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This Work 

 UCE: Universal Computational Extractor[Bellare et al.@CRYPTO’13] 

 ＝Standard model security notion for a family of hash functions that 

“behave like a random oracle” 

 We ask: 

 
 

 Our results:  

CPA 

PKE 
UCE + 

Fujisaki- 

Okamoto 

CCA Deterministic PKE 
(with some constraint) 

Dolev-Dwork- 

Naor (DDN) 

CPA 

PKE 
UCE + ?? CCA 

PKE 

CPA PKE 

counterexample 

CCA PKE (via KEM) 

CCA1 PKE 
(for random messages) 

Negative  

Positive  



Outline 

 Background, Motivation, Results 

 

 Definitions for UCE 

 

 Negative Results 

 

 Positive Results 

 
3 



Random Oracles 

and Their Problems 

 Random Oracle (RO) Model [Bellare-Rogaway@CCS’93] 

≒ View a cryptographic hash function as a random function 

 
 

 Using ROs, many efficient and simple constructions 

are possible  

 PKE (OAEP, etc.), Signature (FDH, PSS, etc.), more 

 

 However, ROs have several problems  

 [CGH98] : a scheme secure in RO model, insecure in the std. model 

 [Nielsen02]:  a primitive that is only achievable using a RO 
 

In general, constructions and security proofs 

w/o ROs are desirable 
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SHA1, Keccak, etc. 



Universal Computational Extractor 

(UCE) [Bellare et al. @CRYPTO’13] 

 ＝Standard model security notion for a family of (hash) functions that 

“behave like random oracle” 

 Purpose： To instantiate ROs in RO-based constructions 

 

 [Bellare et al.@CRYPTO’13] showed simple (and potentially efficient) 

constructions of cryptographic primitives whose (efficient) 

constructions were only known in the RO model 

 

 PRIV-secure deterministic PKE 

 Related-key secure & KDM secure SKE 

 Point function obfuscation 

 Message-Locked Encryption 

 CPA secure instantiation of OAEP 

 Adaptively secure garbling schemes 

 etc. 
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UCE is quite powerful!! 



Our Motivation 

 UCE is new, and have not been understood well 

 Q. Is UCE useful for constructing other primitives? 

 In this work, we concretely ask: 
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CPA 

PKE 
UCE + ?? 

CCA 

PKE 

One of the most important cryptographic primitives 
• CCA security = de-facto standard security of PKE used in practice 

• implies NM, UC, security against Bleichenbacher’s attack 

 

A number of practical constructions using ROs are known: 
•  OAEP, Fujisaki-Okamoto, SAEP, REACT, OAEP+, etc. 



Our Results 

 We ask: 

 
 

 Our results:  

CPA 

PKE 
UCE + 

Fujisaki- 

Okamoto 

CCA Deterministic PKE 
(with some constraint) 

Dolev-Dwork- 

Naor (DDN) 

CPA 

PKE 
UCE + ?? CCA 

PKE 

CPA PKE 

counterexample 

CCA PKE (via KEM) 

CCA1 PKE 
(for random messages) 

Negative  

Positive  

We also do some abstraction of 

the “core” of the DDN construction as  

tag-based encryption (TBE) 



Interpretation of Our Results 

 Negative results: 

 UCE is not as powerful as ROs 

 Our positive results are non-trivial 

 

 Positive results 

 Imply that the DDN construction is quite powerful 

 Give us insights for CPA vs. CCA 
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CPA 

PKE 

UCE + 
construct CCA 

PKE 

NM-bounded 

-CCA PKE 
[PSV06,CDMW08] 

GAP?? 

JUMP!!  

c.f.) 

・[MH@TCC’14] 

・[Dachman-Soled@PKC’14] 
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Family of Functions and 

UCE Security 

 A family of functions (function 

family) consists of (FKG, F) 

 

 UCE security for source class S 

(UCE[S] security) 
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Key Generation κ  FKG(1k) 

Evaluation y  Fκ(x) 

κ : function index  

P 

x Random 

Oracle F0 
(b = 0) 

Output 

b’ 

Leakage L 

A 

F1(・) = FK(・) 

 (b = 1) 

or 

κ  FKG(1k)  

b  {0,1} 

Func. index 

κ 

Source S ∊ S 

Function Family is 

UCE[S]-secure 

if Pr[b’ = b] = 1/2 + neg. 

for ∀S ∊ S and ∀PPT A 

S 
Fb(x) 



Family of Functions and 

UCE Security 

 A family of functions (function 

family) consists of (FKG, F) 

 

 UCE security for source class S 

(UCE[S] security) 
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Key Generation κ  FKG(1k) 

Evaluation y  Fκ(x) 

κ : function index  

P 

x Random 

Oracle F0 
(b = 0) 

Output 

b’ 

Leakage L 

A 

F1(・) = FK(・) 

 (b = 1) 

or 

κ  FKG(1k)  

b  {0,1} 

Func. index 

κ 

Source S ∊ S 

Function Family is 

UCE[S]-secure 

if Pr[b’ = b] = 1/2 + neg. 

for ∀S ∊ S and ∀PPT A 

S 
Fb(x) 

Actual strength of UCE security 

depends on what restrictions 

we put on the class of sources 

 

Class S is larger 

UCE[S] security is stronger 



Restrictions on Sources (1/2) 

Q. Why not consider all PPT algo. for sources? 

(i.e. Why not set S = {PPT algo.} ?) 

 A. UCE[PPT algo.] security is unachievable. 

Sources have to be at least (computationally) unpredictable: 

x 

F(x) 

Random 

Oracle F 

Source S is 

computationally unpredictable 

if Pr[x’ ∊ Q] = neg 

for any PPT P 
Leakage L 

P 

Source S ∊ S 

Let Q be the 

set of queries 

made by  

 

Source S is 

statistically unpredictable 

if Pr[x’ ∊ Q] = neg 

for any comp. unbounded P 

S ∊ Scup 

S ∊ Ssup 

S 

Output 

x’ 

S 



Restrictions on Sources (2/2) 

 Very recently, Brzsuka, Farshim, Mittelbach (BFM) attacked UCE[Scup] 

security using indistinguishability obfuscation (iO) 

 eprint 2014/099 

 

 To avoid BFM’s attack, we have to put further restrictions on the class of 

sources (… or disbelieve iO…) 

 Scup
t,q: the class of sources that are comp. unpredictable, 

            run at most t steps, and make at most q queries 

 Ssup
t,q:  (similar) 

 

Appeared on Feb. 10. 

However, we had known an 

“overview” of the attack 

by personal communication 



Restrictions on Sources (2/2) 

 Very recently, Brzsuka, Farshim, Mittelbach (BFM) attacked UCE[Scup] 

security using indistinguishability obfuscation (iO) 

 eprint 2014/099 

 

 To avoid BFM’s attack, we have to put further restrictions on the class of 

sources (… or disbelieve iO…) 

 Scup
t,q: the class of sources that are comp. unpredictable, 

            run at most t steps, and make at most q queries 

 Ssup
t,q:  (similar) 

 

 Later, it turned out that BFM’s attack can be mounted by  a comp. 

unpredictable source with q = 1 (much stronger than we expected  ) 

 To avoid it, t has to be smaller than their iO-based source… 

 Exactly how small t has to be depends on the running time of iO 

 So far, iO is very impractical, so that our results seem to survice 

 We can also restrict the “leakage size” of sources to avoid BFM’s attack 

Appeared on Feb. 10. 

However, we had known an 

“overview” of the attack 

by personal communication 
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Fujisaki-Okamoto (FO) 

Construction (PKC’99 ver.) 

 Is a very important and useful result in public key crypto. 
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CPA 

PKE 
RO FO CCA PKE 

(in RO model) + 

EncFO(pk, m; r) 

 CFO  Enc(pk, (r||m) ; H(r||m) ) 

 Output CFO 

DecFO(sk, CFO) 

 (r||m)  Dec(sk, CFO) 

 Check 

CFO = Enc(pk, (r||m) ; H(r||m) ) 

 Output m 

 

PKGFO(1k) 

 (pk, sk)  PKG(1k) 

 Output (pk, sk) 



Natural Question 

Q. Can we instantiate RO in the FO construction with UCE? 
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CPA 

PKE 
UCE FO + 

EncFO(pk, m; r) 

 CFO  Enc(pk, (r||m) ; Fκ(r||m) ) 

 Output CFO 

DecFO(sk, CFO) 

 (r||m)  Dec(sk, CFO) 

 Check 

CFO = Enc(pk, (r||m) ; Fκ(r||m) ) 

 Output m 

 

PKGFO(1k) 

 (pk, sk)  PKG(1k) 

 κ  FKG(1k) 

 Output ((pk, κ), sk) 

?? CCA PKE 
(in std. model) 



Natural Question 

Q. Can we instantiate RO in the FO construction with UCE? 
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CPA 

PKE 
UCE FO + 

EncFO(pk, m; r) 

 CFO  Enc(pk, (r||m) ; Fκ(r||m) ) 

 Output c 

DecFO(sk, CFO) 

 (r||m)  Dec(sk, CFO) 

 Check 

CFO = Enc(pk, (r||m) ; Fκ(r||m) ) 

 Output m 

 

PKGFO(1k) 

 (pk, sk)  PKG(1k) 

 κ  FKG(1k) 

 Output ((pk, κ), sk) 

?? CCA PKE 
(in std. model) 

(Unfortunately) NO! 

• counterexample 1 

 

 

 

• counterexample 2 

 

 

CPA 

PKE 
UCE + FO CPA 

PKE 

CCA1 PKE 
(for random messages) 

CPA 

PKE 
UCE + FO 



Design Counterexample Pair 

PKE π’ and UCE F’ 

 

Modify PKE π into π’ 

 PKG’ = PKG 

 Enc’(pk, m; r) 

 If r = 0k, then z = 1 else z = 0 

 Return c = (z || Enc(pk, m; r)) 

 Dec’ ignores the first bit of c 

 

 

 

 

 
 

 

 Modify the function family F into F’: 

 FKG’(1k) 

 κFKG(1k) 

 Pick a “weak input” v*  {0,1}k 

 Return κ’ = (κ, v*) 

 F’κ’(x) 

 If last k-bit of x is v* then return y = 0k 

 Return y = Fκ(x) 

 

 

 

 

• Suppose we are given CPA secure PKE π and function family F 



Design Counterexample Pair 

PKE π’ and UCE F’ 

 

Modify PKE π into π’ 

 PKG’ = PKG 

 Enc’(pk, m; r) 

 If r = 0k, then z = 1 else z = 0 

 Return c = (z || Enc(pk, m; r)) 

 Dec’ ignores the first bit of c 

 

 

 

 

 
 

 If the PKE π is CPA secure 

 So is the PKE π’ 

 

 Modify the function family F into F’: 

 FKG’(1k) 

 κFKG(1k) 

 Pick a “weak input” v*  {0,1}k 

 Return κ’ = (κ, v*) 

 F’κ’(x) 

 If last k-bit of x is v* then return y = 0k 

 Return y = Fκ(x) 

 

 

 

 

 For any S ⊆ Scup: 

If F is UCE[S] secure  So is F’ 

The MSB of a 

ciphertext c reveals 

whether r = 0k 

F’ reveals whether 

the last k-bit of input 

x is v* 

• Suppose we are given CPA secure PKE π and function family F 



Use π’ and F’ 

in the FO Construction 

 PKFO = ( pk, κ’ = (κ, v*)  ) 

 

 If we encrypt the weak input v* by EncFO(PKFO, ・), 

 The MSB of the ciphertext CFO is always 1, because… 

 CFO = Enc’(pk, (r||v*), F’κ’(r||v*) )          

       = Enc’(pk, (r||v*), 0k)  

       = (1 || c’) for some c’ 

 

 If we encrypt a random message by EncFO(PKFO, ・), 

 Pr[MSB(CFO) =  1] is neg., due to UCE[S] security of F’ 

 

 Adversary using challenge plaintexts (M0, M1) = (v*, random) 

can break CPA security 
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Because F’κ’(r||v*) = 0k 

Because of how Enc’ is designed 



Negative Results: Summary 
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CPA 

PKE 
UCE + FO CPA 

PKE 

CCA1 PKE 
(for random messages) 

CPA 

PKE 
UCE + FO 

counterexample 

counterexample 



Negative Results: Summary 
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CPA 

PKE 
UCE + FO CPA 

PKE 

CCA1 PKE 
(for random messages) 

CPA 

PKE 
UCE + FO 

counterexample 

counterexample 

PKE secure for random 

messages may be used 

as a secure KEM 

Not explained in this slide. 

The counterexample pair is 

slightly more complicated to 

bypass the “re-encryption” validity 

check of ciphertexts in DecFO  
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Key Encapsulation Mechanisms 

(KEM) 

= “Public Key” part of hybrid encryption 

 

 

 

 

 
 

 Cramer-Shoup’03 
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Key Generation (pk, sk)  KKG(1k) 

Encapsulation (C, K)  Encap(pk) 

Decapsulation K / ⊥  Decap(sk, C) 

K: session-key 

used by SKE 
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CCA 

KEM 

CCA 

SKE + CCA 

PKE 



Our CCA Secure KEM: 

Overview 

 

 

 
 

 

 In the original DDN, a plaintext is encrypted 

multiple times under independently generated pk’s 

 Extension from Naor-Yung’s double encryption 
 

 Its “core” structure can be understood as a special kind of 

tag-based encryption (TBE) 
 

 We formalize it as a stand-alone cryptographic primitive: 

“Puncturable TBE”  to reduce “description complexity” 
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CPA 

PKE 
UCE DDN 

CCA 

KEM + 
Original version: 

CPA PKE + one-time sig. + NIZK 



Puncturable TBE 

(PTBE) 

 = TBE with two decryption modes 

 

 

 

 

 

 

 

 Correctness:∀tag ≠ tag*, ∀ c  TEnc(pk, tag, m): 

 TDec(sk, tag, c) = PTDec(psktag*, tag, c) = m 

 Security : Extended CPA security 

≒CPA security in the presence of psktag* 
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Key Generation (pk, sk)  TKG(1k) 

Encryption c  TEnc(tpk, tag, m) 

Decryption m / ⊥  TDec (tsk, tag, c) 

Puncturing psktag*  Punc(sk, tag*) 

Punctured 

Decryption 
m / ⊥ 

 PTDec(psktag*, tag, c) 

The name “puncturable” is inspired 

by “puncturable PRF” of 

[Sahai-Waters@eprint 2013/454] 

Concrete instantiations from…  

・CPA PKE 

  (i.e. DDN’s building block itself) 

・Broadcast encryption 

・Multi-recipient PKE/KEM 



PTBE based on CPA PKE 

(Core Structure of Original DDN) 

 pk =  (                                  ),  sk =  (                 ) 
 

 

 

 TEnc(PK, tag, m) : 

 Let ti be the i-th bit of tag 

 ∀i =1,2,…,k : ci  Enc(pkti
i, m) 

 C = {ci} i=1,2,…,k 

 

 TDec (SK, tag, C): 

 Let t1 be the first bit of tag 

 m  Dec(skt1
1,c1)  
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pk0
1    pk0

2   ….  pk0
k 

pk1
1    pk1

2   ….  pk1
k 

sk0
1    sk0

2   ….  sk0
k 

sk1
1    sk1

2   ….  sk1
k 

 Punc(sk, tag*) : 

 Let t*i be the i-th bit of tag* 

 psktag* = {sk(1-t*i)
i} i=1,2,…,k 

 

 

 PTDec (psktag*, tag, C): 

 If tag* = tag then abort 

 Let ti be the i-th bit of tag 

 ℓ  min{ i | ti ≠ t*i} 

 m  Dec(sk(1-t*ℓ)
ℓ,cℓ)  

 



Our CCA Secure KEM 

 

 PK = (pk, ck, κ) 

 SK = sk 
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 Encap(PK) 

1. α  random 

2. (r || r’ || K)  UCEκ(α) 

3. tag  Com(ck, α; r’ ) 

4. c  TEnc(pk, tag, α; r ) 

5. C  (tag, c ) 

6. Output (C, K) 

 Decap(SK, C = (tag, c) ) 

1. α  TDec(sk, tag, c) 

2. (r || r’ || K)  UCEκ(α) 

3. Check 

c = TEnc(pk, tag, α; r ) 

∧ tag = Com(ck, α: r’ ) 

4. Output K 

(pk, sk): PTBE key pair 

ck: commitment key 

κ: UCE’s function index 



Our CCA Secure KEM 

 

 PK = (pk, ck, κ) 

 SK = sk 
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 Encap(PK) 

1. α  random 

2. (r || r’ || K)  UCEκ(α) 

3. tag  Com(ck, α; r’ ) 

4. c  TEnc(pk, tag, α; r ) 

5. C  (tag, c ) 

6. Output (C, K) 

 Decap(SK, C = (tag, c) ) 

1. α  TDec(sk, tag, c) 

2. (r || r’ || K)  UCEκ(α) 

3. Check 

c = TEnc(pk, tag, α; r ) 

∧ tag = Com(ck, α: r’ ) 

4. Output K 

(pk, sk): PTBE key pair 

ck: commitment key 

κ: UCE’s function index 

By using a commitment of α 

as a “tag”, we do not need 

one-time signature in DDN 

Due to validity check of c and tag, 

we do not need NIZK in DDN 



Our CCA Secure KEM 

 

 PK = (pk, ck, κ) 

 SK = sk 
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 Encap(PK) 

1. α  random 

2. (r || r’ || K)  UCEκ(α) 

3. tag  Com(ck, α; r’ ) 

4. c  TEnc(pk, tag, α; r ) 

5. C  (tag, c ) 

6. Output (C, K) 

 Decap(SK, C = (tag, c) ) 

1. α  TDec(sk, tag, c) 

2. (r || r’ || K)  UCEκ(α) 

3. Check 

c = TEnc(pk, tag, α; r ) 

∧ tag = Com(ck, α: r’ ) 

4. Output K 

(pk, sk): PTBE key pair 

ck: commitment key 

κ: UCE’s function index 

By using a commitment of α 

as a “tag”, we do not need 

one-time signature in DDN 

Due to validity check of c and tag, 

we do not need NIZK in DDN 

(tM: running time 

of algorithm M) 
There is a circularity between α and (r, r’), but it can be 

overcome by UCE[Scup
t,1] security of the function family 

with t = O(tTKG+tComKG+tEnc+tCom+tPunc) 
Use PTDec(psktag*, ・)  

to answer dec. queries 



Our CCA Secure KEM 

 

 PK = (pk, ck, κ) 

 SK = sk 
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 Encap(PK) 

1. α  random 

2. (r || r’ || K)  UCEκ(α) 

3. tag  Com(ck, α; r’ ) 

4. c  TEnc(pk, tag, α; r ) 

5. C  (tag, c ) 

6. Output (C, K) 

 Decap(SK, C = (tag, c) ) 

1. α  TDec(sk, tag, c) 

2. (r || r’ || K)  UCEκ(α) 

3. Check 

c = TEnc(pk, tag, α; r ) 

∧ tag = Com(ck, α: r’ ) 

4. Output K 

(pk, sk): PTBE key pair 

ck: commitment key 

κ: UCE’s function index 

By using a commitment of α 

as a “tag”, we do not need 

one-time signature in DDN 

Due to validity check of c and tag, 

we do not need NIZK in DDN 

There is a circularity between α and (r, r’), but it can be 

overcome by UCE[Scup
t,1] security of the function family 

with t = O(tTKG+tComKG+tEnc+tCom+tPunc) 
Use PTDec(psktag*, ・)  

to answer dec. queries 

(tM: running time 

of algorithm M) 

If PTBE is extended-CPA secure, COM is hiding and binding, 

F is UCE[Scup
t,1] secure (with t below), 

 Our KEM is CCA secure 



Extensions 

 Deterministic PKE 

 Slight modification from our KEM 

 Derive (r, r’) for TEnc and Com from a high min-entropy plaintext 

 Achieve CCA security for block sources [BFO08] 

with bounded running time 

 Restriction is due to the BFM’s iO-based attack 

 It is weaker than security for ordinary block sources, 

but still a meaningful security notion in practice 
 

 Weakening the UCE assumption 

 If we replace CPA PKE with Lossy PKE [BHY09], 

then we can weaken the assumption on the function family 

from UCE[Scup
t,1] security to UCE[Ssup

t,1] security 

 BFM’s iO-based attack does not apply to UCE[Ssup] security  
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Summary 

 We ask: 

 
 

 Our results:  

CPA 

PKE 
UCE + 

Fujisaki- 

Okamoto 

CCA Deterministic PKE 
(for block sources with 

bounded running time) 

Dolev-Dwork- 

Naor (DDN) 

CPA 

PKE 
UCE + ?? CCA 

PKE 

CPA PKE 

counterexample 

CCA PKE (via KEM) 

CCA1 PKE 
(for random messages) 

Negative  

Positive  

Abstraction by  

Puncturable TBE 

We can use Lossy PKE 

for weakening the UCE 

assumption 


