
Discrete Logarithm in GF(2809) with FFS

Razvan Barbulescu Cyril Bouvier Jérémie Detrey
Pierrick Gaudry Hamza Jeljeli Emmanuel Thomé

Marion Videau Paul Zimmermann

CARAMEL project-team, LORIA, INRIA / CNRS / Université de Lorraine,
<first-name>.<last-name>@loria.fr

PKC 2014, Buenos Aires, March 26th, 2014

 /* EPI CARAMEL */ C,A,
 /* Cryptologie, Arithmétique : */ R,a,
 /* Matériel et Logiciel */ M,E,
 L,i=
 5,e,
 d[5],Q[999]={0};main(N){for
 (;i--;e=scanf("%" "d",d+i));for(A =*d;
 ++i<A ;++Q[i*i% A],R= i[Q]?
R:i); for(;i --;) for(M =A;M
--;N +=!M*Q [E%A],e+= Q[(A
+E*E- R*L* L%A) %A]) for(
 E=i,L=M,a=4;a;C= i*E+R*M*L,L=(M*E +i*L)
 %A,E=C%A+a --[d]);printf ("%d"
 "\n",
 (e+N*
 N)/2
 /* cc caramel.c; echo f3 f2 f1 f0 p | ./a.out */ -A);}

<first-name>.<last-name>@loria.fr

1

Discrete Logarithm Problem

Discrete Logarithm

Given a cyclic group G = 〈g〉 written multiplicatively, the discrete
logarithm of h ∈ G is the unique k in [0,#G− 1] s.t.

h = gk.

In certain groups, the discrete logarithm problem (DLP) is
computationally hard.

The inverse problem (discrete exponentiation) is easy.

Widespread use in public-key protocols/implementations:

Diffie–Hellman key exchange,
ElGamal encryption,
DSA signature,
pairing-based cryptography, . . .

2

DLP in finite fields of small characteristic

Fields GF(pn)×, with p a small prime (esp. p = 2), provide
implementation advantages for cryptography.

Before 2013

Function Field Sieve (FFS) algorithm, complexity in

Lpn(13 ,
3

√
32
9) = exp

(
3

√
32
9 (log pn)

1
3 (log log pn)

2
3

)
[Adleman 1994]

After 2013

L(1
4
+ o(1)) algorithm [Joux 2013] + [Göloğlu et al. 2013]

Quasi-polynomial-time (QPA) algorithm [Barbulescu, Gaudry,
Joux, Thomé 2013].

Records:

GF(2kp): GF(26168) = GF((224)257) [05/2013],
GF(29234) = GF((2162)57) [01/2014] using L(1/4) algorithm

GF(2p): GF(2613) [09/2005], GF(2809) [04/2013] using FFS.

3

Motivations

Better extrapolation of FFS computational limits:

evolution of resources (last record is 8 years old),
use of new facilities (GPUs),
prepare the ground for FFS in GF(21039).

Investigate accelerating critical parts of the FFS algorithm.

Determine the cut-off points where FFS is surpassed by the new
methods (prime-degree extensions?).

The new algorithms still rely on bits taken from FFS.

4

Table of Contents

1 Overview of FFS

2 Discrete Logarithm Computation in GF(2809)

3 Balancing Sieving and Linear Algebra

4 Conclusion: GF(21039) and beyond?

4

Table of Contents

1 Overview of FFS

2 Discrete Logarithm Computation in GF(2809)

3 Balancing Sieving and Linear Algebra

4 Conclusion: GF(21039) and beyond?

5

Index-calculus algorithms
G = 〈g〉, g of prime order ` = #G.

Main Idea:

Collect relations of the form
∏

i α
ei
i = 1, where the αi’s belong to a

predefined subset of G (factor base).

Each relation yields a linear equation in Z/`Z:∑
i ei logg(αi) ≡ 0 (mod `), where the logg(αi)’s are the

unknowns.

→ find enough (≥ #factor base) relations.

Compute the logg(αi)’s by solving the corresponding system
modulo `.

Compute logg(h), for a given h ∈ G:

write h =
∏
i

αfi
i .

→ logg(h) ≡
∑
i

fi logg(αi) (mod `).

6

Function Field Sieve

How to construct GF(pn)?

f, g ∈ GF(p)[t][x], s.t. Resx(f, g) contains an irreducible factor
ϕ(t) of degree n.

GF(pn) is therefore obtained as GF(p)[t]/ϕ(t).

How to find relations?

GF(p)[t][x]

GF(p)[t][x]/f(x) GF(p)[t][x]/g(x)

GF(p)[t]/ϕ(t)

a(t)− b(t)x ∈

a(t)− b(t)αf ∈
smooth?

3 a(t)− b(t)αg

smooth?

x 7→αf x 7→αg

αf 7→m mod ϕ αg 7→m mod ϕ

m the common root modulo ϕ

Smooth: an element is B-smooth if its factorization involves only prime ideals
whose norms have degree less than or equal to B.

If doubly smooth, 2 factorizations of a(t)− b(t)x in the 2 “sides” → equation
between two products of elements of the factor base.

6

Function Field Sieve

How to construct GF(pn)?

f, g ∈ GF(p)[t][x], s.t. Resx(f, g) contains an irreducible factor
ϕ(t) of degree n.

GF(pn) is therefore obtained as GF(p)[t]/ϕ(t).

How to find relations?

GF(p)[t][x]

GF(p)[t][x]/f(x) GF(p)[t][x]/g(x)

GF(p)[t]/ϕ(t)

a(t)− b(t)x ∈

a(t)− b(t)αf ∈
smooth?

3 a(t)− b(t)αg

smooth?

x 7→αf x 7→αg

αf 7→m mod ϕ αg 7→m mod ϕ

Smooth: an element is B-smooth if its factorization involves only
prime ideals whose norms have degree less than or equal to B.

If doubly smooth, 2 factorizations of a(t)− b(t)x in the 2 “sides”
→ equation between two products of elements of the factor base.

7

Steps of FFS

1 Polynomial selection: find f and g.

[Barbulescu and Zimmermann]

2 Relation collection (a.k.a. “sieving”): look for doubly smooth
elements

Special-q sieving: sieve on elements whose norm is divisible
by a given prime ideal q =⇒ increase the probability that the
remaining part is smooth.
Lattice-sieving for various special-q’s.

[Detrey, Gaudry and Videau]

3 Filtering: prepare the linear algebra over Z/`Z.

[Bouvier and Thomé]

4 Linear algebra: solve a system of linear equations modulo `.
[J. and Thomé]

5 Individual logarithm (a.k.a. “descent”): recursively rewrite “large”
factors of h into products of smaller elements then reconstruct the
corresponding DLs.
[Detrey, Gaudry and Videau]

7

Table of Contents

1 Overview of FFS

2 Discrete Logarithm Computation in GF(2809)

3 Balancing Sieving and Linear Algebra

4 Conclusion: GF(21039) and beyond?

8

DL Computation in GF(2809)

Objective

Attack DLP in a subgroup of GF(2809)× of prime order `, where ` is the
202-bit prime factor of 2809 − 1:

` = 4148386731260605647525186547488842396461625774241327567978137.

GF(2809)× = p202 × p607.

This subgroup is large enough to resist to Pollard’s ρ (101 bits of
security).

An equivalent of this computation using the new methods?

→ DLP in GF(2809×k), where 10 < k < 20 (recall: record is
GF(29234)).

9

DL Computation in GF(2809)
Polynomial Selection

For f(x, t), the best choice was driven by Murphy’s α value
(quantity related to the efficiency of the relation collection):

f(x, t) = x6 + 0x7x5 + 0x6bx3 + 0x1abx2 + 0x326x+ 0x19b3.

For g(x, t), no special care → monic linear polynomial with sparse
constant term:

g(x, t) = x+ 0x80000000000000000000000000001e7eaa.

2760 core-hours.

Pre-computation phase, since f can be used to compute DLs in any
field GF(2n) with 700 ≤ n ≤ 900.

A polynomial of GF(2)[t] is represented by the value obtained when it is
evaluated at t = 2, written in hexa. For instance, 0x7 represents t2 + t+ 1.

10

DL Computation in GF(2809)
Relation Collection

Main parameters we play with:

Large-prime bound (B): limit for the degree of polynomials allowed
in a relation. (a.k.a. the “smoothness bound”)

I,J: dimensions of the sieved area.

2 sets of parameters tested:

B I,J
degrees of #explored

#relations
CPU time

special-q’s elts per sp.-q (core-hours)
27 15 24 to 27 230 52M 37.2k
28 14 24 to 28 228 117M 26.9k

11

DL Computation in GF(2809)
Filtering

3 stages:

1 Duplicate: remove duplicate relations.

2 Purge: remove singletons and relations while there are still more
relations than ideals (i.e. more equations than unknowns).

3 Merge: beginning of Gaussian elimination.

B 27 28
#rels. 52M 117.4M

#uniq rels. (after duplicate) 30.1M 67.4M
#rels. after purge 9.6M 13.6M

final matrix (after merge) 3.7M 4.8M

12

DL Computation in GF(2809)
Linear Algebra & Individual Logarithm

Linear algebra over Z/`Z: solve Mw ≡ 0 (mod `)

M is sparse, ` is a 202-bit prime.

Adapt a sparse format to represent M .

Use of RNS representation to accelerate arithmetic over Z/`Z.

Setup: 8 GPUs (NVIDIA Tesla M2050) on 4 nodes.

Block Wiedemann (m = 8, n = 4): 4 sequences in parallel,
1 sequence ↔ 2 GPUs within the same CPU node.

Wall-clock time: 4.5 days

Overall time: 864 GPU-hours or 26.2k core-hours (CPU implem.)

Individual logarithm

Classical descent by special-q.

One individual log ≤ 1 h.

12

Table of Contents

1 Overview of FFS

2 Discrete Logarithm Computation in GF(2809)

3 Balancing Sieving and Linear Algebra

4 Conclusion: GF(21039) and beyond?

13

Balancing Sieving and Linear Algebra

For B=27, where to stop sieving?

30 35 40 45 50
10

20

30

40

50

60

70

80

90

number of relations (×106)

C
P

U
ti

m
e

(×
1
0
3

h
)

Sieving cost

Linear algebra cost

Overall cost

13

Table of Contents

1 Overview of FFS

2 Discrete Logarithm Computation in GF(2809)

3 Balancing Sieving and Linear Algebra

4 Conclusion: GF(21039) and beyond?

14

Towards GF(21039)

Objective

Attack DLP in a subgroup of GF(21039)× of prime order `, where ` is the
265-bit prime factor of 21039 − 1.

Relation collection (done): 2.6 billion relations in 264 core-years.

Filtering (done): matrix of 60M rows and columns.

Linear algebra:

GPUs cannot be used since RAM not sufficient (35 GB required).

CPU implementation: 22 months (projected) on a 768-core cluster
with Block Wiedemann (m = 192, n = 96).

not yet launched:

try other parameters for sieving
feasibility of Block Wiedemann with these blocking parameters.

15

Conclusion

Assessment of the feasibility limit of DLs in GF(2p) with FFS:

DLP in GF(2809)× required 7.6 core-years and 0.1 GPU-years.

DLP in GF(21039)× is feasible with current hardware and software
technology.

Investigation in steps used in the new algorithms:

sieving

linear algebra.

In the future:

further experiments for FFS and for the new algorithms to establish
the cut-off points between these algorithms for the prime degree
extensions.

16

Unfortunately,

One Nvidia GeForce GTX 680 (Gamer’s card) burned out.

The Ph.D thesis of Nicolas Estibals about the implementation of
pairings in composite extension fields ruined due to L(14) and QPA.

	Overview of FFS
	Discrete Logarithm Computation in GF(2809)
	Balancing Sieving and Linear Algebra
	Conclusion: GF(21039) and beyond?

