
Re-encryption, functional re-encryption, and
multi-hop re-encryption:

A framework for achieving obfuscation-based security and

instantiations from Lattices

Nishanth Chandran1 Melissa Chase1 Feng-Hao Liu2

Ryo Nishimaki3 Keita Xagawa3

1Microsoft Research 2University of Maryland
3NTT Secure Platform Laboratories

PKC 2014 @ Buenos Aires

1 / 25



Our Result

A New Framework for Obfuscating Re-Encryption

" New relaxed definitions

" New tools for modular analysis

" Secure obfuscator from LWE for

1. (standard) re-encryption
2. functional re-encryption
3. multi-hop re-encryption

2 / 25



Outline

Introduction
Program Obfuscation
Re-Encryption
Motivations
Related Works and Our Contributions

Relaxed Correctness: Overcoming erros in lattice-based crypto
Errors in LWE-based PKE
Obstacle and Relaxed Correctness

Tools for Our Framework & Obfuscator
Key-Switching
Blurring
Obfuscator

Summary

3 / 25



Program Obfuscation [BGI+12]

The Goal of Obfuscation

Prevent hacking and reverse engineering

Obfuscator Obf: Compiler

I P̃: Completely garbled and unintelligible program
I Functionally equivalent: P̃(input) ≡ P(input)

4 / 25



Program Obfuscation [BGI+12]

The Goal of Obfuscation

Prevent hacking and reverse engineering

Obfuscator Obf: Compiler

I P̃: Completely garbled and unintelligible program

I Functionally equivalent: P̃(input) ≡ P(input)

4 / 25



Program Obfuscation [BGI+12]

The Goal of Obfuscation

Prevent hacking and reverse engineering

Obfuscator Obf: Compiler

I P̃: Completely garbled and unintelligible program
I Functionally equivalent: P̃(input) ≡ P(input)

4 / 25



Application of Obfuscation

I Protecting software

I Almost all crypto

Before GGHRSW13: [Can97, CMR98, Hada00, BGI+01,
LPS04, Wee05, HLS10, HRsV11, CD08, CRV09,
CB10, CCV12, NX13]

After GGHRSW13: [ABGSZ13, BBCKPS14, BCP14,
BCPR13a, BCPR13b, BR14a, BR14b,
BGKPS14, BZ13, CGK13, CV13, GGHRSW13,
GGHW13, GGG+14, GGSR14, GJKS13, GK13,
HSW14, MO13, MR13, PPS13, PTS13, SW14]

5 / 25



Application of Obfuscation

I Protecting software

I Almost all crypto

Before GGHRSW13: [Can97, CMR98, Hada00, BGI+01,
LPS04, Wee05, HLS10, HRsV11, CD08, CRV09,
CB10, CCV12, NX13]

After GGHRSW13: [ABGSZ13, BBCKPS14, BCP14,
BCPR13a, BCPR13b, BR14a, BR14b,
BGKPS14, BZ13, CGK13, CV13, GGHRSW13,
GGHW13, GGG+14, GGSR14, GJKS13, GK13,
HSW14, MO13, MR13, PPS13, PTS13, SW14]

5 / 25



Outline

Introduction
Program Obfuscation
Re-Encryption
Motivations
Related Works and Our Contributions

Relaxed Correctness: Overcoming erros in lattice-based crypto
Errors in LWE-based PKE
Obstacle and Relaxed Correctness

Tools for Our Framework & Obfuscator
Key-Switching
Blurring
Obfuscator

Summary

6 / 25



Re-Encryption (standard)

���������

��	
��

Applications of Re-Encryption

Secure distributed file servers, Outsource filtering of encrypted
spam, iTunes DRM system, Constructing FHE, ABE...

7 / 25



Re-Encryption (standard)

��������� ��	
�

��
���

���������

Applications of Re-Encryption

Secure distributed file servers, Outsource filtering of encrypted
spam, iTunes DRM system, Constructing FHE, ABE...

7 / 25



Re-Encryption (standard)

��������� ���������	�
��


�����

Applications of Re-Encryption

Secure distributed file servers, Outsource filtering of encrypted
spam, iTunes DRM system, Constructing FHE, ABE...

7 / 25



Re-Encryption (functional)

��

�

���

Applications of Re-Encryption

Secure distributed file servers, Outsource filtering of encrypted
spam, iTunes DRM system, Constructing FHE, ABE...

7 / 25



Re-Encryption (functional)

��

��

�

���

Applications of Re-Encryption

Secure distributed file servers, Outsource filtering of encrypted
spam, iTunes DRM system, Constructing FHE, ABE...

7 / 25



Re-Encryption (multi-hop)

���
���

Applications of Re-Encryption

Secure distributed file servers, Outsource filtering of encrypted
spam, iTunes DRM system, Constructing FHE, ABE...

7 / 25



Re-Encryption (multi-hop)

���
���

Applications of Re-Encryption

Secure distributed file servers, Outsource filtering of encrypted
spam, iTunes DRM system, Constructing FHE, ABE...

7 / 25



Outline

Introduction
Program Obfuscation
Re-Encryption
Motivations
Related Works and Our Contributions

Relaxed Correctness: Overcoming erros in lattice-based crypto
Errors in LWE-based PKE
Obstacle and Relaxed Correctness

Tools for Our Framework & Obfuscator
Key-Switching
Blurring
Obfuscator

Summary

8 / 25



Why Obfuscating Re-Encryption?

" Strong security

" Clean and easy definition

" More positive results on obfuscation

NOTE on this talk

Virtual black-box obfuscation

Not iO

9 / 25



Why Obfuscating Re-Encryption?

" Strong security

" Clean and easy definition

" More positive results on obfuscation

NOTE on this talk

Virtual black-box obfuscation

Not iO

9 / 25



Why Obfuscating Re-Encryption?

" Strong security

" Clean and easy definition

" More positive results on obfuscation

NOTE on this talk

Virtual black-box obfuscation

Not iO

9 / 25



Why Obfuscating Re-Encryption?

" Strong security

" Clean and easy definition

" More positive results on obfuscation

NOTE on this talk

Virtual black-box obfuscation

Not iO

9 / 25



Outline

Introduction
Program Obfuscation
Re-Encryption
Motivations
Related Works and Our Contributions

Relaxed Correctness: Overcoming erros in lattice-based crypto
Errors in LWE-based PKE
Obstacle and Relaxed Correctness

Tools for Our Framework & Obfuscator
Key-Switching
Blurring
Obfuscator

Summary

10 / 25



Results and Comparisons 1
. New Definition for Correctness of Obfuscation

Reference input output distribution

[HRsV12] all statistically indistinguishable

This work restricted statistically indistinguishable

This work all same value under Decryption

This work all computationally indistinguishable

11 / 25



Results and Comparisons 1
. New Definition for Correctness of Obfuscation

Reference input output distribution

[HRsV12] all statistically indistinguishable

This work restricted statistically indistinguishable

This work all same value under Decryption

This work all computationally indistinguishable

11 / 25



Results and Comparisons 1
. New Definition for Correctness of Obfuscation

Reference input output distribution

[HRsV12] all statistically indistinguishable

This work restricted statistically indistinguishable

This work all same value under Decryption

This work all computationally indistinguishable

11 / 25



Results and Comparisons 1
. New Definition for Correctness of Obfuscation

Reference input output distribution

[HRsV12] all statistically indistinguishable

This work restricted statistically indistinguishable

This work all same value under Decryption

This work all computationally indistinguishable

11 / 25



Results and Comparisons 2

. New Concrete Instantiations

Reference Type #Hop Assumption

[HRsV12] standard single DLIN & SDHI

[CCV12] functional signle SXDH or DLIN

[Gen09,BV11] standard multi LWE w/ FHE

This work standard single LWE

This work functional single LWE

This work standard multi LWE w/o FHE

3 instantiations from our new tools and unified framework.

12 / 25



Results and Comparisons 2

. New Concrete Instantiations

Reference Type #Hop Assumption

[HRsV12] standard single DLIN & SDHI

[CCV12] functional signle SXDH or DLIN

[Gen09,BV11] standard multi LWE w/ FHE

This work standard single LWE

This work functional single LWE

This work standard multi LWE w/o FHE

3 instantiations from our new tools and unified framework.

12 / 25



Outline

Introduction
Program Obfuscation
Re-Encryption
Motivations
Related Works and Our Contributions

Relaxed Correctness: Overcoming erros in lattice-based crypto
Errors in LWE-based PKE
Obstacle and Relaxed Correctness

Tools for Our Framework & Obfuscator
Key-Switching
Blurring
Obfuscator

Summary

13 / 25



LWE and Regev PKE

LWE assumption

A← ZN ×kq , s← Zkq , e← χN

(A, As + e)
c
≈ (A, u)

where u is uniformly random over ZNq

Regev PKE

pk: b = As + e

ct1 = r>A
ct2 = r>b + m · bq/2e

= r>As + r>e + m · bq/2e

Key point: small error (noise): r>e

14 / 25



LWE and Regev PKE

LWE assumption

A← ZN ×kq , s← Zkq , e← χN

(A, As + e)
c
≈ (A, u)

where u is uniformly random over ZNq

Regev PKE

pk: b = As + e

ct1 = r>A
ct2 = r>b + m · bq/2e

= r>As + r>e + m · bq/2e

Key point: small error (noise): r>e

14 / 25



LWE and Regev PKE

LWE assumption

A← ZN ×kq , s← Zkq , e← χN

(A, As + e)
c
≈ (A, u)

where u is uniformly random over ZNq

Regev PKE

pk: b = As + e

ct1 = r>A
ct2 = r>b + m · bq/2e = r>As + r>e + m · bq/2e

Key point: small error (noise): r>e

14 / 25



Outline

Introduction
Program Obfuscation
Re-Encryption
Motivations
Related Works and Our Contributions

Relaxed Correctness: Overcoming erros in lattice-based crypto
Errors in LWE-based PKE
Obstacle and Relaxed Correctness

Tools for Our Framework & Obfuscator
Key-Switching
Blurring
Obfuscator

Summary

15 / 25



Correctness (Preserving Functionality)

Original Correctness (specialized for Re-Enc)

ReEncrk (ct)
s
≈ Obf(ReEncrk )(ct)

On invalid ciphertexts

I Require ”independent” and ”small” noise in lattice-based
crypto

I Arbitrary inputs include invalid ciphertext

16 / 25



Correctness (Preserving Functionality)

Original Correctness (specialized for Re-Enc)

ReEncrk (ct)
s
≈ Obf(ReEncrk )(ct)

On invalid ciphertexts

I Require ”independent” and ”small” noise in lattice-based
crypto

I Arbitrary inputs include invalid ciphertext

16 / 25



Correctness (Preserving Functionality)

Original Correctness (specialized for Re-Enc)

ReEncrk (ct)
s
≈ Obf(ReEncrk )(ct)

On invalid ciphertexts

I Require ”independent” and ”small” noise in lattice-based
crypto

I Arbitrary inputs include invalid ciphertext

16 / 25



New Relaxed Correctness

Restricted inputs

ct ∈ Π, ReEncrk (ct)
s
≈ Obf(ReEncrk )(ct)

Concretely, Π is a set of honestly generated ciphertext

Under decryption

Dec(ReEncrk (ct)) = Dec(Obf(ReEncrk )(ct))

Computational indistinguishability

ReEncrk (ct)
c
≈ Obf(ReEncrk )(ct)

Note: We can apply to arbitrary programs

17 / 25



New Relaxed Correctness

Restricted inputs

ct ∈ Π, ReEncrk (ct)
s
≈ Obf(ReEncrk )(ct)

Concretely, Π is a set of honestly generated ciphertext

Under decryption

Dec(ReEncrk (ct)) = Dec(Obf(ReEncrk )(ct))

Computational indistinguishability

ReEncrk (ct)
c
≈ Obf(ReEncrk )(ct)

Note: We can apply to arbitrary programs

17 / 25



New Relaxed Correctness

Restricted inputs

ct ∈ Π, ReEncrk (ct)
s
≈ Obf(ReEncrk )(ct)

Concretely, Π is a set of honestly generated ciphertext

Under decryption

Dec(ReEncrk (ct)) = Dec(Obf(ReEncrk )(ct))

Computational indistinguishability

ReEncrk (ct)
c
≈ Obf(ReEncrk )(ct)

Note: We can apply to arbitrary programs

17 / 25



Outline

Introduction
Program Obfuscation
Re-Encryption
Motivations
Related Works and Our Contributions

Relaxed Correctness: Overcoming erros in lattice-based crypto
Errors in LWE-based PKE
Obstacle and Relaxed Correctness

Tools for Our Framework & Obfuscator
Key-Switching
Blurring
Obfuscator

Summary

18 / 25



Key-Switching

Key-Switching

Enc(pk ,m)

⇒ Switch(K
pk→ p̂k

, ·) ⇒ Enc(p̂k ,m)

I K
pk→ p̂k

← SwitchGen(pk , sk , p̂k)

I K̃
pk→ p̂k

← SimSwitchGen(p̂k)

Security

LWE.Enc(p̂k , sk) =

K
pk→ p̂k

c
≈ K̃

pk→ p̂k

= LWE.Enc(p̂k , 0)

Intuitively, K
pk→ p̂k

= LWE.Enc(p̂k , sk) (enc of sk) [BV11,B12]

19 / 25



Key-Switching

Key-Switching

Enc(pk ,m) ⇒ Switch(K
pk→ p̂k

, ·) ⇒ Enc(p̂k ,m)

I K
pk→ p̂k

← SwitchGen(pk , sk , p̂k)

I K̃
pk→ p̂k

← SimSwitchGen(p̂k)

Security

LWE.Enc(p̂k , sk) =

K
pk→ p̂k

c
≈ K̃

pk→ p̂k

= LWE.Enc(p̂k , 0)

Intuitively, K
pk→ p̂k

= LWE.Enc(p̂k , sk) (enc of sk) [BV11,B12]

19 / 25



Key-Switching

Key-Switching

Enc(pk ,m) ⇒ Switch(K
pk→ p̂k

, ·) ⇒ Enc(p̂k ,m)

I K
pk→ p̂k

← SwitchGen(pk , sk , p̂k)

I K̃
pk→ p̂k

← SimSwitchGen(p̂k)

Security

LWE.Enc(p̂k , sk) =

K
pk→ p̂k

c
≈ K̃

pk→ p̂k

= LWE.Enc(p̂k , 0)

Intuitively, K
pk→ p̂k

= LWE.Enc(p̂k , sk) (enc of sk) [BV11,B12]

19 / 25



Key-Switching

Key-Switching

Enc(pk ,m) ⇒ Switch(K
pk→ p̂k

, ·) ⇒ Enc(p̂k ,m)

I K
pk→ p̂k

← SwitchGen(pk , sk , p̂k)

I K̃
pk→ p̂k

← SimSwitchGen(p̂k)

Security

LWE.Enc(p̂k , sk) =

K
pk→ p̂k

c
≈ K̃

pk→ p̂k

= LWE.Enc(p̂k , 0)

Intuitively, K
pk→ p̂k

= LWE.Enc(p̂k , sk) (enc of sk) [BV11,B12]

19 / 25



Key-Switching

Key-Switching

Enc(pk ,m) ⇒ Switch(K
pk→ p̂k

, ·) ⇒ Enc(p̂k ,m)

I K
pk→ p̂k

← SwitchGen(pk , sk , p̂k)

I K̃
pk→ p̂k

← SimSwitchGen(p̂k)

Security

LWE.Enc(p̂k , sk) = K
pk→ p̂k

c
≈ K̃

pk→ p̂k
= LWE.Enc(p̂k , 0)

Intuitively, K
pk→ p̂k

= LWE.Enc(p̂k , sk) (enc of sk) [BV11,B12]

19 / 25



Outline

Introduction
Program Obfuscation
Re-Encryption
Motivations
Related Works and Our Contributions

Relaxed Correctness: Overcoming erros in lattice-based crypto
Errors in LWE-based PKE
Obstacle and Relaxed Correctness

Tools for Our Framework & Obfuscator
Key-Switching
Blurring
Obfuscator

Summary

20 / 25



Blurring (Re-Randomization LWE-based ciphertext)

Arbitrary value: ct

Blurring the distribution of ct

Blur(pk , ct) := ct + Encpk (0) (Dec(ct) = Dec(Blur(ct)))

Strong Blurring: Blur(ct)
s
≈ Blur(Encpk (m))

21 / 25



Blurring (Re-Randomization LWE-based ciphertext)

Arbitrary value: ct

Blurring the distribution of ct

Blur(pk , ct) := ct + Encpk (0) (Dec(ct) = Dec(Blur(ct)))

Strong Blurring: Blur(ct)
s
≈ Blur(Encpk (m))

21 / 25



Blurring (Re-Randomization LWE-based ciphertext)

Arbitrary value: ct

Blurring the distribution of ct

Blur(pk , ct) := ct + Encpk (0) (Dec(ct) = Dec(Blur(ct)))

Strong Blurring: Blur(ct)
s
≈ Blur(Encpk (m))

21 / 25



Blurring (Re-Randomization LWE-based ciphertext)

Arbitrary value: ct

Blurring the distribution of ct

Blur(pk , ct) := ct + Encpk (0) (Dec(ct) = Dec(Blur(ct)))

Strong Blurring: Blur(ct)
s
≈ Blur(Encpk (m))

21 / 25



Outline

Introduction
Program Obfuscation
Re-Encryption
Motivations
Related Works and Our Contributions

Relaxed Correctness: Overcoming erros in lattice-based crypto
Errors in LWE-based PKE
Obstacle and Relaxed Correctness

Tools for Our Framework & Obfuscator
Key-Switching
Blurring
Obfuscator

Summary

22 / 25



Obfuscator for Re-Encryption (Basic Idea)
Obfuscator

Input: (pk , sk), p̂k

Output: K
pk→ p̂k

← SwitchGen(pk , sk , p̂k)

Execution of Obfuscated Program

Input: ct

Output: c̃t ← Blur(p̂k , Switch(K
pk→ p̂k

, ct))

���� 23 / 25



Obfuscator for Re-Encryption (Basic Idea)
Obfuscator

Input: (pk , sk), p̂k

Output: K
pk→ p̂k

← SwitchGen(pk , sk , p̂k)

Execution of Obfuscated Program

Input: ct

Output: c̃t ← Blur(p̂k , Switch(K
pk→ p̂k

, ct))

���� 23 / 25



Obfuscator for Re-Encryption (Basic Idea)
Simulated Obfuscator

Input: p̂k

Output: K̃
pk→ p̂k

← SimSwitchGen(p̂k)

Execution of Obfuscated Program

Input: ct

Output: c̃t ← Blur(p̂k , Switch(K
pk→ p̂k

, ct))

���� ���	��
���

�������	


23 / 25



Outline

Introduction
Program Obfuscation
Re-Encryption
Motivations
Related Works and Our Contributions

Relaxed Correctness: Overcoming erros in lattice-based crypto
Errors in LWE-based PKE
Obstacle and Relaxed Correctness

Tools for Our Framework & Obfuscator
Key-Switching
Blurring
Obfuscator

Summary

24 / 25



Summary

A New Framework for Obfuscating Re-Encryption

I New definition of correctness

1. statistical indistinguishability for restricted inputs
2. same value under decryption for all inputs
3. computational indistinguishability for all inputs

I Standard , functional, and multi-hop re-encryption

I Key-switching and blurring mechanism

I Instantiations from LWE-based PKE

Thank you.
Q?

25 / 25



Summary

A New Framework for Obfuscating Re-Encryption

I New definition of correctness

1. statistical indistinguishability for restricted inputs
2. same value under decryption for all inputs
3. computational indistinguishability for all inputs

I Standard , functional, and multi-hop re-encryption

I Key-switching and blurring mechanism

I Instantiations from LWE-based PKE

Thank you.
Q?

25 / 25


	Introduction
	Program Obfuscation
	Re-Encryption
	Motivations
	Related Works and Our Contributions

	Relaxed Correctness: Overcoming erros in lattice-based crypto
	Errors in LWE-based PKE
	Obstacle and Relaxed Correctness

	Tools for Our Framework & Obfuscator
	Key-Switching
	Blurring
	Obfuscator

	Summary

