
ACHIEVING PRIVACY IN VERIFIABLE
COMPUTATION WITH MULTIPLE SERVERS

— WITHOUT FHE AND WITHOUT
PREPROCESSING

Prabhanjan Ananth, UCLA	

Nishanth Chandran, Microsoft Research India	

Vipul Goyal, Microsoft Research India	

Bhavana Kanukurthi, UCLA	

Rafail Ostrovsky, UCLA	

!

Presented by: Chongwon Cho, HRL

OUTSOURCING
COMPUTATION

• Alice has a weak device and she wants to perform
expensive computation 	

!

!

OUTSOURCING
COMPUTATION

• Alice has a weak device and she wants to perform
expensive computation 	

!

!

Solution: Outsource to the cloud

CLOUD COMPUTING
• Commercial providers:

Amazon, Microsoft Azure,
Google Compute Engine
etc. 	

!

!

CLOUD COMPUTING
• Commercial providers:

Amazon, Microsoft Azure,
Google Compute Engine etc. 	

!

!

• Folding@Home: Stanford
Project that uses computing
resources of thousands of
volunteer PCs/game consoles

OUTSOURCING
COMPUTATION

!

!

!

!

x

f(x)

OUTSOURCING
COMPUTATION

!

!

!

!

• Problem: Need to trust the companies that the
computation was done correctly.

x

f(x)

OUTSOURCING
COMPUTATION

!

!

!

!

What if the cloud is malicious?

x

f(x)

OUTSOURCING
COMPUTATION

!

!

!

!

What if the cloud is malicious?

x

f(x)
Solution: Verifiable Computation!

VERIFIABLE COMPUTATION
F

VERIFIABLE COMPUTATION
!

!

!

!

!

Goal: Verifiably outsource computation of F on x to the cloud

F

Input: x

VERIFIABLE COMPUTATION
F

x

VERIFIABLE COMPUTATION
F

x

• Compute y=F(x)	

• Generate proof z that

the computation was
done correctly

VERIFIABLE COMPUTATION
F

x

y,z

• Compute y=F(x)	

• Generate proof z that

the computation was
done correctly

VERIFIABLE COMPUTATION
F

x

y,z

• Verify using proof
z that y = F(x)

• Compute y=F(x)	

• Generate proof z that

the computation was
done correctly

PROPERTIES OF VC
PROTOCOL

• Verifiability: An adversarial cloud cannot make
Alice accept an incorrect F(x).	

• Efficiency: Verifying y=F(x) should be significantly
easier than computing F(x) itself.

A SECOND LOOK AT
VERIFIABLE COMPUTATION

F

x

y,z

• Verify using proof
z that y = F(x)

• Compute y=F(x)	

• Generate proof z that

the computation was
done correctly

A SECOND LOOK AT
VERIFIABLE COMPUTATION

F

x

y,z

• Verify using proof
z that y = F(x)

• Compute y=F(x)	

• Generate proof z that

the computation was
done correctly

Is it necessary that the
cloud learns x?

A SECOND LOOK AT
VERIFIABLE COMPUTATION

F

x

y,z

• Verify using proof
z that y = F(x)

• Compute y=F(x)	

• Generate proof z that

the computation was
done correctly

Is it necessary that the
cloud learns x?

This work: Focus on achieving privacy

PRIOR WORK ON VC
PROTOCOLS

PRIOR WORK ON VC
PROTOCOLS

• No input-privacy: 	

!

• With input-privacy:

PRIOR WORK ON VC
PROTOCOLS

• No input-privacy: CS proofs [Micali94], Extractable
CRHF-based solutions [GLR11,BCCT11], ABE
based solutions [PRV12], Quadratic Span
programs [GGPR12], Information-theoretic
protocols [CRR12] 	

• With input-privacy:

PRIOR WORK ON VC
PROTOCOLS

• No input-privacy: CS proofs [Micali94], Extractable
CRHF-based solutions [GLR11,BCCT11], ABE based
solutions [PRV12], Quadratic Span programs
[GGPR12], Information-theoretic protocols [CRR12] 	

• With input-privacy: FHE-based solutions
[GGP10,CKV10], Randomized-Encodings based
solutions [AIK10]

PRIOR WORK ON VC
PROTOCOLS

• No input-privacy: CS proofs [Micali94], Extractable
CRHF-based solutions [GLR11,BCCT11], ABE based
solutions [PRV12], Quadratic Span programs
[GGPR12], Information-theoretic protocols [CRR12] 	

• With input-privacy: FHE-based solutions
[GGP10,CKV10], Randomized-Encodings based
solutions [AIK10]

Either use FHE or defined for
specific functions.

DRAWBACKS WITH FHE

• Computational assumption: constructions under
standard assumptions known only for leveled-FHE	

DRAWBACKS WITH FHE

• Computational assumption: constructions under
standard assumptions known only for leveled-FHE	

• Efficiency: the computational overhead involved
during evaluation is large.

DRAWBACKS WITH FHE

• Computational assumption:
standard assumptions known only for leveled-FHE	

• Efficiency:
during evaluation is large.

Can we achieve privacy in verifiable computation
for all efficient functions without FHE?

ACHIEVING PRIVACY IN VC
WITHOUT FHE

• Single server case: FHE seems to be inherently
required. 	

!

ACHIEVING PRIVACY IN VC
WITHOUT FHE

• Single server case: FHE seems to be inherently
required. 	

!

We focus on the case when Alice outsources her
computation to many servers

RESULTS

RESULTS
• 2-server case: based on one-way functions, very

efficient

RESULTS
• 2-server case: based on one-way functions, very

efficient	

• n-servers: 	

Protocol #1: can tolerate (n-1) dishonest servers,
based on DDH assumption	

RESULTS
• 2-server case: based on one-way functions, client is very

efficient	

• n-servers: 	

Protocol #1: can tolerate (n-1) dishonest servers, based
on DDH assumption	

Protocol #2: can tolerate constant fraction of dishonest
servers, based on one-way functions

RESULTS
• 2-server case: based on one-way functions, client is very

efficient	

• n-servers: 	

Protocol #1: can tolerate (n-1) dishonest servers, based
on DDH assumption	

Protocol #2: can tolerate constant fraction of dishonest
servers, based on one-way functions

PROPERTIES OF PROTOCOL
#1

• Based on DDH assumption	

PROPERTIES OF PROTOCOL
#1

• Based on DDH assumption	

• At least one honest server	

PROPERTIES OF PROTOCOL
#1

• Based on DDH assumption	

• At least one honest server	

• No preprocessing 	

PROPERTIES OF PROTOCOL
#1

• Based on DDH assumption	

• At least one honest server	

• No preprocessing 	

Many prior known protocols : expensive
preprocessing

PROPERTIES OF PROTOCOL
#1

• Based on DDH assumption	

• At least one honest server	

• No preprocessing 	

• The client complexity independent of the function
complexity.

PROPERTIES OF PROTOCOL
#1

• At least one honest server	

• No preprocessing 	

• The client complexity independent of the function
complexity.

In all prior known protocols : the client
complexity depends on the function

complexity

TECHNICAL DETAILS

VC IN THE MULTIPLE-SERVER
MODEL

…
F F F

Input : x

VC IN THE MULTIPLE-SERVER
MODEL

…

msg1

F F F

Input : x

VC IN THE MULTIPLE-SERVER
MODEL

…

msg1

msg2
F F F

Input : x

VC IN THE MULTIPLE-SERVER
MODEL

…

msg1

msg2 msgn
F F F

Input : x

VC IN THE MULTIPLE-SERVER
MODEL

…

msg1

msg2 msgn

msgn+1

F F F

Input : x

VC IN THE MULTIPLE-SERVER
MODEL

!

!

!

!

• Alice retrieves F(x) from msgn+1

…

msg1

msg2 msgn

msgn+1

F F F

Input : x

VC IN THE MULTIPLE-SERVER
MODEL

!

!

!

!

• Alice retrieves F(x) from msgn+1

…

msg1

msg2 msgn

msgn+1

F F F

Input : x

Advantage: Minimal communication
between the parties

THIS TALK: EQUIVALENT
MODEL

!

!

!

!

• Alice sends messages to intermediate servers

…

msg1

msg2 msgn

msgn+1

F F F

Input : x

THIS TALK: EQUIVALENT
MODEL

!

!

!

!

• Alice sends messages to intermediate servers

…

msg1

msg2 msgn

msgn+1

F F F

Input : x

This is equivalent to the previous model:	

!

• Client encrypts all the messages with public keys of
servers	

• Signs the ciphertexts 	

• Sends the ciphertexts to the first server.

OUR CONSTRUCTION

OUR CONSTRUCTION
• Main ingredient: rerandomizable garbled circuits

[GHV10]	

OUR CONSTRUCTION
• Main ingredient: rerandomizable garbled circuits

[GHV10]	

GC1 GC2

freshly
generated GC

rerandomized
GC

OUR CONSTRUCTION
• Main ingredient: rerandomizable garbled circuits

[GHV10]	

GC1 GC2

freshly
generated GC

rerandomized
GC

Cannot distinguish:	

!

 fresh GC 	

v/s	

 rerandomized GC

OUR CONSTRUCTION
• Main ingredient: rerandomizable garbled circuits

[GHV10]	

- Use encryption scheme that has
homomorphic properties.	

OUR CONSTRUCTION
• Main ingredient: rerandomizable garbled circuits

[GHV10]	

- Use encryption scheme that has
homomorphic properties.	

Supports permutation and XOR

USING RERANDOMIZABLE GC

• First server : garbles the circuit F to obtain GC1
and sends to second server. 	

• ith server : rerandomizes the garbled circuit GCi-1 to
obtain GCi and sends to i+1th server.	

• Last server : evaluates the garbled circuit to obtain
F(x).

USING RERANDOMIZABLE GC

• First server : garbles the circuit F to obtain GC1
and sends to second server. 	

• ith server : rerandomizes the garbled circuit GCi-1 to
obtain GCi and sends to i+1th server.	

• Last server : evaluates the garbled circuit to obtain
F(x).

wire keys supplied by the
client

USING RERANDOMIZABLE GC:
ISSUES

• The garbled circuits can be maliciously generated
by servers	

USING RERANDOMIZABLE GC:
ISSUES

• The garbled circuits can be maliciously generated
by servers	

- Use NIZKs	

USING RERANDOMIZABLE GC:
ISSUES

• The garbled circuits can be maliciously generated
by servers	

- Use NIZKs	

• The servers can use improper randomness 	

USING RERANDOMIZABLE GC:
ISSUES

• The garbled circuits can be maliciously generated
by servers	

- Use NIZKs	

• The servers can use improper randomness 	

- Client gives PRF keys to the servers

OUR CONSTRUCTION

…

msg1

msg2 msgn

msgn+1

F F F

Input : x

OUR CONSTRUCTION

…
F F F

Input : x

• Send PRF key K1
to 1st server

OUR CONSTRUCTION

…
F F F

Input : x

•Garble F to obtain GC1	

• Send GC1 to 2nd server	

• Send proof of computation

OUR CONSTRUCTION

…
F F F

Input : x

• Send PRF key K2
to 2nd server

OUR CONSTRUCTION

…
F F F

Input : x

•rerandomize GC1 to obtain
GC2	

• Send GC1 to 3rd server	

• Send proof of computation

OUR CONSTRUCTION

…
F F F

Input : x

•Send wire keys of
GCn-1 corresponding
to x

OUR CONSTRUCTION

…

msg

F F F

Input : x

• Evaluate the garbled
circuit GCn-1 to obtain
F(x)	

• Send F(x) to the client

OUR CONSTRUCTION:
PROPERTIES

OUR CONSTRUCTION:
PROPERTIES

• Input-privacy? YES	

!

OUR CONSTRUCTION:
PROPERTIES

• Input-privacy? YES	

• Client efficiency? YES 	

!

OUR CONSTRUCTION:
PROPERTIES

• Input-privacy? YES	

• Client efficiency? YES 	

• Verifiability? NO!	

OUR CONSTRUCTION:
PROPERTIES

• Input-privacy? YES	

• Client efficiency? YES 	

• Verifiability? NO!	

The last server might send an incorrect value as F(x)	

ENSURING VERIFIABILITY

• Consider the function G(.,.):	

 G(x,K) outputs (F(x), MAC(K,F(x)))	

ENSURING VERIFIABILITY
• Consider the function G(.,.):	

 G(x,K) outputs (F(x), MAC(K,F(x)))	

• Modify our construction as follows: 	

- Garble G(.,.) instead of F	

- Client sends wire keys corresponding to x and K
instead of just x

REMARK ON CLIENT
COMPLEXITY

• Client complexity depends on the number of
servers	

REMARK ON CLIENT
COMPLEXITY

• Client complexity depends on the number of
servers	

- Has to send PRF keys to all servers. 	

!

REMARK ON CLIENT
COMPLEXITY

• Client complexity depends on the number of servers	

- Has to send PRF keys to all servers. 	

- Has to rerandomize the wire keys (n-2) times
to obtain wire keys of the last GC	

REMARK ON CLIENT
COMPLEXITY

• Client complexity depends on the number of servers	

- Has to send PRF keys to all servers. 	

- Has to rerandomize the wire keys (n-2) times
to obtain wire keys of the last GC	

Using preprocessing: generate all PRF
keys during preprocessing phase

REMARK ON CLIENT
COMPLEXITY

• Client complexity depends on the number of servers	

- Has to send PRF keys to all servers. 	

- Has to rerandomize the wire keys (n-2) times
to obtain wire keys of the last GC	

???

IMPROVING CLIENT
COMPLEXITY

!

• Warmup attempt: Using encryption scheme having
homomorphic properties. 	

IMPROVING CLIENT
COMPLEXITY

!

• Warmup attempt: Using encryption scheme having
homomorphic properties. 	

Supporting permutation and XOR
operations.

MODIFIED CONSTRUCTION

…
F F F

Input : x

•Encrypt input wire
keys of GC1 w.r.t x

MODIFIED CONSTRUCTION

…
F F F

Input : x

•rerandomize wire keys
of GC1

MODIFIED CONSTRUCTION

…
F F F

Input : x

•rerandomize wire keys
of GC1

Using
homomorphism of

encryption

MODIFIED CONSTRUCTION

…
F F F

Input : x

• Send
decryption key

MODIFIED CONSTRUCTION

…
F F F

Input : x

•Gets encrypted
wire keys 	

• Decrypts it to obtain
F(x)

MODIFIED CONSTRUCTION

…
F F F

Input : x

Does not work!!

MODIFIED CONSTRUCTION

…
F F F

Input : x

Does not work!! 	

!

Reason: First and last server can collude

FIXING THE CONSTRUCTION

• Use re-encryption!

FIXING THE CONSTRUCTION

• Use re-encryption! : can re-encrypt a
ciphertext corresponding to a different public key. 	

!

FIXING THE CONSTRUCTION

• Use re-encryption! : can re-encrypt a
ciphertext corresponding to a different public key. 	

!

• We use an encryption scheme that supports re-
encryption and homomorphism.

FIXING THE CONSTRUCTION

• Use re-encryption! : can re-encrypt a
ciphertext corresponding to a different public key. 	

!

• We use an encryption scheme that supports re-
encryption and homomorphism.

Details in the paper!

OPEN PROBLEMS

• Replacing NIZKs in our construction.	

• VC protocol in the multiple-server model based
on one-way functions?	

• More efficient VC protocols for specific functions?

QUESTIONS?

Prabhanjan Ananth - prabhanjan@cs.ucla.edu	

Nishanth Chandran - nichandr@microsoft.com	

Vipul Goyal - vipul@microsoft.com	

Bhavana Kanukurthi - bhavanak@cs.bu.edu	

Rafail Ostrovsky - rafail@cs.ucla.edu

mailto:prabhanjan@cs.ucla.edu
mailto:nichandr@microsoft.com
mailto:vipul@microsoft.com
mailto:bhavanak@cs.bu.edu
mailto:rafail@cs.ucla.edu

THANKS!

