

Rounding and Chaining LLL: Finding Faster Small Roots of Univariate Polynomial Congruences

J. Bi, J-S. Coron, J-C. Faugère, P. Nguyen, G. Renault, <u>R. Zeitoun</u>

Public Key Cryptography 2014

26-28 March, 2014 - Buenos Aires, Argentina

3 Speeding up Exhaustive Search by Chaining

Core Ideas of Rounding and Chaining

Rounding:

• The problem:
$$a \stackrel{f}{\rightarrow} b$$

Rather consider a/c instead of a.

Chaining:

• The problem:
$$a_1 \stackrel{f}{\rightarrow} b_1, \ a_2 \stackrel{f}{\rightarrow} b_2, \ a_3 \stackrel{f}{\rightarrow} b_3, \ \dots$$

• Rather do $a_1 \stackrel{f}{\rightarrow} b_1, \ f'(b_1) \stackrel{f}{\rightarrow} b_2, \ f'(b_2) \stackrel{f}{\rightarrow} b_3, \ \dots$

Rounding and Chaining can also be combined.

The Problem (Univariate Modular Case):

- Input:
 - A polynomial $f(x) = x^{\delta} + a_{\delta-1}x^{\delta-1} + \cdots + a_1x + a_0$.
 - N an integer of unknown factorization.
- Find:
 - All integers x_0 such that $f(x_0) \equiv 0 \mod N$.

The Problem (Univariate Modular Case):

- Input:
 - A polynomial $f(x) = x^{\delta} + a_{\delta-1}x^{\delta-1} + \cdots + a_1x + a_0$.
 - N an integer of unknown factorization.
- Find:
 - All integers x_0 such that $f(x_0) \equiv 0 \mod N$.

Coppersmith's Method (1996)

• Find **small** integer roots.

The Problem (Univariate Modular Case):

- Input:
 - A polynomial $f(x) = x^{\delta} + a_{\delta-1}x^{\delta-1} + \cdots + a_1x + a_0$.
 - N an integer of unknown factorization.
- Find:
 - All integers x_0 such that $f(x_0) \equiv 0 \mod N$.

Coppersmith's Theorem for the Univariate Modular case

• The solutions x_0 can be found in time poly $(\log N, \delta)$ if: $|x_0| < N^{1/\delta}$.

The Problem (Univariate Modular Case):

- Input:
 - A polynomial $f(x) = x^{\delta} + a_{\delta-1}x^{\delta-1} + \cdots + a_1x + a_0$.
 - N an integer of unknown factorization.
- Find:
 - All integers x_0 such that $f(x_0) \equiv 0 \mod N$.

The problem is easy without the modulo *N*.

B

Find a polynomial g such that $g(x_0) = 0$ over \mathbb{Z} .

Applications in cryptology

Cryptanalysis of RSA

- Factoring with high bits known. Coppersmith, 1996.
- Security proof of RSA-OAEP. Shoup, 2001.
- Equivalence: factoring / computing d. Coron, May, 2007.
- Stereotyped messages. Coppersmith, 1996.
- RSA Pseudorandom Generator Fischlin, Schnorr, 2000.
- Affine Padding. Coppersmith, Franklin, Patarin, Reiter, 1996.
- Polynomially related messages (Hastad). Coppersmith, 1997.
- Finding smooth numbers and Factoring. Boneh, 2001.
- Coppersmith in the wild. Bernstein et al., 2013.

About Coppersmith's Method

Euclidean Lattices

Find a new small polynomial equation 🛛 ELL Reduction.

A matter of Bound

Coppersmith's bound $|x_0| < N^{1/\delta}$ is **Exhaustive search**.

About Coppersmith's Method

Euclidean Lattices

Find a new small polynomial equation 🔊 LLL Reduction.

A matter of Bound

Coppersmith's bound $|x_0| < N^{1/\delta}$ is **Exhaustive search**.

In practice

- The LLL-reduction can be costly.
- The exhaustive search can be prohibitive.

Our Approach

• Use structure to improve Coppersmith's method.

Two Speedups: Rounding and Chaining

- Asymptotical speed-up of LLL-reduction: $\delta^{-2} \log^9 N \rightarrow \log^7 N$
- Heuristic speed-up of the exhaustive search.

Core Ideas of Rounding and Chaining

- **Rounding:** Apply LLL on a matrix with smaller coefficients Divide all coefficients in Coppersmith's matrix.
- Chaining: Reuse previous computation
 Apply a small transformation on the last reduced matrix.

Our Approach

• Use structure to improve Coppersmith's method.

Two Speedups: Rounding and Chaining

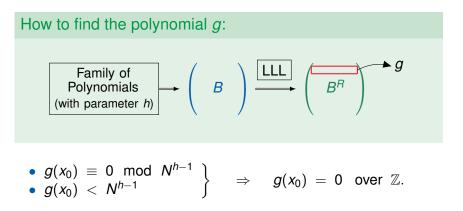
- Asymptotical speed-up of LLL-reduction: $\delta^{-2} \log^9 N \rightarrow \log^7 N$
- Heuristic speed-up of the exhaustive search.

Timings for a typical instance ($\lceil \log_2(N) \rceil = 2048$ and $\delta = 3$)

- Original method: 4 years.
- Our new method: 2.6 days.

Coppersmith's Method (Howgrave-Graham)

The problem: find all small integers x_0 s.t. $f(x_0) \equiv 0 \mod N$. **The idea:** find a small polynomial *g* s.t. $g(x_0) = 0$ over \mathbb{Z} .



Complexity / Practical Results of Coppersmith's Method

State-of-the-art Analysis

• Complexity using L^2 : $O(\log^9(N)/\delta^2)$.

In practice, for $\lceil \log_2(N) \rceil = 1024$ and $\delta = 2$

Upper bound for x ₀	2 ⁴⁹²	2 ⁴⁹⁶	2 ⁵⁰⁰	2 ⁵⁰³	2 ⁵⁰⁴	2 ⁵⁰⁵	 2 ⁵¹²
Lattice Dimension $n = h\delta + 1$	29	35	51	71	77	87	 NA
Size of elements in B (bits)	15360	18432	26624	36864	39936	45056	 NA
Time for LLL (seconds)	10.6	35.2	355	2338	4432	11426	 NA

Remark: All tests were performed using Magma V2.19-5.

[L²] An LLL Algorithm with Quadratic Complexity. P. Q. Nguyen and D. Stehlé, SIAM J. of Computing, 2009.

Using Structure: A First Result

State-of-the-art Analysis

• Complexity using L^2 : $O(\log^9(N)/\delta^2)$.

New Preliminary Result Using Structure [1]

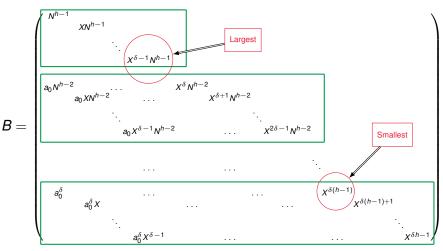
• Complexity using L^2 : $O(\log^8(N)/\delta)$.

[1] An Upper Bound on the Average Number of Iterations of the LLL Algorithm. Hervé Daudé, Brigitte Vallée, 1994.

Use Coppersmith's matrix structure.

The idea: Perform computations with most significant bits

$$\left(\begin{array}{cccc} A & \leqslant & B \\ \end{array}\right) \quad \Rightarrow \quad \left(\begin{array}{cccc} \frac{A}{c} & \leqslant & \frac{B}{c} \\ \end{array}\right)$$



Since $X < N^{\frac{1}{\delta}}$, all diagonal elements lie between N^{h-2} and N^h .

First step of rounding method

• Size-reduce *B* so that subdiagonal coefficients are smaller than diagonal coefficients.

$$B = \text{Size-Reduce}(B) =$$

$$\begin{pmatrix} \mathbf{b_1} & & \\ < b_1 & \mathbf{b_2} & \\ < b_1 & < b_2 & \mathbf{b_3} & \\ < b_1 & < b_2 & < b_3 & \\ & & \ddots & \\ < b_1 & < b_2 & < b_3 & \dots & \mathbf{b_n} \end{pmatrix}$$

Second step of the rounding method

- Create a new rounded matrix $\lfloor B/c \rfloor$.
- Apply LLL on ⌊B/c⌋

$$\left(\begin{array}{c}B\end{array}\right) \xrightarrow{/c} \left(\begin{array}{c} |B/c|\end{array}\right) \xrightarrow{\square} \left[\left(\begin{array}{c}T\end{array}\right), \left(\begin{array}{c} |B/c|^{R}\end{array}\right) \right]$$

Second step of the rounding method

- Create a new rounded matrix $\lfloor B/c \rfloor$.
- Apply LLL on ⌊B/c⌋

$$\left(\begin{array}{c}B\end{array}\right) \xrightarrow{/c} \left(\begin{array}{c} \lfloor B/c \rfloor\end{array}\right) \xrightarrow{\blacksquare} \left[\left(\begin{array}{c}T\end{array}\right) \times \left(\begin{array}{c} \lfloor B/c \rfloor\end{array}\right)\right]$$

Second step of the rounding method

- Create a new rounded matrix $\lfloor B/c \rfloor$.
- Apply LLL on $\lfloor B/c \rfloor$: first vector of unimodular matrix is **x**.
- Compute $\mathbf{v} = \mathbf{x}B$ and solve \mathbf{v} over \mathbb{Z} .

$$\begin{pmatrix} B \end{pmatrix} \xrightarrow{/c} \begin{pmatrix} \lfloor B/c \rfloor \end{pmatrix} \xrightarrow{\textbf{LLL}} \begin{bmatrix} \overbrace{\mathbf{x}} \\ T \end{bmatrix} \times \begin{pmatrix} \lfloor B/c \rfloor \end{pmatrix} \end{bmatrix}$$
$$\begin{pmatrix} \mathbf{x} \\ \mathbf{x} \end{pmatrix} \times \begin{pmatrix} B \end{pmatrix} = \begin{pmatrix} \mathbf{v} \end{pmatrix}$$

Complexity of Rounding Method

Theorem: Rounding Method

• Complexity using L^2 : $O(\log^7 N)$.

Remainder on Coppersmith's method complexity:

- State-of-the-art complexity: $O(\log^9(N)/\delta^2)$.
- New preliminary complexity: $O(\log^8(N)/\delta)$.

In practice, for $\lceil \log_2(N) \rceil = 1024$ and $\delta = 2$

Upper bound for x ₀	2 ⁴⁹²	2 ⁴⁹⁶	2 ⁵⁰⁰	2 ⁵⁰³	2 ⁵⁰⁴	2 ⁵⁰⁵	 2 ⁵¹²
Lattice Dimension	29	35	51	71	77	87	 NA
Size of elements in B (bits)	15360	18432	26624		39936	45056	 NA
Size of elements in $\lfloor B/c \rfloor$	2131	2127	2119		2120	2123	 NA
Original LLL (seconds)	10.6	35.2	355	2338	4432	11426	 NA
Rounding LLL (seconds)	1.6	3.5	18.8	94	150	436	 NA

Dim 77: Speed-up of \approx 30.

Speeding up Exhaustive Search by Chaining

Use hidden algebraic structure.

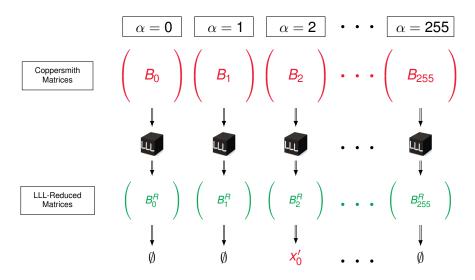
Exhaustive Search

Performing exhaustive search

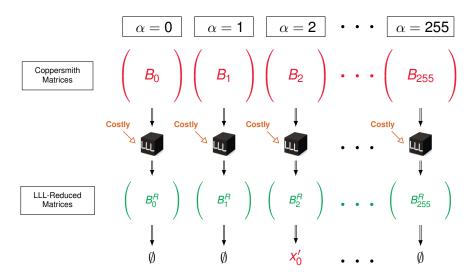
• Split the variable x into α and x'.

- The new variable is x'.
- Perform an exhaustive search on α .

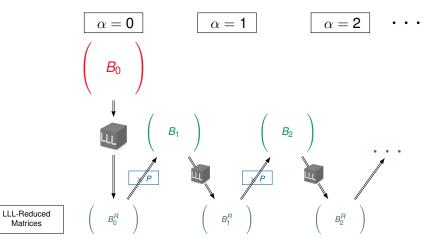
Exhaustive Search



Exhaustive Search



A New Exhaustive Search Scheme



Transformation *P* is the Pascal Matrix

Proposition

The matrix $B_i^R \cdot P$ is a basis for the case $\alpha = i + 1$, where

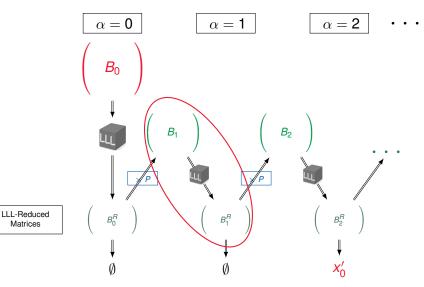
$$P = \begin{pmatrix} 1 & & & & \\ 1 & 1 & & & & \\ 1 & 2 & 1 & & & \\ 1 & 3 & 3 & 1 & & \\ 1 & 4 & 6 & 4 & 1 & \\ \vdots & & & & \ddots & \vdots \end{pmatrix}$$

is the Lower Triangular Pascal Matrix.

Consequence on $B_i^R \cdot P$

• Vectors in $B_i^R \cdot P$ are close to the ones of B_i^R .

Combining Chaining and Rounding



Chaining and Rounding Method

- Create a new rounded matrix $\lfloor B_1/c \rfloor$.
- Apply LLL on matrix $\lfloor B_1/c \rfloor$: Get T_1 and $\lfloor B_1/c \rfloor^R$.
- Compute $B_1^R = T_1 \times B_1$.

$$\begin{pmatrix} B_1 \end{pmatrix} \xrightarrow{/c} \begin{pmatrix} B_1/c \end{bmatrix} \xrightarrow{|LLL} \begin{bmatrix} T_1 \end{pmatrix} \times \begin{pmatrix} B_1/c \end{bmatrix} \end{pmatrix} \xrightarrow{|LLL} \begin{bmatrix} T_1 \end{pmatrix} \times \begin{pmatrix} B_1/c \end{bmatrix} \end{pmatrix}$$

Complexity of Rounding+Chaining Method

Heuristic: Rounding+Chaining Method

• Complexity using L^2 : $O(\log^7 N)$.

Remark: Same complexity as for Rounding Method alone.

Timings with Rounding and Chaining Improvements

In practice, for $\lceil \log_2(N) \rceil = 1024$ and $\delta = 2$

Upper bound for x ₀	2 ⁴⁹²	2 ⁴⁹⁶	2 ⁵⁰⁰	2 ⁵⁰³	2 ⁵⁰⁴	2 ⁵⁰⁵	 2 ⁵¹²
Lattice Dimension	29	35	51	71	77	87	 NA
Original LLL (sec.) Rounding LLL (sec.) Rounding + Chaining (sec.)	1.6	35.2 3.5 0.12	18.8	2338 94 9.9	4432 150 15.1	11426 436 46.5	 NA NA NA

Dim 77: Speed-up of \approx 300.

Conclusion/Perspectives

Conclusion

- This work reduces:
 - the complexity of performing LLL on Coppersmith matrix,
 - the time of exhaustive search to reach Coppersmith bound.
- It allows to reach Coppersmith's bound.
- It is easy to implement.

Conclusion/Perspectives

Conclusion

- This work reduces:
 - the complexity of performing LLL on Coppersmith matrix,
 - the time of exhaustive search to reach Coppersmith bound.
- It allows to reach Coppersmith's bound.
- It is easy to implement.

Perspectives

- Generalization to the multivariate case (approximate gcd).
- Refine complexity for Chaining + Rounding method.