FUNCTIONAL SIGNATURES AND PSEUDORANDOM FUNCTIONS

Elette Boyle
Shafi Goldwasser
Ioana Ivan
Traditional Paradigm: All or Nothing

- **Encryption [DH76]**
 - Given SK, can decrypt.
 - Otherwise, can’t distinguish encryptions of different messages.

- **Digital Signatures [DH76]**
 - Given SK, can sign.
 - Otherwise can’t forge single new signature.

- **Pseudo Random Functions [GGM84]**
 - Given SK, can compute.
 - Otherwise can’t distinguish from random function.

2000’s: Auxiliary Keys ≈ Partial Abilities

- IBE, HIBE, Attribute Based, Policy based, Functional Encryption [GPSW06, SW05, BSW11]
 - Master secret key $MSK \Rightarrow$ can compute m from $\text{Enc}(m)$.
 - Auxiliary key $SK_g \Rightarrow$ can compute $g(m)$ from $\text{Enc}(m)$ and nothing else.

Functional Encryption \Rightarrow Cloud Computing Application
Today: Shift Paradigms in the domain of Digital Signatures and Pseudo-random Functions

Corresponds to a function g
Functional Digital Signatures

- **Functional Digital Signatures:**
 - master secret key $\text{MSK} \Rightarrow$ can sign any message
 - Auxiliary secret key $\text{SK}_g \Rightarrow$ can sign only messages in $\text{Range}(g)$
 - **Interpretation 1:**
 - Can sign only messages that have gone through approved processing
 - **Interpretation 2:**
 - Can sign any message that satisfies a certain predicate

- **Related Work:**
 - “Signatures of correct computation” - [PST13]
 - “Policy-based signatures” - [BF13]
 - “Delegatable Functional Signatures” - [BMS13]
Example: certified modifications

- Certifying that only allowable computations were performed on data.

- Restrict the photo-shop to touch ups of authentic images, e.g. don’t allow cropping or merging of photos.
Signature Filters

\[
\text{Sign}(M) \text{ only if } g(M) = 1
\]

Circuit for function \(g \)

\[
\begin{align*}
m_1 & \quad \text{OR} \\
\quad & \quad \text{AND} \\
m_2 & \quad \text{OR} \\
\quad & \quad \text{AND} \\
m_3 &
\end{align*}
\]

Signing Filter for \(g \)

\[
\begin{align*}
M & \quad \text{OR} \\
\quad & \quad \text{AND} \\
\text{Sign}(M)
\end{align*}
\]
Signature Filters

Circuit for function g

- OR node
- AND node
- Inputs: 1, 0, 1

Signing Filter for g

- OR node
- AND node
- Input: $M = 101$
- Operation: Sign(M)
Signature Filters

Circuit for function g

\[
\begin{array}{c}
1 \\
\text{OR} \\
\text{AND} \\
1 \\
0
\end{array}
\]

Signing Filter for g

\[
\begin{array}{c}
\text{OR} \\
\text{AND} \\
\text{M} = 110
\end{array}
\]
Functional Signatures - Definition

A *functional signature* scheme is a tuple of algorithms:

- **Setup**(1^k) : (MSK, VK)
- **KeyGen**(MSK, g) : sk_g
- **Sign**(g, sk_g, m) : (g(m), σ)
- **Verify**(VK, σ, m^*) : 0 or 1

Correctness:
- Given sk_g, and m, one can sign g(m).

Security Game:

Special case: g(m) = m iff P(m)=1

More generally: NP relation
g(m,w) = m iff R(m,w)=1
Functional Signatures – Security Game

Setup : (VK, MSK)

VK

KeyGen(MSK, g)

\(g \)

\(g', m \)

Sign\((g', sk_g', m) \)

\((m^*, \sigma^*) \)

\{ Type I queries \}

\{ Type II queries \}

I can forge!

The adversary WINS if Verify\((VK, \sigma^* m^*) = 1 \) for NEW \(m^* \) s.t \(m^* \) NOT in Range\((g) \) for any queried \(g \)

Prob [WIN] should be negligible
Additional Desirable Properties

• Function Privacy
 \[g_1(m_1) = g_2(m_2) \Rightarrow \text{Sign}(sk_{g_1}, m_1) \approx_c \text{Sign}(sk_{g_2}, m_2) \]

• Succinctness
 \[|\text{Sign}(g, sk_g, m)| = \text{poly}(\lambda, |g(m)|), \]
 independent of $|g|$ and $|m|$
Our Results

• **Theorem 1:** OWF \Rightarrow functional signatures for P
 (NOT succinct or function private)

• **Theorem 2:** Enhanced trapdoor permutations
 \Rightarrow function-private functional signatures for P
 (NOT succinct)

• **Theorem 3:** SNARKs for NP \Rightarrow succinct, function-private functional signatures for P

• **SNARKs:** Succinct non-interactive arguments of knowledge s.t.
 $|\text{proof}| << |\text{witness}|$.
The Necessity of Non Falsifiable Assumptions for Succinctness

• Theorem 3 relied on SNARKs

• SNARKs have been shown to exist based on various knowledge assumptions. [BCCT12, GLR12, GGPR12 …]

• SNARKs and SNARGs can’t be proved secure using black-box reductions to falsifiable assumption. [GW11]

• **Theorem**: Succinct functional signatures for P \Rightarrow SNARGs for NP.
Functional Pseudorandom Functions (PRF)

Functional PRF $F = \{f_K\}$ w.r.t. $G = \{g_i\}$:

- **KeyGen**$(k, g) = SK_g$
- **Given** SK_g, $x \in \text{range}(g) \Rightarrow$ can compute $f_k(x)$
 $x \text{ NOT in } \text{range}(g) \Rightarrow f_k(x)$ pseudorandom

Security notion:
- The adversary requests keys SK_g for functions g in G,
 $f_k(x) \approx \text{random}$ for any $x \text{ NOT in } \text{Range}(g)$ for any g
- Adaptive versus selective.

Independent Work: [BW13, KPTZ13].

Special case: $g(x) = x$ iff $P(x)=1$
Construction: Functional PRFs for $G_{\text{pre}} = \text{prefix-fixing functions}$

SK_{prefix} allows evaluation on any string $x = \text{"prefix}||y$".

Theorem: OWF \Rightarrow selectively secure functional PRF for G_{pre}

```
Key for prefix 0

GGM-based construction
```
Applications of functional PRFs for prefix-fixing

• Secret-key HIBE

\[
\text{Sk}_{id} = K_{id} \\
\text{Enc}(id, m) = (r, m + \text{PRF}(id| r))
\]

• Functional prefix-fixing PRFs ⇒ punctured PRFs [SW13]
 • Many Applications!
Functional PRF for $G_{\text{pre}} \Rightarrow \text{Punctured PRFs}$

Punctured PRF: “puncture” input x^*
Key K_{x^*} lets you compute PRF_K on all inputs except x^*.

[SW13]: Functional PRFs for prefix-fixing \Rightarrow punctured PRFs
Many Applications of **Punctured PRFs**

- Punctured PRFs + indistinguishability Obfuscation (iO) ⇒ many applications:
 - PKE, selectively secure signatures, NIZK [SW13]
 - Deniable encryption [SW13]
 - Instantiation of random oracle for full-domain hash applications [HSW13].
 - Efficient traitor-tracing PKE [BZ13]
 - …
Conclusion

• Introduce new primitives:
 Functional Digital Signatures & Functional PRFs

• Functional Signatures:
 • Several constructions supporting keys for P
 • Tradeoff between assumptions & features

• Functional PRFs:
 • Construction for the prefix-fixing family based on OWF
Open Problems

- Functional PRFs for general function families G
 - Construction for general predicates using multilinear maps [BW13]

- Verifiable Functional PRFs?

- Further Applications of Functional Signatures and PRFs
Thank you