Re-encryption, functional re-encryption, and multi-hop re-encryption:

A framework for achieving obfuscation-based security and instantiations from Lattices

Nishanth Chandran 1 Melissa Chase 1 Feng-Hao Liu 2 Ryo Nishimaki 3 Keita Xagawa 3

¹Microsoft Research ²University of Maryland ³NTT Secure Platform Laboratories

PKC 2014 @ Buenos Aires

Our Result

A New Framework for Obfuscating Re-Encryption

- New relaxed definitions
- ✓ New tools for modular analysis
- ✓ Secure obfuscator from LWE for
 - 1. (standard) re-encryption
 - 2. functional re-encryption
 - 3. multi-hop re-encryption

Outline

Introduction

Program Obfuscation

Re-Encryption

Motivations

Related Works and Our Contributions

Relaxed Correctness: Overcoming erros in lattice-based crypto

Errors in LWE-based PKE

Obstacle and Relaxed Correctness

Tools for Our Framework & Obfuscator

Key-Switching

Blurring

Obfuscator

Summary

Program Obfuscation [BGI+12]

The Goal of Obfuscation

Prevent hacking and reverse engineering

Program Obfuscation [BGI+12]

The Goal of Obfuscation

Prevent hacking and reverse engineering

Obfuscator Obf: Compiler

 $ightharpoonup \widetilde{P}$: Completely garbled and unintelligible program

Program Obfuscation [BGI+12]

The Goal of Obfuscation

Prevent hacking and reverse engineering

Obfuscator Obf: Compiler

- $ightharpoonup \widetilde{P}$: Completely garbled and unintelligible program
- ► Functionally equivalent: $\widetilde{P}(input) \equiv P(input)$

Application of Obfuscation

Protecting software

Application of Obfuscation

- Protecting software
- Almost all crypto

Before GGHRSW13: [Can97, CMR98, Hada00, BGI+01, LPS04, Wee05, HLS10, HRsV11, CD08, CRV09, CB10, CCV12, NX13]

After GGHRSW13: [ABGSZ13, BBCKPS14, BCP14, BCPR13a, BCPR13b, BR14a, BR14b, BGKPS14, BZ13, CGK13, CV13, GGHRSW13, GGHW13, GGG+14, GGSR14, GJKS13, GK13, HSW14, MO13, MR13, PPS13, PTS13, SW14]

Outline

Introduction

Program Obfuscation

Re-Encryption

Motivations

Related Works and Our Contributions

Relaxed Correctness: Overcoming erros in lattice-based crypto

Errors in LWE-based PKE

Obstacle and Relaxed Correctness

Tools for Our Framework & Obfuscator

Key-Switching

Blurring

Obfuscator

Summary

Re-Encryption (standard)

Re-Encryption (standard)

Re-Encryption (standard)

Re-Encryption (functional)

$$\begin{array}{c|c} R1 & \xrightarrow{ct_1} & \xrightarrow{rk_F} & & \vdots \\ \hline ct_1 & & & & \vdots \\ S & ct_1 \leftarrow \operatorname{Enc}(pk_1, m, j) \end{array}$$

Re-Encryption (functional)

Re-Encryption (multi-hop)

Re-Encryption (multi-hop)

Applications of Re-Encryption

Secure distributed file servers, Outsource filtering of encrypted spam, iTunes DRM system, Constructing FHE, ABE...

Outline

Introduction

Program Obfuscation Re-Encryption

Motivations

Related Works and Our Contributions

Relaxed Correctness: Overcoming erros in lattice-based crypto

Errors in LWE-based PKE

Obstacle and Relaxed Correctness

Tools for Our Framework & Obfuscator

Key-Switching

Blurring

Obfuscator

Summary

✓ Strong security

- ✓ Strong security
- Clean and easy definition

- ✓ Strong security
- Clean and easy definition
- ✓ More positive results on obfuscation

- ✓ Strong security
- Clean and easy definition
- ✓ More positive results on obfuscation

NOTE on this talk

Virtual black-box obfuscation

Not iO

Outline

Introduction

Program Obfuscation
Re-Encryption
Mativations

Related Works and Our Contributions

Relaxed Correctness: Overcoming erros in lattice-based crypto

Obstacle and Polaved Correctness

Obstacle and Relaxed Correctness

Tools for Our Framework & Obfuscator

Key-Switching

Blurring

Obfuscator

Summary

Reference	input	output distribution
[HRsV12]	all	statistically indistinguishable

Reference	input	output distribution
[HRsV12]	all	statistically indistinguishable
This work	restricted	statistically indistinguishable

Reference	input	output distribution
[HRsV12]	all	statistically indistinguishable
This work	restricted	statistically indistinguishable
This work	all	same value under Decryption

Reference	input	output distribution	
[HRsV12]	all	statistically indistinguishable	
This work	restricted	statistically indistinguishable	
This work	all	same value under Decryption	
This work	all	computationally indistinguishable	

▶ New Concrete Instantiations

Reference	Туре	#Hop	Assumption
[HRsV12]	standard	single	DLIN & SDHI
[CCV12]	functional	signle	SXDH or DLIN
[Gen09,BV11]	standard	multi	LWE w/ FHE

▶ New Concrete Instantiations

Reference	Туре	#Hop	Assumption
[HRsV12]	standard	single	DLIN & SDHI
[CCV12]	functional	signle	SXDH or DLIN
[Gen09,BV11]	standard	multi	LWE w/ FHE
This work	standard	single	LWE
This work	functional	single	LWE
This work	standard	multi	LWE w/o FHE

3 instantiations from our new tools and unified framework.

Outline

Introduction

Program Obfuscation

Re-Encryption

Motivations

Related Works and Our Contributions

Relaxed Correctness: Overcoming erros in lattice-based crypto Errors in LWE-based PKE

Obstacle and Relaxed Correctness

Tools for Our Framework & Obfuscator

Key-Switching

Blurring

Obfuscator

Summary

LWE and Regev PKE

LWE assumption

Live assumption
$$A \leftarrow \mathbb{Z}_q^{N \times k}, \ s \leftarrow \mathbb{Z}_q^k, \ e \leftarrow \chi^N$$
 $(A, As + e) \stackrel{\mathsf{c}}{pprox} (A, u)$

where u is uniformly random over \mathbb{Z}_a^N

LWE and Regev PKE

LWE assumption

$$A \leftarrow \mathbb{Z}_q^{N imes k}, \ s \leftarrow \mathbb{Z}_q^k, \ oldsymbol{e} \leftarrow oldsymbol{\chi}^N \ (A, As + oldsymbol{e}) \stackrel{ extsf{c}}{pprox} (A, oldsymbol{u})$$

where \pmb{u} is uniformly random over \mathbb{Z}_q^N

Regev PKE

pk:
$$\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e}$$

$$ct_1 = \mathbf{r}^{\top} \mathbf{A}$$

$$ct_2 = \mathbf{r}^{\top} \mathbf{b} + m \cdot \lfloor q/2 \rceil$$

LWE and Regev PKE

LWE assumption

$$A \leftarrow \mathbb{Z}_q^{N \times k}, \ s \leftarrow \mathbb{Z}_q^k, \ \boldsymbol{e} \leftarrow \chi^N$$

$$(A, As + \boldsymbol{e}) \stackrel{\mathsf{c}}{\approx} (A, \boldsymbol{u})$$

where \pmb{u} is uniformly random over \mathbb{Z}_q^N

Regev PKE

pk:
$$\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e}$$

$$ct_1 = \mathbf{r}^{\top}\mathbf{A}$$

$$ct_2 = \mathbf{r}^{\top}\mathbf{b} + m \cdot \lfloor q/2 \rceil = \mathbf{r}^{\top}\mathbf{A}\mathbf{s} + \mathbf{r}^{\top}\mathbf{e} + m \cdot \lfloor q/2 \rceil$$

Key point: small error (noise): $r^{\top}e$

Outline

Introduction

Program Obfuscation

Re-Encryption

Motivations

Related Works and Our Contributions

Relaxed Correctness: Overcoming erros in lattice-based crypto

Errors in LWE-based PKE

Obstacle and Relaxed Correctness

Tools for Our Framework & Obfuscator

Key-Switching

Blurring

Obfuscator

Summary

Correctness (Preserving Functionality)

Original Correctness (specialized for Re-Enc)

 $\mathsf{ReEnc}_{rk}(ct) \stackrel{\mathsf{s}}{\approx} \mathsf{Obf}(\mathsf{ReEnc}_{rk})(ct)$

Correctness (Preserving Functionality)

Original Correctness (specialized for Re-Enc)

 $\mathsf{ReEnc}_{rk}(ct) \stackrel{\mathfrak{s}}{\approx} \mathsf{Obf}(\mathsf{ReEnc}_{rk})(ct)$

On invalid ciphertexts

 Require "independent" and "small" noise in lattice-based crypto

Correctness (Preserving Functionality)

Original Correctness (specialized for Re-Enc)

 $\mathsf{ReEnc}_{rk}(ct) \stackrel{\mathtt{s}}{\approx} \mathsf{Obf}(\mathsf{ReEnc}_{rk})(ct)$

On invalid ciphertexts

- Require "independent" and "small" noise in lattice-based crypto
- Arbitrary inputs include invalid ciphertext

New Relaxed Correctness

Restricted inputs

$$ct \in \Pi$$
, ReEnc_{rk} $(ct) \stackrel{s}{\approx} \mathsf{Obf}(\mathsf{ReEnc}_{rk})(ct)$

Concretely, Π is a set of honestly generated ciphertext

New Relaxed Correctness

Restricted inputs

$$ct \in \Pi$$
, ReEnc_{rk} $(ct) \stackrel{s}{\approx} Obf(ReEnc_{rk})(ct)$

Concretely, Π is a set of honestly generated ciphertext

Under decryption

$$\mathsf{Dec}(\mathsf{ReEnc}_{rk}(ct)) = \mathsf{Dec}(\mathsf{Obf}(\mathsf{ReEnc}_{rk})(ct))$$

New Relaxed Correctness

Restricted inputs

$$ct \in \Pi$$
, ReEnc_{rk} $(ct) \stackrel{s}{\approx} Obf(ReEnc_{rk})(ct)$

Concretely, Π is a set of honestly generated ciphertext

Under decryption

$$\mathsf{Dec}(\mathsf{ReEnc}_{rk}(ct)) = \mathsf{Dec}(\mathsf{Obf}(\mathsf{ReEnc}_{rk})(ct))$$

Computational indistinguishability

$$ReEnc_{rk}(ct) \stackrel{\mathsf{c}}{\approx} Obf(ReEnc_{rk})(ct)$$

Note: We can apply to arbitrary programs

Outline

Introduction

Program Obfuscation

Re-Encryption

Motivations

Related Works and Our Contributions

Relaxed Correctness: Overcoming erros in lattice-based crypto

Errors in LWE-based PKE

Obstacle and Relaxed Correctness

Tools for Our Framework & Obfuscator

Key-Switching

Blurring

Obfuscator

Summary

Key-Switching

Enc(pk, m)

 $\blacktriangleright \ K_{pk \to \widehat{pk}} \leftarrow \mathsf{SwitchGen}(pk, sk, \widehat{pk})$

Key-Switching

$$\mathsf{Enc}(pk, m) \Rightarrow \mathsf{Switch}(K_{pk \to \widehat{pk}}, \cdot) \Rightarrow \mathsf{Enc}(\widehat{pk}, m)$$

 $\blacktriangleright \ K_{pk \to \widehat{pk}} \leftarrow \mathsf{SwitchGen}(pk, sk, \widehat{pk})$

Key-Switching

$$\mathsf{Enc}(pk,m) \Rightarrow \mathsf{Switch}(K_{pk \to \widehat{pk}}, \cdot) \Rightarrow \mathsf{Enc}(\widehat{pk}, m)$$

- ► $K_{pk \to \widehat{pk}} \leftarrow \mathsf{SwitchGen}(pk, sk, \widehat{pk})$ ► $\widetilde{K}_{pk \to \widehat{pk}} \leftarrow \mathsf{SimSwitchGen}(\widehat{pk})$

Key-Switching

$$\mathsf{Enc}(pk,m) \Rightarrow \mathsf{Switch}(K_{pk \to \widehat{pk}}, \cdot) \Rightarrow \mathsf{Enc}(\widehat{pk}, m)$$

- ► $K_{pk \to \widehat{pk}} \leftarrow \mathsf{SwitchGen}(pk, sk, \widehat{pk})$ ► $\widetilde{K}_{pk \to \widehat{pk}} \leftarrow \mathsf{SimSwitchGen}(\widehat{pk})$

Security

$$K_{pk \to \widehat{pk}} \stackrel{\mathsf{c}}{\approx} \widetilde{K}_{pk \to \widehat{pk}}$$

Key-Switching

$$\mathsf{Enc}(pk,m) \Rightarrow \mathsf{Switch}(K_{pk \to \widehat{pk}}, \cdot) \Rightarrow \mathsf{Enc}(\widehat{pk}, m)$$

- ► $K_{pk \to \widehat{pk}} \leftarrow \mathsf{SwitchGen}(pk, sk, \widehat{pk})$ ► $\widetilde{K}_{pk \to \widehat{pk}} \leftarrow \mathsf{SimSwitchGen}(\widehat{pk})$

Security

$$\mathsf{LWE}.\mathsf{Enc}(\widehat{pk},sk) = K_{pk \to \widehat{pk}} \overset{\mathsf{c}}{\approx} \widetilde{K}_{pk \to \widehat{pk}} = \mathsf{LWE}.\mathsf{Enc}(\widehat{pk},0)$$

Intuitively, $K_{pk \to \widehat{pk}} = \text{LWE.Enc}(\widehat{pk}, sk)$ (enc of sk) [BV11,B12]

Outline

Introduction

Program Obfuscation

Re-Encryption

Motivations

Related Works and Our Contributions

Relaxed Correctness: Overcoming erros in lattice-based crypto

Errors in LWE-based PKE

Obstacle and Relaxed Correctness

Tools for Our Framework & Obfuscator

Key-Switching

Blurring

Obfuscator

Summary

Arbitrary value: ct

Arbitrary value: ct

Blurring the distribution of ct

Arbitrary value: ct

Blurring the distribution of $\it ct$

 $\mathsf{Blur}(pk, ct) := ct + \mathsf{Enc}_{pk}(0)$

 $(\mathsf{Dec}(ct) = \mathsf{Dec}(\mathsf{Blur}(ct)))$

Arbitrary value: ct

Blurring the distribution of ct

 $\mathsf{Blur}(pk,ct) := ct + \mathsf{Enc}_{pk}(0)$ $(\mathsf{Dec}(ct) = \mathsf{Dec}(\mathsf{Blur}(ct)))$

Strong Blurring: Blur(ct) $\stackrel{s}{\approx}$ Blur(Enc_{pk}(m))

Outline

Introduction

Program Obfuscation

Re-Encryption

Motivations

Related Works and Our Contributions

Relaxed Correctness: Overcoming erros in lattice-based crypto

Errors in LWE-based PKE

Obstacle and Relaxed Correctness

Tools for Our Framework & Obfuscator

Key-Switching

Blurring

Obfuscator

Summary

Obfuscator for Re-Encryption (Basic Idea)

Obfuscator

Input: (pk, sk), \widehat{pk}

Output: $K_{pk \to \widehat{pk}} \leftarrow \text{SwitchGen}(pk, sk, \widehat{pk})$

Obfuscator for Re-Encryption (Basic Idea)

Obfuscator

Input: (pk, sk), \widehat{pk}

 ${\sf Output:} \ \, K_{pk \to \widehat{pk}} \leftarrow {\sf SwitchGen}(pk, sk, \widehat{pk})$

Execution of Obfuscated Program

Input: ct

Output: $\widetilde{ct} \leftarrow \mathsf{Blur}(\widehat{pk}, \mathsf{Switch}(K_{pk \to \widehat{pk}}, ct))$

Obfuscator for Re-Encryption (Basic Idea)

Simulated Obfuscator

Input: \widehat{pk}

Execution of Obfuscated Program

Input: ct

Output: $\widetilde{ct} \leftarrow \mathsf{Blur}(\widehat{pk}, \mathsf{Switch}(K_{pk \to \widehat{pk}}, ct))$

Outline

Introduction

Program Obfuscation

Re-Encryption

Motivations

Related Works and Our Contributions

Relaxed Correctness: Overcoming erros in lattice-based crypto

Errors in LWE-based PKE

Obstacle and Relaxed Correctness

Tools for Our Framework & Obfuscator

Key-Switching

Blurring

Obfuscator

Summary

Summary

A New Framework for Obfuscating Re-Encryption

- New definition of correctness
 - 1. statistical indistinguishability for restricted inputs
 - 2. same value under decryption for all inputs
 - 3. computational indistinguishability for all inputs
- Standard , functional, and multi-hop re-encryption
- Key-switching and blurring mechanism
- Instantiations from LWE-based PKE

Summary

A New Framework for Obfuscating Re-Encryption

- New definition of correctness
 - 1. statistical indistinguishability for restricted inputs
 - 2. same value under decryption for all inputs
 - 3. computational indistinguishability for all inputs
- Standard , functional, and multi-hop re-encryption
- Key-switching and blurring mechanism
- Instantiations from LWE-based PKE

Thank you. Q?