Discrete Logarithm in $GF(2^{809})$ with FFS

Razvan Barbulescu Cyril Bouvier Jérémie Detrey Pierrick Gaudry Hamza Jeljeli Emmanuel Thomé Marion Videau Paul Zimmermann

CARAMEL project-team, LORIA, INRIA / CNRS / Université de Lorraine, <first-name>.<last-name>@loria.fr

PKC 2014, Buenos Aires, March 26th, 2014

Discrete Logarithm Problem

Discrete Logarithm

Given a cyclic group $G = \langle g \rangle$ written multiplicatively, the discrete logarithm of $h \in G$ is the unique k in [0, #G - 1] s.t.

$$h = g^k$$
.

- In certain groups, the discrete logarithm problem (DLP) is computationally hard.
- The inverse problem (discrete exponentiation) is easy.
- Widespread use in **public-key** protocols/implementations:
 - Diffie-Hellman key exchange,
 - ElGamal encryption,
 - DSA signature,
 - pairing-based cryptography, ...

DLP in finite fields of small characteristic

Fields $GF(p^n)^{\times}$, with p a small prime (esp. p = 2), provide implementation advantages for cryptography.

Before 2013

• Function Field Sieve (FFS) algorithm, complexity in $L_{p^n}(\frac{1}{3}, \sqrt[3]{\frac{32}{9}}) = \exp\left(\sqrt[3]{\frac{32}{9}}(\log p^n)^{\frac{1}{3}}(\log \log p^n)^{\frac{2}{3}}\right) \text{ [Adleman 1994]}$

After 2013

- $L(\frac{1}{4} + o(1))$ algorithm [Joux 2013] + [Göloğlu et al. 2013]
- Quasi-polynomial-time (QPA) algorithm [Barbulescu, Gaudry, Joux, Thomé 2013].

Records:

- GF(2^{kp}): GF(2⁶¹⁶⁸) = GF((2²⁴)²⁵⁷) [05/2013], GF(2⁹²³⁴) = GF((2¹⁶²)⁵⁷) [01/2014] using L(1/4) algorithm
- $GF(2^p)$: $GF(2^{613})$ [09/2005], $GF(2^{809})$ [04/2013] using FFS.

Motivations

- Better extrapolation of FFS computational limits:
 - evolution of resources (last record is 8 years old),
 - use of new facilities (GPUs),
 - prepare the ground for FFS in $GF(2^{1039})$.
- Investigate accelerating critical parts of the FFS algorithm.
- Determine the cut-off points where FFS is surpassed by the new methods (prime-degree extensions?).
- The new algorithms still rely on bits taken from FFS.

1 Overview of FFS

2 Discrete Logarithm Computation in $GF(2^{809})$

Balancing Sieving and Linear Algebra

1 Overview of FFS

2 Discrete Logarithm Computation in $GF(2^{809})$

3 Balancing Sieving and Linear Algebra

4 Conclusion: $GF(2^{1039})$ and beyond?

Index-calculus algorithms

$$G = \langle g \rangle$$
, g of prime order $\ell = \#G$.

Main Idea:

- Collect *relations* of the form $\prod_i \alpha_i^{e_i} = 1$, where the α_i 's belong to a predefined subset of G (*factor base*).
- Each relation yields a linear equation in $\mathbb{Z}/\ell\mathbb{Z}$: $\sum_i e_i \log_g(\alpha_i) \equiv 0 \pmod{\ell}$, where the $\log_g(\alpha_i)$'s are the unknowns.
- $\rightarrow\,$ find enough ($\geq \# factor \ base)$ relations.
 - Compute the $\log_g(\alpha_i)$'s by solving the corresponding system modulo $\ell.$
 - Compute $\log_g(h)$, for a given $h \in G$:

• write
$$h = \prod_{i} \alpha_i^{f_i}$$
.
 $\rightarrow \log_g(h) \equiv \sum_{i}^{i} f_i \log_g(\alpha_i) \pmod{\ell}$.

Function Field Sieve

How to construct $GF(p^n)$?

- $f,g \in GF(p)[t][x]$, s.t. $\operatorname{Res}_x(f,g)$ contains an irreducible factor $\varphi(t)$ of degree n.
- $\operatorname{GF}(p^n)$ is therefore obtained as $\operatorname{GF}(p)[t]/\varphi(t)$.

How to find relations?

m the common root modulo φ

Function Field Sieve

How to construct $GF(p^n)$?

- $f,g \in GF(p)[t][x]$, s.t. $\operatorname{Res}_x(f,g)$ contains an irreducible factor $\varphi(t)$ of degree n.
- $\operatorname{GF}(p^n)$ is therefore obtained as $\operatorname{GF}(p)[t]/\varphi(t)$.

How to find relations?

- Smooth: an element is *B*-smooth if its factorization involves only prime ideals whose norms have degree less than or equal to *B*.
- If doubly smooth, 2 factorizations of a(t) − b(t)x in the 2 "sides"
 → equation between two products of elements of the factor base.

Steps of FFS

- Polynomial selection: find f and g.
 [Barbulescu and Zimmermann]
- Relation collection (a.k.a. "sieving"): look for doubly smooth elements
 - **Special**-q **sieving**: sieve on elements whose norm is divisible by a given prime ideal q \implies increase the probability that the remaining part is smooth.
 - Lattice-sieving for various special-q's.

```
[Detrey, Gaudry and Videau]
```

- Filtering: prepare the linear algebra over Z/lZ.
 [Bouvier and Thomé]
- Linear algebra: solve a system of linear equations modulo l.
 [J. and Thomé]
- Individual logarithm (a.k.a. "descent"): recursively rewrite "large" factors of h into products of smaller elements then reconstruct the corresponding DLs.
 [Detrey, Gaudry and Videau]

1 Overview of FFS

2 Discrete Logarithm Computation in $GF(2^{809})$

3 Balancing Sieving and Linear Algebra

4 Conclusion: $GF(2^{1039})$ and beyond?

Objective

Attack DLP in a subgroup of $GF(2^{809})^{\times}$ of prime order ℓ , where ℓ is the 202-bit prime factor of $2^{809} - 1$:

 $\ell = 4148386731260605647525186547488842396461625774241327567978137.$

• GF
$$(2^{809})^{\times} = p_{202} \times p_{607}$$
.

- This subgroup is large enough to resist to Pollard's ρ (101 bits of security).
- An equivalent of this computation using the new methods?
- \rightarrow DLP in GF(2^{809 \times k}), where 10 < k < 20 (recall: record is GF(2^{9234})).

Polynomial Selection

 For f(x,t), the best choice was driven by Murphy's α value (quantity related to the efficiency of the relation collection):

 $f(x,t) = x^6 + 0 \mathrm{x} 7 x^5 + 0 \mathrm{x} 6 \mathrm{b} x^3 + 0 \mathrm{x} 1 \mathrm{a} \mathrm{b} x^2 + 0 \mathrm{x} 326 x + 0 \mathrm{x} 19 \mathrm{b} 3.$

• For g(x,t), no special care \rightarrow monic linear polynomial with sparse constant term:

- 2760 core-hours.
- Pre-computation phase, since f can be used to compute DLs in any field $GF(2^n)$ with $700 \le n \le 900$.

A polynomial of GF(2)[t] is represented by the value obtained when it is evaluated at t = 2, written in hexa. For instance, 0x7 represents $t^2 + t + 1$.

Relation Collection

Main parameters we play with:

• Large-prime bound (B): limit for the degree of polynomials allowed in a relation. (a.k.a. the "smoothness bound")

• *I*, *J*: dimensions of the sieved area.

2 sets of parameters tested:

В	I,J	degrees of	#explored	#relations	CPU time
		special-q's	elts per spq		(core-hours)
27	15	24 to 27	2^{30}	52M	37.2k
28	14	24 to 28	2^{28}	117M	26.9k

DL Computation in $\mathrm{GF}(2^{809})$ Filtering

3 stages:

- Duplicate: remove duplicate relations.
- Purge: remove singletons and relations while there are still more relations than ideals (i.e. more equations than unknowns).
- **Merge**: beginning of Gaussian elimination.

В	27	28
#rels.	52M	117.4M
#uniq rels. (after duplicate)	30.1M	67.4M
#rels. after purge	9.6M	13.6M
final matrix (after merge)	3.7M	4.8M

Linear Algebra & Individual Logarithm

Linear algebra over $\mathbb{Z}/\ell\mathbb{Z}$: solve $Mw \equiv 0 \pmod{\ell}$

- M is sparse, ℓ is a 202-bit prime.
- Adapt a sparse format to represent M.
- Use of RNS representation to accelerate arithmetic over $\mathbb{Z}/\ell\mathbb{Z}$.
- Setup: 8 GPUs (NVIDIA Tesla M2050) on 4 nodes.
- Block Wiedemann (m = 8, n = 4): 4 sequences in parallel, 1 sequence \leftrightarrow 2 GPUs within the same CPU node.
- Wall-clock time: 4.5 days
- Overall time: 864 GPU-hours or 26.2k core-hours (CPU implem.)

Individual logarithm

- Classical descent by special-q.
- One individual log ≤ 1 h.

1 Overview of FFS

2 Discrete Logarithm Computation in ${
m GF}(2^{809})$

Balancing Sieving and Linear Algebra

4 Conclusion: $GF(2^{1039})$ and beyond?

Balancing Sieving and Linear Algebra

• For B=27, where to stop sieving?

Overview of FFS

2 Discrete Logarithm Computation in $GF(2^{809})$

3 Balancing Sieving and Linear Algebra

4 Conclusion: $GF(2^{1039})$ and beyond?

Towards $GF(2^{1039})$

Objective

Attack DLP in a subgroup of $GF(2^{1039})^{\times}$ of prime order ℓ , where ℓ is the 265-bit prime factor of $2^{1039} - 1$.

Relation collection (done): 2.6 billion relations in 264 core-years.

Filtering (done): matrix of 60M rows and columns.

Linear algebra:

- GPUs cannot be used since RAM not sufficient (35 GB required).
- CPU implementation: 22 months (projected) on a 768-core cluster with Block Wiedemann (m = 192, n = 96).
- not yet launched:
 - try other parameters for sieving
 - feasibility of Block Wiedemann with these blocking parameters.

Conclusion

Assessment of the feasibility limit of DLs in $GF(2^p)$ with FFS:

- $\bullet~\text{DLP}$ in $\mathrm{GF}(2^{809})^{\times}$ required 7.6 core-years and 0.1 GPU-years.
- DLP in $\mathrm{GF}(2^{1039})^{\times}$ is feasible with current hardware and software technology.

Investigation in steps used in the new algorithms:

- sieving
- linear algebra.

In the future:

• further experiments for FFS and for the new algorithms to establish the cut-off points between these algorithms for the prime degree extensions.

Unfortunately,

• One Nvidia GeForce GTX 680 (Gamer's card) burned out.

 The Ph.D thesis of Nicolas Estibals about the implementation of pairings in composite extension fields ruined due to L(¹/₄) and QPA.

