
ACHIEVING PRIVACY IN VERIFIABLE 
COMPUTATION WITH MULTIPLE SERVERS 

— WITHOUT FHE AND WITHOUT 
PREPROCESSING

Prabhanjan Ananth, UCLA	


Nishanth Chandran, Microsoft Research India	



Vipul Goyal, Microsoft Research India	


Bhavana Kanukurthi, UCLA	



Rafail Ostrovsky, UCLA	


!

Presented by: Chongwon Cho, HRL



OUTSOURCING 
COMPUTATION

• Alice has a weak device and she wants to perform 
expensive computation  	



!

!



OUTSOURCING 
COMPUTATION

• Alice has a weak device and she wants to perform 
expensive computation  	



!

!

Solution: Outsource to the cloud



CLOUD COMPUTING
• Commercial providers: 

Amazon, Microsoft Azure, 
Google Compute Engine 
etc.  	



!

!



CLOUD COMPUTING
• Commercial providers: 

Amazon, Microsoft Azure, 
Google Compute Engine etc.  	



!

!

• Folding@Home: Stanford 
Project that uses computing 
resources of thousands of 
volunteer PCs/game consoles
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Solution: Verifiable Computation!
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Goal: Verifiably outsource computation of F on x to the cloud
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Alice accept an incorrect F(x).	



• Efficiency: Verifying y=F(x) should be significantly 
easier than computing F(x) itself.  
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This work: Focus on achieving privacy
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• With input-privacy: FHE-based solutions 
[GGP10,CKV10], Randomized-Encodings based 
solutions [AIK10] 

Either use FHE or defined for 
specific functions.
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• Efficiency: 
during evaluation is large. 

Can we achieve privacy in verifiable computation 
for all efficient functions without FHE? 



ACHIEVING PRIVACY IN VC 
WITHOUT FHE

• Single server case: FHE seems to be inherently 
required. 	



!



ACHIEVING PRIVACY IN VC 
WITHOUT FHE

• Single server case: FHE seems to be inherently 
required. 	



!

We focus on the case when Alice outsources her 
computation to many servers 
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PROPERTIES OF PROTOCOL 
#1

• At least one honest server	



• No preprocessing 	



• The client complexity independent of the function 
complexity.

In all prior known protocols : the client 
complexity depends on the function 

complexity  
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Input : x

Advantage: Minimal communication 
between the parties
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• Alice sends messages to intermediate servers

…

msg1

msg2 msgn
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F F F

Input : x

This is equivalent to the previous model:	
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• Client encrypts all the messages with public keys of 
servers	



• Signs the ciphertexts 	


• Sends the ciphertexts to the first server. 
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• Last server : evaluates the garbled circuit to obtain 
F(x). 

wire keys supplied by the 
client
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• Send proof of computation
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…

msg

F F F

Input : x

• Evaluate the garbled 
circuit GCn-1 to obtain 
F(x)	



• Send F(x) to the client
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The last server might send an incorrect value as F(x)	
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 G(x,K) outputs (F(x), MAC(K,F(x)))	



• Modify our construction as follows: 	



- Garble G(.,.) instead of F	



- Client sends wire keys corresponding to x and K 
instead of just x
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• Warmup attempt: Using encryption scheme having 
homomorphic properties. 	



Supporting permutation and XOR 
operations.
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wire keys 	



• Decrypts it to obtain 
F(x)
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Reason: First and last server can collude



FIXING THE CONSTRUCTION

• Use re-encryption!



FIXING THE CONSTRUCTION

• Use re-encryption! : can re-encrypt a 
ciphertext corresponding to a different public key. 	



!



FIXING THE CONSTRUCTION

• Use re-encryption! : can re-encrypt a 
ciphertext corresponding to a different public key. 	



!

• We use an encryption scheme that supports re-
encryption and homomorphism. 



FIXING THE CONSTRUCTION

• Use re-encryption! : can re-encrypt a 
ciphertext corresponding to a different public key. 	



!

• We use an encryption scheme that supports re-
encryption and homomorphism. 

Details in the paper! 



OPEN PROBLEMS

• Replacing NIZKs in our construction.	



• VC protocol in the multiple-server model based 
on one-way functions?	



• More efficient VC protocols for specific functions? 
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