Elliptic and Hyperelliptic Curves: a
Practical Security Comparison

Microsoft:)
Research -(I f\-

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Joppe W. Bos (Microsoft Research), Craig Costello (Microsoft Research),
Andrea Miele (EPFL)

Motivation and Goal(s

+ Elliptic curves (standard) and genus 2 hyper-elliptic curves (object of
research) over prime fields: similar performance [Gaudry07] [BCHL13]

7 |G|
2(# Aut)

+ Security: Pollard tho O(VIG) Using automorphisms = \/

.. Estimate practical speed-up using automorphisms in genus 1 and genus 2
Tradeoff: reduced search space vs. more costly iteration

> Estimate complexity of the attack on 4 curves (128-bit security)

;. Implement Pollard rho for genus 1 and genus 2 curves (x86 64-bit)

Curves used

NISTp-256

Genus: 1

Field size: 256 bits

¥ Aut: 2

Theoretical security: 127.8 bits

BN254 (pairing friendly)
Genus: 1

Field size: 254 bits

#Aut: 6

Theoretical security: 126.4 bits

Generic-1271

Genus: 2

Field size: 127 bits

¥ Aut: 2

Theoretical security: 126.8 bits

GLV4-BK

Genus: 2

Field size: 127 bits

¥ Aut: 10

Theoretical security: 125.7 bits

Elliptic and genus 2 hyperelliptic curves i one shde...

y’=x3+a;x+a,

#E(F,)~p

Weierstrass coordinates: (x,y)
Atfine addition: 2m+1s+6a+1i
Affine doubling: 2m+2s+7a+1i

LG R s
@ e

¥ |

PR 4 3 2
y*=Xx"+b X*+b;x°+b,x*+b;x+b,

#Jac(C(F,)) ~ p?
Mumford coordinates: (uy,ug vy, vp)
Affine addition: 17m+4s+48a+1i
Affine doubling: 19m+6s+52a+1i

Pollard’s rho algorithm {P78}

+ Discrete log: given h in <g>=G
find integer k such that h=kg.

«» Ideal rho, random walk:
p;=a,g+b.h for i=0,1,2,...
Expect collision p;=p; (j<i) in
7|G| steps, k = (ai-a]-) / (bj-bi).
2

+ r-adding walk: table of random
f,=a,g+bh, 0 <k <r-1.

Po=a08, pi:pi-1+fl(pi_1) fori=1,2,...
with 0 < 1(p;) < r-1 (p; has index 1(p;)).

Parallelizable Pollard’s rho vow97

-yé

P(p; is dp) = %

+ Run m independent adding walks
using the same table.
Define set of distinguished points

+flp

(easy to check property).

GG

e
=
=

;B \/) PR -2
s !
5
e
=
3|+
=

+ Each node reports dp’s to central node

that checks for dp collision (m-fold
speed-up if run on m nodes).

==
tﬁ

» Simultaneous inversion trick [M87]:

+fip

=
e
=

(Pgl
—f—fl(p]‘o

(m)inv=3(m-1)mul+1linv.

a

=
=
)

S >
K=

Extra steps due to dp’s: = dm.

Using automorphisms (wz99,[bGygg

+ The group of curve automorphisms define equivalence classes of
points. The size of an equivalence class is the size of the Aut group

+ Idea: search for collision of equivalence classes of size # Aut

« If # Aut = c the search space is reduce by a factor ¢ (v/Cspeed-up)
+ Ex., negation map: p ~ -p, search for collision of +p (/2 speed-up)
+ #Aut for cryptographically interesting curves over prime fields

Elliptic curves: min=2, max=6
Genus 2 Hyperelliptic curves: min=2, max=10

Adding walk with automorphisms

f,=a,g+byh
Pi .
f,=a,g+bh Pi
l l For 0 <k < (# Aut)/2
|f=ag+bh —4— compute +®X(p;+f) ~ p;+f.
Inde.zx Slp)= [Select one point uniquely.
function
fr-l — ar—1g+br-1h l
Pi+1

Selection (remark: -(x,y)=(x,-y) on E, -(u;,u, v,,v,) =(u,,u,-v,-v,) on Jac(C))
.. #Aut = 2: choose point with odd value in y (v,) coord.
.. # Aut > 2: choose J_rcbk(pi+fj) with least value in x (u,) and odd value in y (v,).

Selected curves: 1iteration cost

NISTp-256 J2| BN254 J6
- (neg): (x,y) -> (x,-y) +d (x,y) -> (§x, 1y), £3=1 mod p

Aut: {ld,-} Aut: {ldr =y -d)l d)r '¢2/ d)z}

Regular iteration: 6m Regular iteration: 6m

Aut overhead: negligible Aut overhead: Tm

Slowdown factor: 1 Slowdown factor: 0.857

Generic-1271 V2| GLV4-BK J10

- (neg): (uy,uy,v,,vy)->(u,,u,,-vy,-v,)
Aut: {id,-}

Regular iteration: 24m

Aut overhead: negligible
Slowdown factor: 1

+': (uy,uy,v,,vy) -> (E'uy, E¥uy £E%v,, +v(), E=1 mod p

AthI {ldr “y -CI), CI), coey -¢4I ¢4}
Regular iteration: 24m
Aut overhead: 6m + (1/5)m

Slowdown factor: 0.795

Fruitless cycles

+ Adding walk with automorphismes:
fruitless cycles

+ Fruitless cycle sizes: all multiples
of primes dividing c=# Aut

+ The shorter the more likely...
Most frequent: 2-cycles, P=1/(cr)

+ The larger 1, the less likely are the
cycles, but will eventually occur...

2-cycle example

After computing [(p;,_1) = j and p,_1+;
assume (1): rep{p; 1+ fi} = —pi1— f;

e L fj

rep({pi + fi}) = pi-1

If (2) l(p@) :j then (3) Pi+1 = Di—1

P((1))=1/c and P((2))=1/r so
P((3)) = P((1)) - P((2)) = 1/(er)

Cycle reduction, detection and escape

+ Detection and escape by doubling a point in the cycle
(lcm): After a iterations record point p. After 3 more iterations check
if current point is equal to p. Detects cycles of length divisible by 3

(trail): After o iterations record trail of (3 points. Look for collision.
Detects cycles of length divisible by 2 up to f3.

+ Reduction
No: just detect and escape more often. Good for SIMD archs [BLS11].

Extra table: {’. for O<i<r. If I(p,)=1(p,,,)=k, set p,,;=p;+f'. P=1/(crd).

+ Best combination depends on architecture used...
Analysis of overhead given memory constraints + tests

Performance using automorphisms

Automorphisms r #walks

Without 32 2048

With 1024 2048
Curve Ideal Updated Measured Core-years! Relative
speed-up speed-up speed-up! security
NIST CurveP-256 /5 J2 0.947 /2 3.946x10%* 128.0
BN254 J6 0.857+6 0.790 /6 9.486 x 1023 125.9
Generic 1271 J2 J2 0.940 2 1.736 x 102 126.8
4GLV127-BK J10 0.79510 0.784 /10 1.309 x 1024 126.4

Intel Core i7-3520M (Ivy Bridge), 2893.484 MHz

Conclusions

In all cases automorphisms can be profitably used in practice, but the
ideal speed-up is not achieved due to increased iteration complexity.

Better understanding of the practical trade-off in the case of genus 2
hyperelliptic curves and elliptic curves with # Aut > 2, like BN254.

Useful analysis when constant factors matter, e.g., solving ECDLP
challenges.

