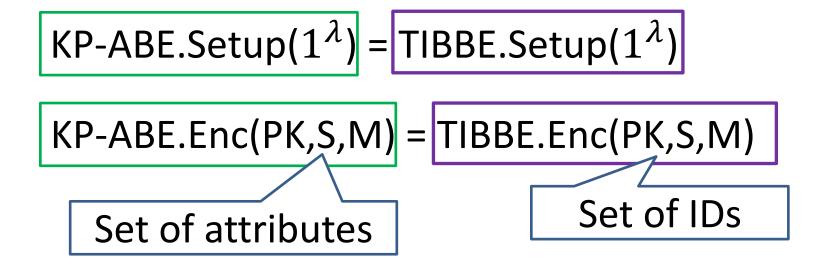
- In [ALP11], conversion from IBBE with certain property to monotonic KP-ABE was given.
- We extend the result by [ALP11] and propose a conversion from TIBBE with certain property to non-monotonic KP-ABE.
 - Then, we construct various TIBBE schemes.

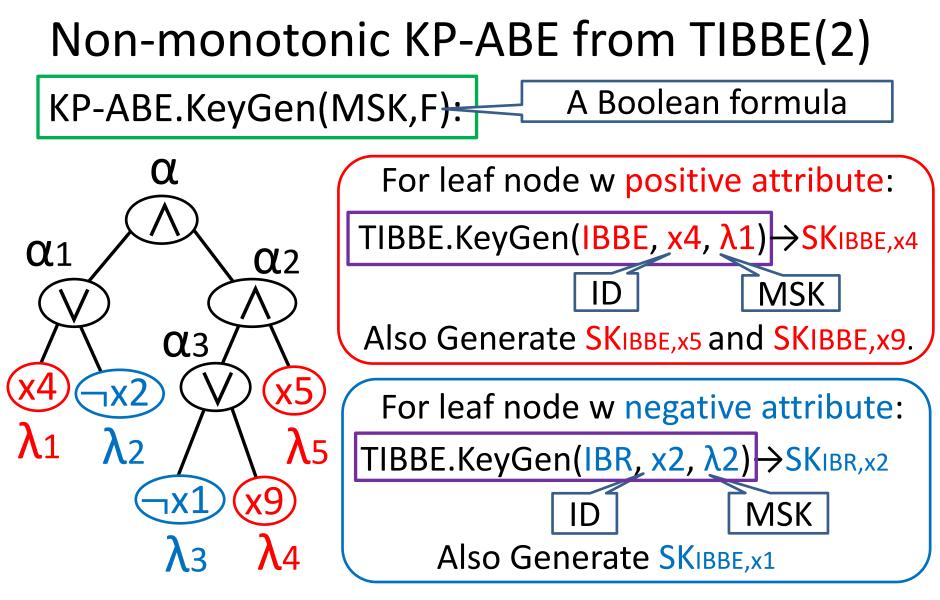
Remark: Our conversion converts selectively secure TIBBE into selectively secure non-monotonic KP-ABE.

Required Properties

We convert a TIBBE (KEM) with following property to a non-monotonic KP-ABE (KEM).

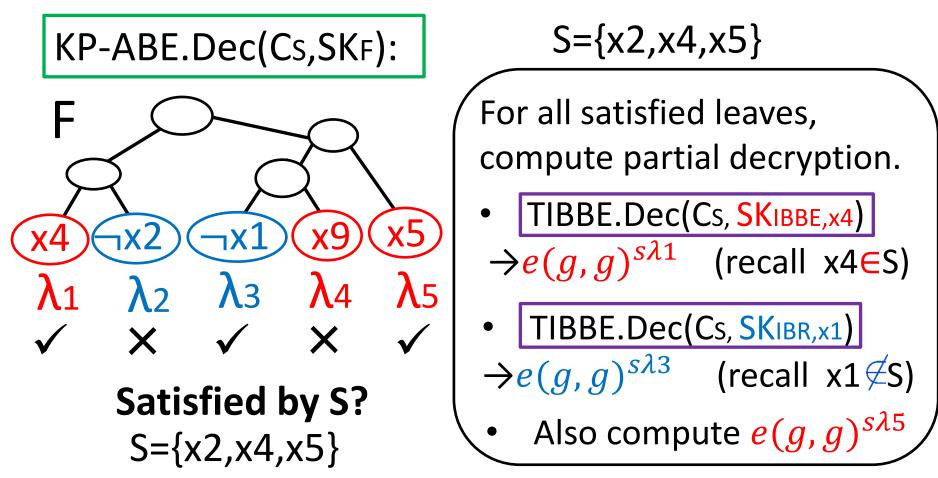
(*)The form of KEM key K and a secret key for ID is


$$K = e(g,g)^{s\alpha}, \qquad SK_{IBBE,ID} = (g^{\alpha} ***, ***)$$
$$SK_{IBR,ID} = (g^{\alpha} ***, ***)$$


where master secret key MSK=
$$\alpha$$
.

In the following, we construct KP-ABE scheme {KP-ABE.Setup, KP-ABE.KeyGen, KP-ABE.Enc, KP-ABE. Dec} out of TIBBE scheme (with the above property) {TIBBE.Setup, TIBBE.KeyGen, TIBBE.Enc, TIBBE.Dec}

Non-monotonic KP-ABE from TIBBE(1)


Universe of attribute = ID space (Thus, the resulting scheme has large universe)

The final output is secret keys for all leaves: SKF={SKIBBE,x4, SKIBR,x2, SKIBR,x1, SKIBBE,x5, SKIBBE,x9}

Non-monotonic KP-ABE from TIBBE(3)

Finally, compute $K=e(g,g)^{s\alpha}$ from $\{e(g,g)^{s\lambda 1}, e(g,g)^{s\lambda 3}, e(g,g)^{s\lambda 5}\}$.

Proposed Schemes and Comparison to Previous Schemes

Our Proposed Schemes

- To construct non-monotonic KP-ABE schemes, we only need to construct TIBBE schemes.
- To obtain schemes with compact parameters, we proposed various TIBBE schemes.
- While construction of TIBBE seems to be much easier/simpler than non-monotonic KP-ABE, still, it is not trivial. (In fact, constructions of TIBBE schemes would be our main contribution rather than our semi-generic conversion.)

Our First Scheme and Comparison to Previous Scheme

New TIBBE with short ciphertext

Our conversion

Non-monotonic KP-ABE

with shortest ciphertext

Non-monotonic KP-ABE with compact ciphertext

	Ciphertext overhead (G)	Public key size (G,GT)	Secret key size (G)	# of pairing in Dec	Assumption
[ALP11]	3	(2n+2,1)	(n+1)t	3	n-DBDHE
[Ours]	2	(n+1,1)	(n+1)t +t2	2	n-DBDHE

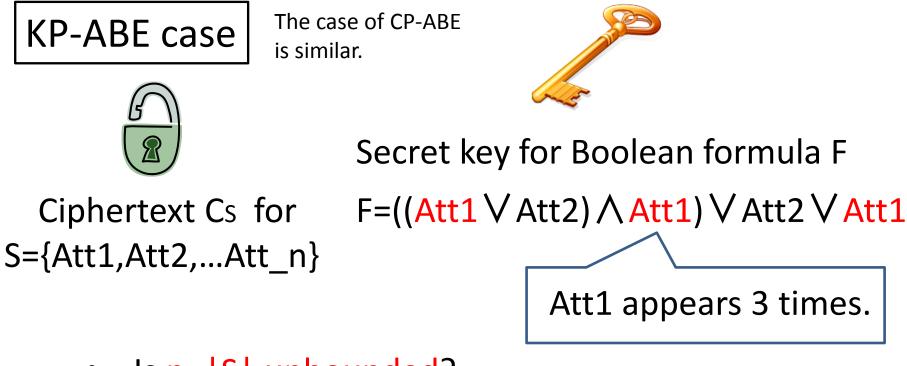
n=maximum size of attribute set associated with a ciphertext
t=t1+t2, t1=# of positive attribute in access policy
t2=# of negative attribute in access policy

Our Second Scheme and Comparison to Previous Scheme

Our conversion

New TIBBE from DBDH

New non-monotonic KP-ABE from DBDH


Non-monotonic KP-ABE from DBDH

	Ciphertext overhead (G)		Secret key size (G)	Assumption
[OSW07]	2n-1	(2n+2,0)	2t1+3t2	DBDH
[Ours]	n+1	(n+2,1)	2t1+3t2	DBDH

n=maximum size of attribute set associated with a ciphertext
t=t1+t2, t1=# of positive attribute in access policy
t2=# of negative attribute in access policy

Unbounded KP/CP-ABE

Before going to our third and fourth scheme, we clarify what does "completely unbounded" means.

- Is n=|S| unbounded?
- Is number of the same attribute appears in F unbouded?

Our Third Scheme and Comparison to Previous Scheme

IBBE implicit in [RW13] + IBR proposed by [LSW10] New unbounded TIBBE

First completely unbounded

ur conversion

non-monotonic KP-ABE

Non-monotonic KP-ABE with unbounded set

Scheme	Unbounded set size for ciphertext?	Unbounded multi- use of the same attribute in F?	Security	Standard model?
[OT12]	YES	Νο	Adaptive	YES
[LSW10]	YES	YES	Selective	Νο
[Ours]	YES	YES	Selective	YES 22

Our Fourth Scheme and Comparison to Previous Scheme

 While our KP-ABE schemes are constructed in a modular way, construction of our fourth scheme (CP-ABE) is more direct.

Monotonic

unbounded CP-ABE[RW13]

First non-monotonic completely unbounded CP-ABE

Non-monotonic CP-ABE with unbounded set

Scheme	Unbounded set size for secret key?	Unbounded multi- use of the same attribute in F?	Security
[OT12]	YES	Νο	Adaptive
[Ours]	YES	YES	Selective 23

Summary of Our Results (Again)

- Non-monotonic KP-ABE schemes
 - with shortest ciphertext length
 - from the DBDH assumption
 with better (space) efficiency
 than previous scheme [OSW07]
 - with completely unbounded attributes (for the first time)
- The first completely unbounded non-monotonic CP-ABE scheme

Constructed by our new framework