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Discrete Logarithm Problem

Discrete Logarithm

Given a cyclic group G = 〈g〉 written multiplicatively, the discrete
logarithm of h ∈ G is the unique k in [0,#G− 1] s.t.

h = gk.

In certain groups, the discrete logarithm problem (DLP) is
computationally hard.

The inverse problem (discrete exponentiation) is easy.

Widespread use in public-key protocols/implementations:

Diffie–Hellman key exchange,
ElGamal encryption,
DSA signature,
pairing-based cryptography, . . .
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DLP in finite fields of small characteristic

Fields GF(pn)×, with p a small prime (esp. p = 2), provide
implementation advantages for cryptography.

Before 2013

Function Field Sieve (FFS) algorithm, complexity in

Lpn( 13 ,
3

√
32
9 ) = exp

(
3

√
32
9 (log pn)

1
3 (log log pn)

2
3

)
[Adleman 1994]

After 2013

L(1
4
+ o(1)) algorithm [Joux 2013] + [Göloğlu et al. 2013]

Quasi-polynomial-time (QPA) algorithm [Barbulescu, Gaudry,
Joux, Thomé 2013].

Records:

GF(2kp): GF(26168) = GF((224)257) [05/2013],
GF(29234) = GF((2162)57) [01/2014] using L(1/4) algorithm

GF(2p): GF(2613) [09/2005], GF(2809) [04/2013] using FFS.
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Motivations

Better extrapolation of FFS computational limits:

evolution of resources (last record is 8 years old),
use of new facilities (GPUs),
prepare the ground for FFS in GF(21039).

Investigate accelerating critical parts of the FFS algorithm.

Determine the cut-off points where FFS is surpassed by the new
methods (prime-degree extensions?).

The new algorithms still rely on bits taken from FFS.
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Index-calculus algorithms
G = 〈g〉, g of prime order ` = #G.

Main Idea:

Collect relations of the form
∏

i α
ei
i = 1, where the αi’s belong to a

predefined subset of G (factor base).

Each relation yields a linear equation in Z/`Z:∑
i ei logg(αi) ≡ 0 (mod `), where the logg(αi)’s are the

unknowns.

→ find enough (≥ #factor base) relations.

Compute the logg(αi)’s by solving the corresponding system
modulo `.

Compute logg(h), for a given h ∈ G:

write h =
∏
i

αfi
i .

→ logg(h) ≡
∑
i

fi logg(αi) (mod `).
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Function Field Sieve

How to construct GF(pn)?

f, g ∈ GF(p)[t][x], s.t. Resx(f, g) contains an irreducible factor
ϕ(t) of degree n.

GF(pn) is therefore obtained as GF(p)[t]/ϕ(t).

How to find relations?

GF(p)[t][x]

GF(p)[t][x]/f(x) GF(p)[t][x]/g(x)

GF(p)[t]/ϕ(t)

a(t)− b(t)x ∈

a(t)− b(t)αf ∈
smooth?

3 a(t)− b(t)αg

smooth?

x 7→αf x 7→αg

αf 7→m mod ϕ αg 7→m mod ϕ

m the common root modulo ϕ

Smooth: an element is B-smooth if its factorization involves only prime ideals
whose norms have degree less than or equal to B.

If doubly smooth, 2 factorizations of a(t)− b(t)x in the 2 “sides” → equation
between two products of elements of the factor base.
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Steps of FFS

1 Polynomial selection: find f and g.

[Barbulescu and Zimmermann]

2 Relation collection (a.k.a. “sieving”): look for doubly smooth
elements

Special-q sieving: sieve on elements whose norm is divisible
by a given prime ideal q =⇒ increase the probability that the
remaining part is smooth.
Lattice-sieving for various special-q’s.

[Detrey, Gaudry and Videau]

3 Filtering: prepare the linear algebra over Z/`Z.

[Bouvier and Thomé]

4 Linear algebra: solve a system of linear equations modulo `.
[J. and Thomé]

5 Individual logarithm (a.k.a. “descent”): recursively rewrite “large”
factors of h into products of smaller elements then reconstruct the
corresponding DLs.
[Detrey, Gaudry and Videau]
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DL Computation in GF(2809)

Objective

Attack DLP in a subgroup of GF(2809)× of prime order `, where ` is the
202-bit prime factor of 2809 − 1:

` = 4148386731260605647525186547488842396461625774241327567978137.

GF(2809)× = p202 × p607.

This subgroup is large enough to resist to Pollard’s ρ (101 bits of
security).

An equivalent of this computation using the new methods?

→ DLP in GF(2809×k), where 10 < k < 20 (recall: record is
GF(29234)).
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DL Computation in GF(2809)
Polynomial Selection

For f(x, t), the best choice was driven by Murphy’s α value
(quantity related to the efficiency of the relation collection):

f(x, t) = x6 + 0x7x5 + 0x6bx3 + 0x1abx2 + 0x326x+ 0x19b3.

For g(x, t), no special care → monic linear polynomial with sparse
constant term:

g(x, t) = x+ 0x80000000000000000000000000001e7eaa.

2760 core-hours.

Pre-computation phase, since f can be used to compute DLs in any
field GF(2n) with 700 ≤ n ≤ 900.

A polynomial of GF(2)[t] is represented by the value obtained when it is
evaluated at t = 2, written in hexa. For instance, 0x7 represents t2 + t+ 1.
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DL Computation in GF(2809)
Relation Collection

Main parameters we play with:

Large-prime bound (B): limit for the degree of polynomials allowed
in a relation. (a.k.a. the “smoothness bound”)

I,J: dimensions of the sieved area.

2 sets of parameters tested:

B I,J
degrees of #explored

#relations
CPU time

special-q’s elts per sp.-q (core-hours)
27 15 24 to 27 230 52M 37.2k
28 14 24 to 28 228 117M 26.9k
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DL Computation in GF(2809)
Filtering

3 stages:

1 Duplicate: remove duplicate relations.

2 Purge: remove singletons and relations while there are still more
relations than ideals (i.e. more equations than unknowns).

3 Merge: beginning of Gaussian elimination.

B 27 28
#rels. 52M 117.4M

#uniq rels. (after duplicate) 30.1M 67.4M
#rels. after purge 9.6M 13.6M

final matrix (after merge) 3.7M 4.8M
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DL Computation in GF(2809)
Linear Algebra & Individual Logarithm

Linear algebra over Z/`Z: solve Mw ≡ 0 (mod `)

M is sparse, ` is a 202-bit prime.

Adapt a sparse format to represent M .

Use of RNS representation to accelerate arithmetic over Z/`Z.

Setup: 8 GPUs (NVIDIA Tesla M2050) on 4 nodes.

Block Wiedemann (m = 8, n = 4): 4 sequences in parallel,
1 sequence ↔ 2 GPUs within the same CPU node.

Wall-clock time: 4.5 days

Overall time: 864 GPU-hours or 26.2k core-hours (CPU implem.)

Individual logarithm

Classical descent by special-q.

One individual log ≤ 1 h.
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Balancing Sieving and Linear Algebra

For B=27, where to stop sieving?
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Towards GF(21039)

Objective

Attack DLP in a subgroup of GF(21039)× of prime order `, where ` is the
265-bit prime factor of 21039 − 1.

Relation collection (done): 2.6 billion relations in 264 core-years.

Filtering (done): matrix of 60M rows and columns.

Linear algebra:

GPUs cannot be used since RAM not sufficient (35 GB required).

CPU implementation: 22 months (projected) on a 768-core cluster
with Block Wiedemann (m = 192, n = 96).

not yet launched:

try other parameters for sieving
feasibility of Block Wiedemann with these blocking parameters.
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Conclusion

Assessment of the feasibility limit of DLs in GF(2p) with FFS:

DLP in GF(2809)× required 7.6 core-years and 0.1 GPU-years.

DLP in GF(21039)× is feasible with current hardware and software
technology.

Investigation in steps used in the new algorithms:

sieving

linear algebra.

In the future:

further experiments for FFS and for the new algorithms to establish
the cut-off points between these algorithms for the prime degree
extensions.
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Unfortunately,

One Nvidia GeForce GTX 680 (Gamer’s card) burned out.

The Ph.D thesis of Nicolas Estibals about the implementation of
pairings in composite extension fields ruined due to L( 14 ) and QPA.
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