
1 1 1

Chosen Ciphertext Security

via UCE

Takahiro Matsuda (RISEC, AIST)

Goichiro Hanaoka (RISEC, AIST)

t-matsuda@aist.go.jp

2014/3/26 Wed.

PKC 2014

@Buenos Aires

3/26～3/28

This Work

 UCE: Universal Computational Extractor[Bellare et al.@CRYPTO’13]

 ＝Standard model security notion for a family of hash functions that

“behave like a random oracle”

 We ask:

 Our results:

CPA

PKE
UCE +

Fujisaki-

Okamoto

CCA Deterministic PKE
(with some constraint)

Dolev-Dwork-

Naor (DDN)

CPA

PKE
UCE + ?? CCA

PKE

CPA PKE

counterexample

CCA PKE (via KEM)

CCA1 PKE
(for random messages)

Negative

Positive

Outline

 Background, Motivation, Results

 Definitions for UCE

 Negative Results

 Positive Results

3

Random Oracles

and Their Problems

 Random Oracle (RO) Model [Bellare-Rogaway@CCS’93]

≒ View a cryptographic hash function as a random function

 Using ROs, many efficient and simple constructions

are possible

 PKE (OAEP, etc.), Signature (FDH, PSS, etc.), more

 However, ROs have several problems

 [CGH98] : a scheme secure in RO model, insecure in the std. model

 [Nielsen02]: a primitive that is only achievable using a RO

In general, constructions and security proofs

w/o ROs are desirable
4

SHA1, Keccak, etc.

Universal Computational Extractor

(UCE) [Bellare et al. @CRYPTO’13]

 ＝Standard model security notion for a family of (hash) functions that

“behave like random oracle”

 Purpose： To instantiate ROs in RO-based constructions

 [Bellare et al.@CRYPTO’13] showed simple (and potentially efficient)

constructions of cryptographic primitives whose (efficient)

constructions were only known in the RO model

 PRIV-secure deterministic PKE

 Related-key secure & KDM secure SKE

 Point function obfuscation

 Message-Locked Encryption

 CPA secure instantiation of OAEP

 Adaptively secure garbling schemes

 etc.
5

UCE is quite powerful!!

Our Motivation

 UCE is new, and have not been understood well

 Q. Is UCE useful for constructing other primitives?

 In this work, we concretely ask:

6

CPA

PKE
UCE + ??

CCA

PKE

One of the most important cryptographic primitives
• CCA security = de-facto standard security of PKE used in practice

• implies NM, UC, security against Bleichenbacher’s attack

A number of practical constructions using ROs are known:
• OAEP, Fujisaki-Okamoto, SAEP, REACT, OAEP+, etc.

Our Results

 We ask:

 Our results:

CPA

PKE
UCE +

Fujisaki-

Okamoto

CCA Deterministic PKE
(with some constraint)

Dolev-Dwork-

Naor (DDN)

CPA

PKE
UCE + ?? CCA

PKE

CPA PKE

counterexample

CCA PKE (via KEM)

CCA1 PKE
(for random messages)

Negative

Positive

We also do some abstraction of

the “core” of the DDN construction as

tag-based encryption (TBE)

Interpretation of Our Results

 Negative results:

 UCE is not as powerful as ROs

 Our positive results are non-trivial

 Positive results

 Imply that the DDN construction is quite powerful

 Give us insights for CPA vs. CCA

8

CPA

PKE

UCE +
construct CCA

PKE

NM-bounded

-CCA PKE
[PSV06,CDMW08]

GAP??

JUMP!!

c.f.)

・[MH@TCC’14]

・[Dachman-Soled@PKC’14]

Outline

 Background, Motivation, Results

 Definitions for UCE

 Negative Results

 Positive Results

9

Family of Functions and

UCE Security

 A family of functions (function

family) consists of (FKG, F)

 UCE security for source class S

(UCE[S] security)

10

Key Generation κ FKG(1k)

Evaluation y Fκ(x)

κ : function index

P

x Random

Oracle F0
(b = 0)

Output

b’

Leakage L

A

F1(・) = FK(・)

 (b = 1)

or

κ FKG(1k)

b {0,1}

Func. index

κ

Source S ∊ S

Function Family is

UCE[S]-secure

if Pr[b’ = b] = 1/2 + neg.

for ∀S ∊ S and ∀PPT A

S
Fb(x)

Family of Functions and

UCE Security

 A family of functions (function

family) consists of (FKG, F)

 UCE security for source class S

(UCE[S] security)

11

Key Generation κ FKG(1k)

Evaluation y Fκ(x)

κ : function index

P

x Random

Oracle F0
(b = 0)

Output

b’

Leakage L

A

F1(・) = FK(・)

 (b = 1)

or

κ FKG(1k)

b {0,1}

Func. index

κ

Source S ∊ S

Function Family is

UCE[S]-secure

if Pr[b’ = b] = 1/2 + neg.

for ∀S ∊ S and ∀PPT A

S
Fb(x)

Actual strength of UCE security

depends on what restrictions

we put on the class of sources

Class S is larger

UCE[S] security is stronger

Restrictions on Sources (1/2)

Q. Why not consider all PPT algo. for sources?

(i.e. Why not set S = {PPT algo.} ?)

 A. UCE[PPT algo.] security is unachievable.

Sources have to be at least (computationally) unpredictable:

x

F(x)

Random

Oracle F

Source S is

computationally unpredictable

if Pr[x’ ∊ Q] = neg

for any PPT P
Leakage L

P

Source S ∊ S

Let Q be the

set of queries

made by

Source S is

statistically unpredictable

if Pr[x’ ∊ Q] = neg

for any comp. unbounded P

S ∊ Scup

S ∊ Ssup

S

Output

x’

S

Restrictions on Sources (2/2)

 Very recently, Brzsuka, Farshim, Mittelbach (BFM) attacked UCE[Scup]

security using indistinguishability obfuscation (iO)

 eprint 2014/099

 To avoid BFM’s attack, we have to put further restrictions on the class of

sources (… or disbelieve iO…)

 Scup
t,q: the class of sources that are comp. unpredictable,

 run at most t steps, and make at most q queries

 Ssup
t,q: (similar)

Appeared on Feb. 10.

However, we had known an

“overview” of the attack

by personal communication

Restrictions on Sources (2/2)

 Very recently, Brzsuka, Farshim, Mittelbach (BFM) attacked UCE[Scup]

security using indistinguishability obfuscation (iO)

 eprint 2014/099

 To avoid BFM’s attack, we have to put further restrictions on the class of

sources (… or disbelieve iO…)

 Scup
t,q: the class of sources that are comp. unpredictable,

 run at most t steps, and make at most q queries

 Ssup
t,q: (similar)

 Later, it turned out that BFM’s attack can be mounted by a comp.

unpredictable source with q = 1 (much stronger than we expected)

 To avoid it, t has to be smaller than their iO-based source…

 Exactly how small t has to be depends on the running time of iO

 So far, iO is very impractical, so that our results seem to survice

 We can also restrict the “leakage size” of sources to avoid BFM’s attack

Appeared on Feb. 10.

However, we had known an

“overview” of the attack

by personal communication

Outline

 Background, Motivation, Results

 Definitions for UCE

 Negative Results

 Positive Results

15

Fujisaki-Okamoto (FO)

Construction (PKC’99 ver.)

 Is a very important and useful result in public key crypto.

16

CPA

PKE
RO FO CCA PKE

(in RO model) +

EncFO(pk, m; r)

 CFO Enc(pk, (r||m) ; H(r||m))

 Output CFO

DecFO(sk, CFO)

 (r||m) Dec(sk, CFO)

 Check

CFO = Enc(pk, (r||m) ; H(r||m))

 Output m

PKGFO(1k)

 (pk, sk) PKG(1k)

 Output (pk, sk)

Natural Question

Q. Can we instantiate RO in the FO construction with UCE?

17

CPA

PKE
UCE FO +

EncFO(pk, m; r)

 CFO Enc(pk, (r||m) ; Fκ(r||m))

 Output CFO

DecFO(sk, CFO)

 (r||m) Dec(sk, CFO)

 Check

CFO = Enc(pk, (r||m) ; Fκ(r||m))

 Output m

PKGFO(1k)

 (pk, sk) PKG(1k)

 κ FKG(1k)

 Output ((pk, κ), sk)

?? CCA PKE
(in std. model)

Natural Question

Q. Can we instantiate RO in the FO construction with UCE?

18

CPA

PKE
UCE FO +

EncFO(pk, m; r)

 CFO Enc(pk, (r||m) ; Fκ(r||m))

 Output c

DecFO(sk, CFO)

 (r||m) Dec(sk, CFO)

 Check

CFO = Enc(pk, (r||m) ; Fκ(r||m))

 Output m

PKGFO(1k)

 (pk, sk) PKG(1k)

 κ FKG(1k)

 Output ((pk, κ), sk)

?? CCA PKE
(in std. model)

(Unfortunately) NO!

• counterexample 1

• counterexample 2

CPA

PKE
UCE + FO CPA

PKE

CCA1 PKE
(for random messages)

CPA

PKE
UCE + FO

Design Counterexample Pair

PKE π’ and UCE F’

Modify PKE π into π’

 PKG’ = PKG

 Enc’(pk, m; r)

 If r = 0k, then z = 1 else z = 0

 Return c = (z || Enc(pk, m; r))

 Dec’ ignores the first bit of c

 Modify the function family F into F’:

 FKG’(1k)

 κFKG(1k)

 Pick a “weak input” v* {0,1}k

 Return κ’ = (κ, v*)

 F’κ’(x)

 If last k-bit of x is v* then return y = 0k

 Return y = Fκ(x)

• Suppose we are given CPA secure PKE π and function family F

Design Counterexample Pair

PKE π’ and UCE F’

Modify PKE π into π’

 PKG’ = PKG

 Enc’(pk, m; r)

 If r = 0k, then z = 1 else z = 0

 Return c = (z || Enc(pk, m; r))

 Dec’ ignores the first bit of c

 If the PKE π is CPA secure

 So is the PKE π’

 Modify the function family F into F’:

 FKG’(1k)

 κFKG(1k)

 Pick a “weak input” v* {0,1}k

 Return κ’ = (κ, v*)

 F’κ’(x)

 If last k-bit of x is v* then return y = 0k

 Return y = Fκ(x)

 For any S ⊆ Scup:

If F is UCE[S] secure So is F’

The MSB of a

ciphertext c reveals

whether r = 0k

F’ reveals whether

the last k-bit of input

x is v*

• Suppose we are given CPA secure PKE π and function family F

Use π’ and F’

in the FO Construction

 PKFO = (pk, κ’ = (κ, v*))

 If we encrypt the weak input v* by EncFO(PKFO, ・),

 The MSB of the ciphertext CFO is always 1, because…

 CFO = Enc’(pk, (r||v*), F’κ’(r||v*))

 = Enc’(pk, (r||v*), 0k)

 = (1 || c’) for some c’

 If we encrypt a random message by EncFO(PKFO, ・),

 Pr[MSB(CFO) = 1] is neg., due to UCE[S] security of F’

 Adversary using challenge plaintexts (M0, M1) = (v*, random)

can break CPA security

21

Because F’κ’(r||v*) = 0k

Because of how Enc’ is designed

Negative Results: Summary

22

CPA

PKE
UCE + FO CPA

PKE

CCA1 PKE
(for random messages)

CPA

PKE
UCE + FO

counterexample

counterexample

Negative Results: Summary

23

CPA

PKE
UCE + FO CPA

PKE

CCA1 PKE
(for random messages)

CPA

PKE
UCE + FO

counterexample

counterexample

PKE secure for random

messages may be used

as a secure KEM

Not explained in this slide.

The counterexample pair is

slightly more complicated to

bypass the “re-encryption” validity

check of ciphertexts in DecFO

Outline

 Background, Motivation, Results

 Definitions for UCE

 Negative Results

 Positive Results

24

Key Encapsulation Mechanisms

(KEM)

= “Public Key” part of hybrid encryption

 Cramer-Shoup’03

25

Key Generation (pk, sk) KKG(1k)

Encapsulation (C, K) Encap(pk)

Decapsulation K / ⊥ Decap(sk, C)

K: session-key

used by SKE

25

CCA

KEM

CCA

SKE + CCA

PKE

Our CCA Secure KEM:

Overview

 In the original DDN, a plaintext is encrypted

multiple times under independently generated pk’s

 Extension from Naor-Yung’s double encryption

 Its “core” structure can be understood as a special kind of

tag-based encryption (TBE)

 We formalize it as a stand-alone cryptographic primitive:

“Puncturable TBE” to reduce “description complexity”

26

CPA

PKE
UCE DDN

CCA

KEM +
Original version:

CPA PKE + one-time sig. + NIZK

Puncturable TBE

(PTBE)

 = TBE with two decryption modes

 Correctness:∀tag ≠ tag*, ∀ c TEnc(pk, tag, m):

 TDec(sk, tag, c) = PTDec(psktag*, tag, c) = m

 Security : Extended CPA security

≒CPA security in the presence of psktag*

27

Key Generation (pk, sk) TKG(1k)

Encryption c TEnc(tpk, tag, m)

Decryption m / ⊥ TDec (tsk, tag, c)

Puncturing psktag* Punc(sk, tag*)

Punctured

Decryption
m / ⊥

 PTDec(psktag*, tag, c)

The name “puncturable” is inspired

by “puncturable PRF” of

[Sahai-Waters@eprint 2013/454]

Concrete instantiations from…

・CPA PKE

 (i.e. DDN’s building block itself)

・Broadcast encryption

・Multi-recipient PKE/KEM

PTBE based on CPA PKE

(Core Structure of Original DDN)

 pk = (), sk = ()

 TEnc(PK, tag, m) :

 Let ti be the i-th bit of tag

 ∀i =1,2,…,k : ci Enc(pkti
i, m)

 C = {ci} i=1,2,…,k

 TDec (SK, tag, C):

 Let t1 be the first bit of tag

 m Dec(skt1
1,c1)

 28

pk0
1 pk0

2 …. pk0
k

pk1
1 pk1

2 …. pk1
k

sk0
1 sk0

2 …. sk0
k

sk1
1 sk1

2 …. sk1
k

 Punc(sk, tag*) :

 Let t*i be the i-th bit of tag*

 psktag* = {sk(1-t*i)
i} i=1,2,…,k

 PTDec (psktag*, tag, C):

 If tag* = tag then abort

 Let ti be the i-th bit of tag

 ℓ min{ i | ti ≠ t*i}

 m Dec(sk(1-t*ℓ)
ℓ,cℓ)

Our CCA Secure KEM

 PK = (pk, ck, κ)

 SK = sk

29

 Encap(PK)

1. α random

2. (r || r’ || K) UCEκ(α)

3. tag Com(ck, α; r’)

4. c TEnc(pk, tag, α; r)

5. C (tag, c)

6. Output (C, K)

 Decap(SK, C = (tag, c))

1. α TDec(sk, tag, c)

2. (r || r’ || K) UCEκ(α)

3. Check

c = TEnc(pk, tag, α; r)

∧ tag = Com(ck, α: r’)

4. Output K

(pk, sk): PTBE key pair

ck: commitment key

κ: UCE’s function index

Our CCA Secure KEM

 PK = (pk, ck, κ)

 SK = sk

30

 Encap(PK)

1. α random

2. (r || r’ || K) UCEκ(α)

3. tag Com(ck, α; r’)

4. c TEnc(pk, tag, α; r)

5. C (tag, c)

6. Output (C, K)

 Decap(SK, C = (tag, c))

1. α TDec(sk, tag, c)

2. (r || r’ || K) UCEκ(α)

3. Check

c = TEnc(pk, tag, α; r)

∧ tag = Com(ck, α: r’)

4. Output K

(pk, sk): PTBE key pair

ck: commitment key

κ: UCE’s function index

By using a commitment of α

as a “tag”, we do not need

one-time signature in DDN

Due to validity check of c and tag,

we do not need NIZK in DDN

Our CCA Secure KEM

 PK = (pk, ck, κ)

 SK = sk

31

 Encap(PK)

1. α random

2. (r || r’ || K) UCEκ(α)

3. tag Com(ck, α; r’)

4. c TEnc(pk, tag, α; r)

5. C (tag, c)

6. Output (C, K)

 Decap(SK, C = (tag, c))

1. α TDec(sk, tag, c)

2. (r || r’ || K) UCEκ(α)

3. Check

c = TEnc(pk, tag, α; r)

∧ tag = Com(ck, α: r’)

4. Output K

(pk, sk): PTBE key pair

ck: commitment key

κ: UCE’s function index

By using a commitment of α

as a “tag”, we do not need

one-time signature in DDN

Due to validity check of c and tag,

we do not need NIZK in DDN

(tM: running time

of algorithm M)
There is a circularity between α and (r, r’), but it can be

overcome by UCE[Scup
t,1] security of the function family

with t = O(tTKG+tComKG+tEnc+tCom+tPunc)
Use PTDec(psktag*, ・)

to answer dec. queries

Our CCA Secure KEM

 PK = (pk, ck, κ)

 SK = sk

32

 Encap(PK)

1. α random

2. (r || r’ || K) UCEκ(α)

3. tag Com(ck, α; r’)

4. c TEnc(pk, tag, α; r)

5. C (tag, c)

6. Output (C, K)

 Decap(SK, C = (tag, c))

1. α TDec(sk, tag, c)

2. (r || r’ || K) UCEκ(α)

3. Check

c = TEnc(pk, tag, α; r)

∧ tag = Com(ck, α: r’)

4. Output K

(pk, sk): PTBE key pair

ck: commitment key

κ: UCE’s function index

By using a commitment of α

as a “tag”, we do not need

one-time signature in DDN

Due to validity check of c and tag,

we do not need NIZK in DDN

There is a circularity between α and (r, r’), but it can be

overcome by UCE[Scup
t,1] security of the function family

with t = O(tTKG+tComKG+tEnc+tCom+tPunc)
Use PTDec(psktag*, ・)

to answer dec. queries

(tM: running time

of algorithm M)

If PTBE is extended-CPA secure, COM is hiding and binding,

F is UCE[Scup
t,1] secure (with t below),

 Our KEM is CCA secure

Extensions

 Deterministic PKE

 Slight modification from our KEM

 Derive (r, r’) for TEnc and Com from a high min-entropy plaintext

 Achieve CCA security for block sources [BFO08]

with bounded running time

 Restriction is due to the BFM’s iO-based attack

 It is weaker than security for ordinary block sources,

but still a meaningful security notion in practice

 Weakening the UCE assumption

 If we replace CPA PKE with Lossy PKE [BHY09],

then we can weaken the assumption on the function family

from UCE[Scup
t,1] security to UCE[Ssup

t,1] security

 BFM’s iO-based attack does not apply to UCE[Ssup] security
33

Summary

 We ask:

 Our results:

CPA

PKE
UCE +

Fujisaki-

Okamoto

CCA Deterministic PKE
(for block sources with

bounded running time)

Dolev-Dwork-

Naor (DDN)

CPA

PKE
UCE + ?? CCA

PKE

CPA PKE

counterexample

CCA PKE (via KEM)

CCA1 PKE
(for random messages)

Negative

Positive

Abstraction by

Puncturable TBE

We can use Lossy PKE

for weakening the UCE

assumption

