Discrete Logarithm in GF(2%%Y) with FFS

Razvan Barbulescu Cyril Bouvier Jérémie Detrey
Pierrick Gaudry Hamza Jeljeli Emmanuel Thomé
Marion Videau Paul Zimmermann

CARAMEL project-team, LORIA, INRIA / CNRS / Université de Lorraine,
<first-name>.<last-name>@loria.fr

PKC 2014, Buenos Aires, March 26", 2014

Loria P UNIVERSITE
oy enncoree Y7 DE LORRAINE

CARAMEL ¥

<first-name>.<last-name>@loria.fr

Discrete Logarithm Problem

Discrete Logarithm

Given a cyclic group G = (g) written multiplicatively, the discrete
logarithm of h € G is the unique k in [0, #G — 1] s.t.

h = g*.

@ In certain groups, the discrete logarithm problem (DLP) is
computationally hard.

@ The inverse problem (discrete exponentiation) is easy.
@ Widespread use in public-key protocols/implementations:

Diffie-Hellman key exchange,
ElGamal encryption,

DSA signature,

pairing-based cryptography, ...

DLP in finite fields of small characteristic

Fields GF(p™)*, with p a small prime (esp. p = 2), provide
implementation advantages for cryptography.

Before 2013

@ Function Field Sieve (FFS) algorithm, complexity in

Ly (3, 3/32) =exp (f’/ %(logpn)%(log logp")%) [Adleman 1994]

v

After 2013
@ L(% + o(1)) algorithm [Joux 2013] + [G&loglu et al. 2013]

@ Quasi-polynomial-time (QPA) algorithm [Barbulescu, Gaudry,
Joux, Thomé 2013].

Records:
o GF(2F7): GF(2618) = GF((224)27) [05/2013],
GF(29231) = GF((2%62)%7) [01/2014] using L(1/4) algorithm

o GF(2P): GF(2613) [09/2005], GF(2599) [04/2013] using FFS.

Motivations

@ Better extrapolation of FFS computational limits:

e evolution of resources (last record is 8 years old),
o use of new facilities (GPUs),

o prepare the ground for FFS in GF(21939).
@ Investigate accelerating critical parts of the FFS algorithm.

@ Determine the cut-off points where FFS is surpassed by the new
methods (prime-degree extensions?).

@ The new algorithms still rely on bits taken from FFS.

Table of Contents

© Overview of FFS

@ Discrete Logarithm Computation in GF(28%9)

© Balancing Sieving and Linear Algebra

@ Conclusion: GF(2!%%9) and beyond?

Table of Contents

© Overview of FFS

Index-calculus algorithms
G = (g), g of prime order { = #G.

Main ldea:

€i

@ Collect relations of the form [], o
predefined subset of G (factor base).

1, where the «;'s belong to a

@ Each relation yields a linear equation in Z/{Z:
> ieilog,(a;) =0 (mod £), where the log,(a;)'s are the
unknowns.

— find enough (> ##factor base) relations.

@ Compute the log,(c;)'s by solving the corresponding system
modulo Z.

e Compute log,(h), for a given h € G:
o write h = Ha{i.

— log,(h) = Zfi log,(a;) (mod £).

Function Field Sieve

How to construct GF(p")?

o f,g € GF(p)[t][z], s.t. Res;(f,g) contains an irreducible factor
(t) of degree n.

@ GF(p™) is therefore obtained as GF(p)[t]/¢(t).

How to find relations?

GF(p)[t][«]
wV y‘ag
GF(p)[t][=]/ f (x) GF(p)[t][=]/9(x)

agp—m mok Am mod ¢

m the common root modulo ¢

Function Field Sieve

How to construct GF(p")?

o f,g € GF(p)[t][z], s.t. Res;(f,g) contains an irreducible factor
(t) of degree n.

o GF(p") is therefore obtained as GF(p)[t]/»(t).
How to find relations?

a(t) — b(t)z e GF(p)[t][z]

\ag

a(t) — by € GF(p)[t)fal/ () GE(p)[f][a]/g(x)> a(t) ~ bt)as

smooth? smooth?

8
7
y

agp—m modgo —m mod ¢

F(p)[/w(t)

A/

@ Smooth: an element is B-smooth if its factorization involves only
prime ideals whose norms have degree less than or equal to B.

@ If doubly smooth, 2 factorizations of a(t) — b(¢)x in the 2 “sides”
— equation between two products of elements of the factor base.

Steps of FFS

@ Polynomial selection: find f and g.
[Barbulescu and Zimmermann]

@ Relation collection (a.k.a. “sieving”): look for doubly smooth
elements

e Special-q sieving: sieve on elements whose norm is divisible
by a given prime ideal ¢ = increase the probability that the
remaining part is smooth.

e Lattice-sieving for various special-q's.

[Detrey, Gaudry and Videau]

© Filtering: prepare the linear algebra over Z/{Z.
[Bouvier and Thomé]

© Linear algebra: solve a system of linear equations modulo £.
[J. and Thomé]

@ Individual logarithm (a.k.a. “descent”): recursively rewrite “large”
factors of h into products of smaller elements then reconstruct the
corresponding DLs.

[Detrey, Gaudry and Videau]

Table of Contents

@ Discrete Logarithm Computation in GF(28%9)

DL Computation in GF(25%)

Objective

Attack DLP in a subgroup of GF(28%9)* of prime order £, where £ is the
202-bit prime factor of 2809 — 1:

¢ = 4148386731260605647525186547488842396461625774241327567978137.

o GF(2%%9)* = paoa X peor.

@ This subgroup is large enough to resist to Pollard’s p (101 bits of
security).

@ An equivalent of this computation using the new methods?

— DLP in GF(2899%k) where 10 < k < 20 (recall: record is
GF(29234)).

DL Computation in GF(25%)

Polynomial Selection
@ For f(x,t), the best choice was driven by Murphy's « value
(quantity related to the efficiency of the relation collection):

f(z,t) = 2% + 0x72° 4 0x6ba® + Ox1abz? + 0x326x + 0x19b3.

@ For g(z,t), no special care — monic linear polynomial with sparse
constant term:

g(x,t) = 2 + 0x80000000000000000000000000001e7eaa.

@ 2760 core-hours.

@ Pre-computation phase, since f can be used to compute DLs in any
field GF(2™) with 700 < n < 900.

A polynomial of GF(2)[t] is represented by the value obtained when it is
evaluated at t = 2, written in hexa. For instance, 0x7 represents t* + ¢ + 1.

DL Computation in GF(25%)

Relation Collection

Main parameters we play with:

@ Large-prime bound (B): limit for the degree of polynomials allowed

in a relation. (a.k.a. the “smoothness bound”)

@ /,J: dimensions of the sieved area.

2 sets of parameters tested:

B |1 degr.ees (’)f #explored Lrelations CPU time
special-q's | elts per sp.-q (core-hours)

27| 15 || 24t0 27 230 52M 37.2k

28 | 14 || 24 to 28 228 117M 26.9k

DL Computation in GF(25%)

Filtering

3 stages:

@ Duplicate: remove duplicate relations.

@ Purge: remove singletons and relations while there are still more
relations than ideals (i.e. more equations than unknowns).

© Merge: beginning of Gaussian elimination.

B 27 28
Frels. 5oM | 117.4M
#uniq rels. (after duplicate) || 30.1M | 67.4M
#rels. after purge 9.6M 13.6M
final matrix (after merge) 3.7M 4.8M

DL Computation in GF(25%)

Linear Algebra & Individual Logarithm

Linear algebra over Z/(Z: solve Mw =0 (mod ¢)
@ M is sparse, £ is a 202-bit prime.

Adapt a sparse format to represent M.

Use of RNS representation to accelerate arithmetic over Z/{Z.

Setup: 8 GPUs (NVIDIA Tesla M2050) on 4 nodes.

Block Wiedemann (m = 8, n = 4): 4 sequences in parallel,
1 sequence <> 2 GPUs within the same CPU node.

@ Wall-clock time: 4.5 days

@ Overall time: 864 GPU-hours or 26.2k core-hours (CPU implem.)
Individual logarithm

@ Classical descent by special-g.

@ One individual log < 1 h.

Table of Contents

© Balancing Sieving and Linear Algebra

Balancing Sieving and Linear Algebra

@ For B=27, where to stop sieving?

CPU time (x103 h)

90
80
70
60
50
40
30
20

10

T

T

T

T

T

T

T

——

——

Sieving cost

—o— Linear algebra cost

Overall cost

30

35 40

45 50

number of relations (x109)

Table of Contents

@ Conclusion: GF(2!%%9) and beyond?

Towards GF(210%9)

Objective

Attack DLP in a subgroup of GF(21039)* of prime order ¢, where / is the
265-bit prime factor of 21039 — 1.

Relation collection (done): 2.6 billion relations in 264 core-years.
Filtering (done): matrix of 60M rows and columns.

Linear algebra:
@ GPUs cannot be used since RAM not sufficient (35 GB required).

@ CPU implementation: 22 months (projected) on a 768-core cluster
with Block Wiedemann (m = 192, n = 96).

@ not yet launched:

e try other parameters for sieving
o feasibility of Block Wiedemann with these blocking parameters.

Conclusion

Assessment of the feasibility limit of DLs in GF(2?) with FFS:
@ DLP in GF(2899)% required 7.6 core-years and 0.1 GPU-years.

@ DLP in GF(21939)* is feasible with current hardware and software
technology.

Investigation in steps used in the new algorithms:
@ sieving
@ linear algebra.

In the future:

@ further experiments for FFS and for the new algorithms to establish
the cut-off points between these algorithms for the prime degree
extensions.

Unfortunately,

@ One Nvidia GeForce GTX 680 (Gamer's card) burned out.

@ The Ph.D thesis of Nicolas Estibals about the implementation of

pairings in composite extension fields ruined due to L(%) and QPA.

	Overview of FFS
	Discrete Logarithm Computation in GF(2809)
	Balancing Sieving and Linear Algebra
	Conclusion: GF(21039) and beyond?

