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Overview

● New signature primitive

● Signer can only sign messages conforming to policy

● Practical applications: use for corporations

● Theoretical: unification of existing work
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Security

● Unforgeability:

– You can only sign a message m if you have a key for a 
policy p satisfied by m

● Privacy:

– The signature hides the policy

– Signatures under same key are unlinkable
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● Functional signatures (Boyle, Goldwasser, Ivan [BGI13]):

– Key skf allows signing messages in range of f

– Interpret f as policy:   (f,m) L  :   w : f (w)  = m

– Policy languages in P, succinctness condition

● Delegatable functional signatures 

                                (Backes, Meiser, Schröder [BMS13]):

– Signatures verified w.r.t. signer's public key



  

Related work

● Constrained / delegatable / functional PRFs
                                                       [BW13, BGI13, KPTZ13]:

– Keys enable evaluation of PRF on parts of domain



  

Related work

● Constrained / delegatable / functional PRFs
                                                       [BW13, BGI13, KPTZ13]:

– Keys enable evaluation of PRF on parts of domain

● Attribute-based signatures [MPR11]:

– Keys issued for set of attributes {a1,a2,...,an}

– Signing w.r.t. predicate possible iff  (a1,a2,...,an) = 1
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Can we do better?

 Example:
  Policy-based signatures:

●  No public policies
●  Verification w.r.t. vk only     

Hugo

Diego

Contract with C1
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Theoretical motivation

● Signature analog to functional encryption  [BSW11]

- FE:    Simply encrypt message, let keys handle access

- PBS: Simply verify signature; keys handle authorization

● Unification of existing notions for signatures with privacy:

    (Anonymous) proxy signatures  [MUO96, FP08]

    Ring signatures, mesh signatures  [RST01, Boy07]

    Attribute-based signatures  [MPR11]

    Anonymous credentials  [CL01, BCKL08]

    Group signatures  [Cv91]
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Definition

● Policy languages:

We allow any language in NP, defined by    policy checker

                            (p,m) L(PC)  :   w : PC((p,m),w) = 1
                                 ... iff signing of m is permitted under p

● Algorithms:       Setup(1)          (pp,msk)

                          KeyGen(msk,p)  skp

                          Sign(skp,m,w)     
                          Verify(pp,m,)     b
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Security

● Indistinguishability

An adversary, given msk, outputs sk0 , sk1

           and cannot tell with which key a signature was created

● Unforgeability

An adversary, after querying:    -  keys for policies p1, ... , pn

                                                     -  signatures on messages 

should not be able to create signature on new m*
                                                     with (p1, m*), ... , (pn ,m*) L 

not efficiently
decidable



  

Sim/ext security

● Simulatability        indistinguishability



  

● Simulatability        indistinguishability
/

Sim/ext security



  

● Simulatability        indistinguishability

● Extractability         unforgeability

is efficiently decidable

/

Sim/ext security
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Construction I

● Generic construction (à la [BMW03])  

based on - signatures

 - IND-CPA encryption

 - NIZK proofs                                                   for any policy language in NP



  

Construction II

● Concrete construction

based on - structure-preserving signatures [AFG+10]

 - Groth-Sahai proofs [GS08]

for policy languages over pairing groups

 (policies define pairing-product equations)
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CCA-secure group signatures 
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Other primitives from PBS

● Attribute-based signatures  [MPR11]

● Simulation-sound extractable NIZK proofs  [Gro06]

● CPA-secure public-key encryption

● combining the above [Sah99]: CCA-secure encryption

   thus   PBS  group signatures
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Re-delegation

● Delegatable PBS

– holding skp, derive skp'  for subpolicy p'

● Reflects hierarchies in organizations
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Re-delegation

● Delegatable PBS

– holding skp, derive skp'  for subpolicy p'

Hugo

Diego Lionel
“sign contract with Ck”

“sign contract with C1,C2,...,Cn”
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● New primitive, practically motivated

● Umbrella notion for previous primitives

 ● Definition

● Constructions          Crypto paper [O'Neill 14]

● Applications

    



  

Conclusion

● New primitive, practically motivated

● Umbrella notion for previous primitives

 

● Practical schemes for specific policy languages

Open problems / future work



  

Thank you
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