FUNCTIONAL SIGNATURES AND PSEUDORANDOM FUNCTIONS

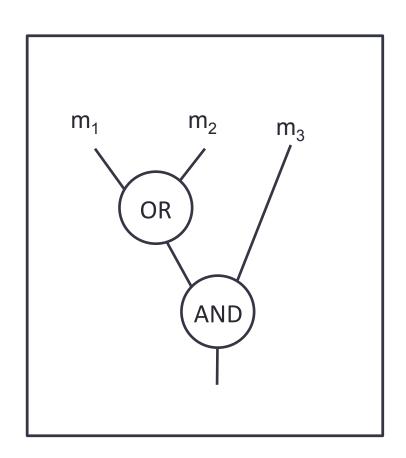
Elette Boyle Shafi Goldwasser Ioana Ivan

Traditional Paradigm: All or Nothing

- Encryption [DH76]
 - Given SK, can decrypt.
 - Otherwise, can't distinguish encryptions of different messages.
- Digital Signatures [DH76]
 - Given SK, can sign.
 - Otherwise can't forge single new signature.
- Pseudo Random Functions [GGM84]
 - Given SK, can compute.
 - Otherwise can't distinguish from random function.

The Secret Key

2000's: Auxiliary Keys ≈ Partial Abilities


Paradigm Shift for Encryption: Enable **Partial** "Abilities" [2005-on]

- IBE, HIBE, Attribute Based, Policy based, Functional Encryption [GPSW06, SW05, BSW11]
 - Master secret key MSK ⇒ can compute m from Enc(m).
 - Auxiliary key SK_g ⇒ can compute g(m) from Enc(m) and nothing else.

Functional Encryption ⇒ Cloud Computing Application

Today: Shift Paradigms in the domain of **Digital Signatures** and **Pseudo-random Functions**

g

Corresponds to a function

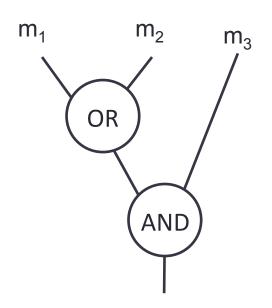
Functional Digital Signatures

- Functional Digital Signatures:
 - master secret key MSK⇒ can sign any message
 - Auxiliary secret key SK_g ⇒ can sign only messages in Range(g)
 - Interpretation 1:
 - Can sign only messages that have gone through approved processing
 - Interpretation 2:
 - Can sign any message that satisfies a certain predicate
- Related Work:
 - "Signatures of correct computation" [PST13]
 - "Policy-based signatures" [BF13]
 - "Delegatable Functional Signatures" [BMS13]

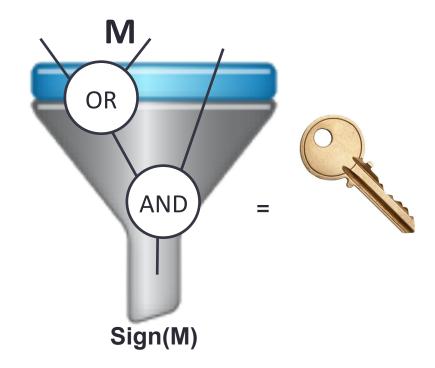
Example: certified modifications

Certifying that only allowable computations were

performed on data.

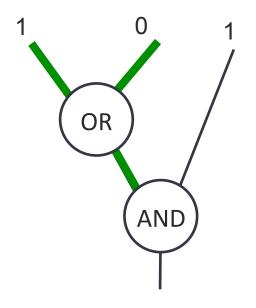


Restrict the photo-shop to touch ups of authentic images,
 e.g. don't allow cropping or merging of photos.


Signature Filters

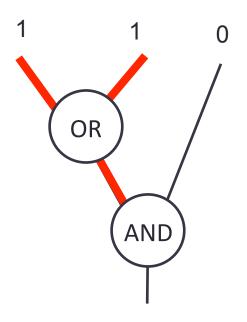
Sign(M) only if
$$g(M) = 1$$

Circuit for function g



Signing Filter for g

Signature Filters


Circuit for function g

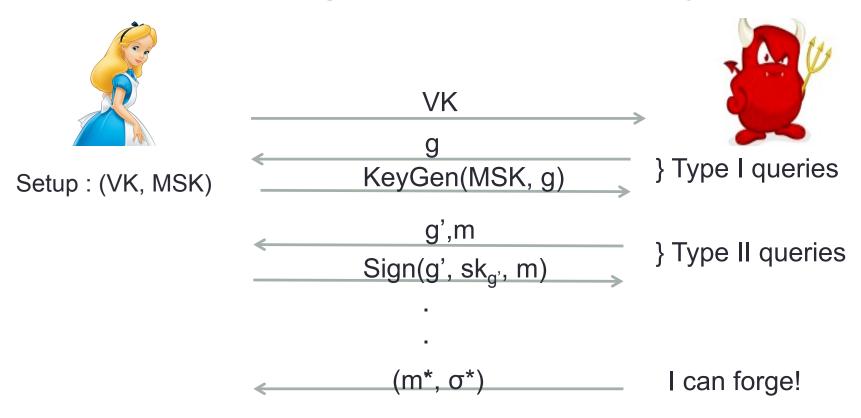
Signing Filter for g

Signature Filters

Circuit for function g

Signing Filter for g

Functional Signatures - Definition


- A functional signature scheme is a tuple of algorithms:
 - Setup(1^k): (MSK, VK)
 - KeyGen(MSK, g): sk_g
 - Sign(g, sk_q , m) : (g(m), σ)
 - Verify(VK, σ, m*): 0 or 1

Special case: g(m) = m iff P(m)=1

More generally: NP relation g(m,w) = m iff R(m,w)=1

- Correctness:
 - Given sk_g, and m, one can sign g(m).
- Security Game:

Functional Signatures – Security Game

The adversary WINS if Verify(VK, σ^* m*) = 1 for NEW m* s.t m* NOT in Range(g) for any queried g Prob [WIN] should be negligible

Additional Desirable Properties

- Function Privacy
 - $g_1(m_1) = g_2(m_2) \Rightarrow Sign(sk_{g1}, m_1) \approx_c Sign(sk_{g2}, m_2)$
- Succinctness
 - $|Sign(g, sk_g, m)| = poly(\lambda, |g(m)|),$ independent of |g| and |m|

Our Results

- Theorem 3: SNARKs for NP ⇒ succinct, function-private functional signatures for P
- SNARKs: Succinct non-interactive arguments of knowledge s.t. |proof| << |witness|.

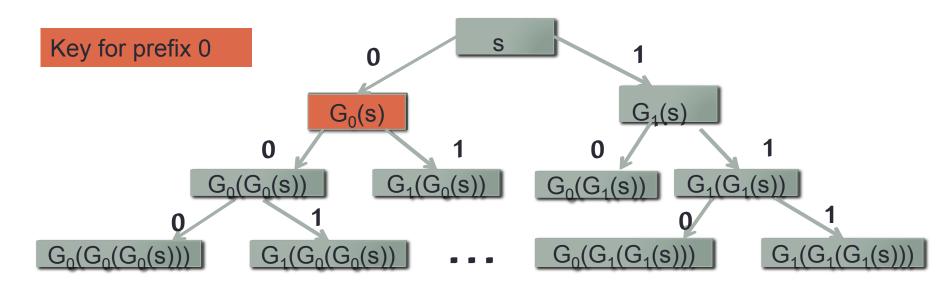
The Necessity of Non Falsifiable Assumptions for Succinctness

- Theorem 3 relied on SNARKs
- SNARKs have been shown to exist based on various knowledge assumptions. [BCCT12, GLR12, GGPR12 ...]
- SNARKs and SNARGs can't be proved secure using black-box reductions to falsifiable assumption. [GW11]
- Theorem : Succinct functional signatures for P
 ⇒ SNARGs for NP.

Functional Pseudorandom Functions (PRF)

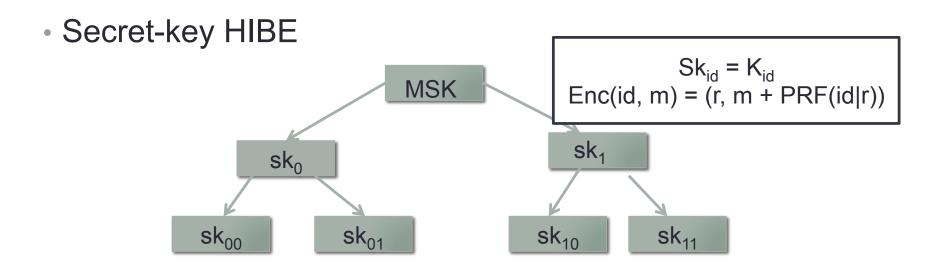
```
Functional PRF F = \{f_K\} w.r.t. G = \{g_i\}:
```

- $KeyGen(k, g) = SK_g$
- Given SK_g , x in $range(g) \Rightarrow can compute <math>f_k(x)$ x NOT in $range(g) \Rightarrow f_k(x)$ pseudorandom


Special case: g(x) = x iff P(x)=1

- Security notion:
 - The adversary requests keys SK_g for functions g in G,
 f_k(x) ≈ random for any x NOT in Range(g) for any g
 - Adaptive versus selective.
- Independent Work: [BW13, KPTZ13].

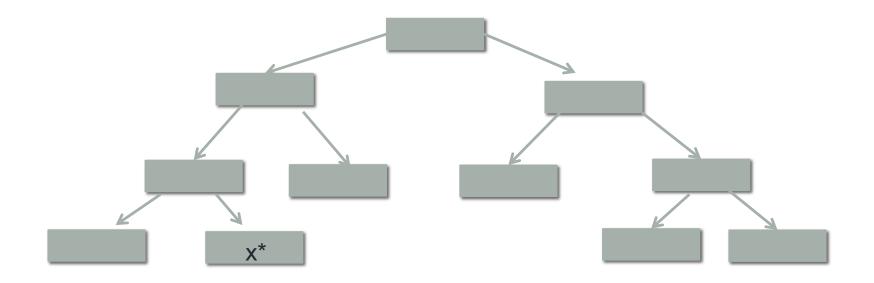
Construction: Functional PRFs for **G**_{pre} = **prefix-fixing functions**


 SK_{prefix} allows evaluation on any string x = "prefix||y"

Theorem: OWF ⇒ selectively secure functional PRF for G_{pre}

GGM-based construction

Applications of functional PRFs for prefix-fixing



- Functional prefix-fixing PRFs ⇒ punctured PRFs [SW13]
 - Many Applications!

Functional PRF for $G_{pre} \Rightarrow Punctured PRFs$ [SW13]

Punctured PRF: "puncture" input x*
Key K_{x*} lets you compute PRF_K on all inputs except x*.

[SW13]: Functional PRFs for prefix-fixing ⇒ punctured PRFs

Many Applications of **Punctured PRFs**

- Punctured PRFs + indistinguishability Obfuscation (iO)
 ⇒ many applications:
 - PKE, selectively secure signatures, NIZK [SW13]
 - Deniable encryption [SW13]
 - Instantiation of random oracle for full-domain hash applications [HSW13].
 - Efficient traitor-tracing PKE [BZ13]

• . . .

Conclusion

- Introduce new primitives:
 Functional Digital Signatures & Functional PRFs
- Functional Signatures:
 - Several constructions supporting keys for P
 - Tradeoff between assumptions & features
- Functional PRFs:
 - Construction for the prefix-fixing family based on OWF

Open Problems

- Functional PRFs for general function families G
 - Construction for general predicates using multilinear maps [BW13]
- Verifiable Functional PRFs?
- Further Applications of Functional Signatures and PRFs

Thank you