

Mihir Bellare Georg Fuchsbauer
 UCSD IST Austria

PKC 2014, 28 March 2014

(Full version: eprint 2013/413)

 Policy-based signatures

Overview

● New signature primitive

● Signer can only sign messages conforming to policy

Overview

● New signature primitive

● Signer can only sign messages conforming to policy

● Practical applications: use for corporations

● Theoretical: unification of existing work

Signatures

vk

Signer

sk

Signatures

vk

VerifierSigner
(m,)

sk

Policy-based signatures

Signer

pp

skp

Authority

Policy-based signatures

Signer

pp

skp

Authority

Verifier
(m,)

only if (p,m)  L  {0,1}*  {0,1}*

L ... policy language

Policy-based signatures

Signer

pp

skp

Authority

Verifier
(m,)

only if (p,m)  L  {0,1}*  {0,1}*

L ... policy language

L can be
any language in P

Policy-based signatures

Signer

pp

skp

Authority

Verifier
(m,)

only if (p,m)  L  {0,1}*  {0,1}*

L can be
any language in NP

Security

● Unforgeability:

– You can only sign a message m if you have a key for a
policy p satisfied by m

Security

● Unforgeability:

– You can only sign a message m if you have a key for a
policy p satisfied by m

● Privacy:

– The signature hides the policy

– Signatures under same key are unlinkable

Related work

● Functional signatures (Boyle, Goldwasser, Ivan [BGI13]):

– Key skf allows signing messages in range of f

– Interpret f as policy: (f,m) L :  w : f (w) = m

Related work

● Functional signatures (Boyle, Goldwasser, Ivan [BGI13]):

– Key skf allows signing messages in range of f

– Interpret f as policy: (f,m) L :  w : f (w) = m

– Policy languages in P, succinctness condition

Related work

● Functional signatures (Boyle, Goldwasser, Ivan [BGI13]):

– Key skf allows signing messages in range of f

– Interpret f as policy: (f,m) L :  w : f (w) = m

– Policy languages in P, succinctness condition

● Delegatable functional signatures

 (Backes, Meiser, Schröder [BMS13]):

– Signatures verified w.r.t. signer's public key

Related work

● Constrained / delegatable / functional PRFs
 [BW13, BGI13, KPTZ13]:

– Keys enable evaluation of PRF on parts of domain

Related work

● Constrained / delegatable / functional PRFs
 [BW13, BGI13, KPTZ13]:

– Keys enable evaluation of PRF on parts of domain

● Attribute-based signatures [MPR11]:

– Keys issued for set of attributes {a1,a2,...,an}

– Signing w.r.t. predicate possible iff (a1,a2,...,an) = 1

Motivation for PBS

Practical motivation

● Company with public key vk

● Employees get signing keys enabling signing

 anonymously on behalf of company

Practical motivation

● Group signatures [Cv91]:

– Anonymous signing, no control of what can be signed

● Company with public key vk

● Employees get signing keys enabling signing

 anonymously on behalf of company

Practical motivation

● Group signatures [Cv91]:

– Anonymous signing, no control of what can be signed

● Attribute-based signatures [MPR11]:

– Verification w.r.t. policies CEO  (board member  manager)

● Company with public key vk

● Employees get signing keys enabling signing

 anonymously on behalf of company

Practical motivation

● Group signatures [Cv91]:

– Anonymous signing, no control of what can be signed

● Attribute-based signatures [MPR11]:

– Verification w.r.t. policies CEO  (board member  manager)

● Company with public key vk

● Employees get signing keys enabling signing

 anonymously on behalf of company

Can we do better?

 Public policies...

● Does verifier need to know?

Can we do better?

 Public policies...

● Does verifier need to know?

  Verification w.r.t. policies...

● Verifier must judge if message OK under policy

 CEO  Intern

Can we do better?

 Public policies...

● Does verifier need to know?

  Verification w.r.t. policies...

● Verifier must judge if message OK under policy,
e.g.

 CEO  Intern

Can we do better?

 Public policies...

● Does verifier need to

  Verification w.r.t. policies...

● Verifier must judge if message OK under policy,
e.g.

 CEO  Intern

 Policy-based signatures:

● No public policies
● Verification w.r.t. vk only

Can we do better?

 Policy-based signatures:

● No public policies
● Verification w.r.t. vk only

Can we do better?

 Example:
 Policy-based signatures:

● No public policies
● Verification w.r.t. vk only

Hugo

Diego

“sign contract with C1,C2,...,Cn”

Can we do better?

 Example:
 Policy-based signatures:

● No public policies
● Verification w.r.t. vk only

Hugo

Diego

Contract with C1

Theoretical motivation

● Signature analog to functional encryption [BSW11]

- FE: Simply encrypt message, let keys handle access

- PBS: Simply verify signature; keys handle authorization

Theoretical motivation

● Signature analog to functional encryption [BSW11]

- FE: Simply encrypt message, let keys handle access

- PBS: Simply verify signature; keys handle authorization

● Unification of existing notions for signatures with privacy:

 (Anonymous) proxy signatures [MUO96, FP08]

 Ring signatures, mesh signatures [RST01, Boy07]

 Attribute-based signatures [MPR11]

 Anonymous credentials [CL01, BCKL08]

 Group signatures [Cv91]

Definition of PBS

Definition

● Policy languages:

We allow any language in NP, defined by policy checker

 (p,m) L(PC) :  w : PC((p,m),w) = 1

Definition

● Policy languages:

We allow any language in NP, defined by policy checker

 (p,m) L(PC) :  w : PC((p,m),w) = 1

m conforms to policy p

Definition

● Policy languages:

We allow any language in NP, defined by policy checker

 (p,m) L(PC) :  w : PC((p,m),w) = 1
 ... iff signing of m is permitted under p

● Algorithms: Setup(1)  (pp,msk)

 KeyGen(msk,p) skp

 Sign(skp,m,w) 
 Verify(pp,m,) b

Security

● Indistinguishability

An adversary, given msk, outputs sk0 , sk1

 and cannot tell with which key a signature was created

Security

● Indistinguishability

An adversary, given msk, outputs sk0 , sk1

 and cannot tell with which key a signature was created

● Unforgeability

An adversary, after querying: - keys for policies p1, ... , pn

 - signatures on messages

should not be able to create signature on new m*
 with (p1, m*), ... , (pn ,m*) L

Security

● Indistinguishability

An adversary, given msk, outputs sk0 , sk1

 and cannot tell with which key a signature was created

● Unforgeability

An adversary, after querying: - keys for policies p1, ... , pn

 - signatures on messages

should not be able to create signature on new m*
 with (p1, m*), ... , (pn ,m*) L

not efficiently
decidable

Sim/ext security

● Simulatability  indistinguishability

● Simulatability  indistinguishability
/

Sim/ext security

● Simulatability  indistinguishability

● Extractability  unforgeability

is efficiently decidable

/

Sim/ext security

Constructions of PBS

Construction I

● Generic construction (à la [BMW03])

based on - signatures

 - IND-CPA encryption

 - NIZK proofs for any policy language in NP

Construction II

● Concrete construction

based on - structure-preserving signatures [AFG+10]

 - Groth-Sahai proofs [GS08]

for policy languages over pairing groups

 (policies define pairing-product equations)

Primitives from PBS

CCA-secure group signatures

Member i

gvk

ski

Manager

Verifier
(m,)

Member i

gvk

ski

Manager

Verifier
(m,)

Manager
 ican be opened:

CCA-secure group signatures

Member i

gvk

ski

Manager

Verifier
(m,)

Construction from
PBS and

CCA-encryption

Manager
 ican be opened:

CCA-secure group signatures

Member i

ski

Manager

Verifier
(m,)

(pp PBS , pk)

Manager
 ican be opened:

CCA-secure group signatures

Member i

ski

Manager

Verifier
m, = (Enc (pk,i), )

(pp PBS , pk)

Manager
 ican be opened:

CCA-secure group signatures

Member i

ski

Manager

Verifier
m, = (Enc (pk,i), )

(i, (c,m)) L :  r : c = Enc (pk,i ;r)

(pp PBS , pk)

Manager
 ican be opened:

CCA-secure group signatures

Member i

(pp PBS , pk)

ski

Manager

Verifier

Manager
 i = Dec (dk,c)

m, = (Enc (pk,i), )

= (c, )can be opened:

CCA-secure group signatures

Other primitives from PBS

● Attribute-based signatures [MPR11]

Other primitives from PBS

● Attribute-based signatures [MPR11]

● Simulation-sound extractable NIZK proofs [Gro06]

Other primitives from PBS

● Attribute-based signatures [MPR11]

● Simulation-sound extractable NIZK proofs [Gro06]

● CPA-secure public-key encryption

Other primitives from PBS

● Attribute-based signatures [MPR11]

● Simulation-sound extractable NIZK proofs [Gro06]

● CPA-secure public-key encryption

● combining the above [Sah99]: CCA-secure encryption

 thus PBS group signatures

Delegatable PBS

Re-delegation

● Delegatable PBS

– holding skp, derive skp' for subpolicy p'

● Reflects hierarchies in organizations

Re-delegation

● Delegatable PBS

– holding skp, derive skp' for subpolicy p'

Hugo

Diego

“sign contract with C1,C2,...,Cn”

Re-delegation

● Delegatable PBS

– holding skp, derive skp' for subpolicy p'

Hugo

Diego Lionel
“sign contract with Ck”

“sign contract with C1,C2,...,Cn”

Conclusion

● New primitive, practically motivated

● Umbrella notion for previous primitives

Conclusion

● New primitive, practically motivated

● Umbrella notion for previous primitives

 ● Definition

● Constructions Crypto paper [O'Neill 14]

● Applications

Conclusion

● New primitive, practically motivated

● Umbrella notion for previous primitives

● Practical schemes for specific policy languages

Open problems / future work

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 66
	Slide 67

