Digital Signatures from Symmetric-Key Primitives

Christian Rechberger

IAIK, TU Graz and DTU Compute, DTU

March 7, 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Based on Joint Work With

David Derler TU Graz

Claudio Orlandi Aarhus University

Sebastian Ramacher TU Graz

Daniel Slamanig TU Graz

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Overview

Most known signature schemes

- Based on structured hardness assumptions
- Except hash-based signatures
- Why omit structured hardness assumptions?
 - Favorable in post-quantum context

Are there alternatives to hash-based signatures?

(ロ) (同) (三) (三) (三) (○) (○)

In recent years there was progress in two very distinct areas

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Symmetric-key primitives with few multiplications
- Practical ZK-Proof systems over general circuits

We take advantage of both and propose new signature schemes

Digital Signatures from NIZK

One-Way Function $f: D \rightarrow R$.

- Easy to evaluate
- Hard to invert
- ▶ $sk \leftarrow D$, $pk \leftarrow f(sk)$.

Signature

- Proof of knowledge of sk so that pk = f(sk).
- + Some mechanism to bind message to this proof Security (informal):

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Can only create proof if I actually know *sk*.

OWF or PRF with few multiplications?

name	security	$\lambda \cdot a$	
AES	128	5440	GF(2) approach
AES	128	4000?	GF(2 ⁴) approach
AES	256	7616	GF(2) approach
SHA-2	256	> 25000	
SHA-3	256	38400	
Noekeon	128	2048	
Trivium	80	1536	
PRINCE		1920	
Fantomas	128	2112	
LowMCv2	128	< 800	
LowMCv2	256	< 1400	
Kreyvium	128	1536	
FLIP	128	> 100000	
MIMC	128	10337	
MIMC	256	41349	

Signature Size Comparison

name	security	$ \sigma $
AES	128	339998
AES	256	473149
SHA-2	256	1331629
SHA-3	256	2158573
LowMCv2 (+ 30% security margin)	256	108013

Example of exploration of variation of LowMC instances

Figure : 128-bit PQ security. Measurements for instance selection (average over 100 runs).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Comparison with other recent proposals

Scheme	Gen	Sign	Verify	sk	pk	σ T	М	PQ
Fish-256-10-38	0.01	29.73	17.46	32	32/64	116 <i>K</i> ×	ROM	\checkmark
MQ 5pass	1.0	7.2	5.0	32	74	$40K \times$	ROM	\checkmark
SPHINCS-256	0.8	1.0	0.6	1 <i>K</i>	1 <i>K</i>	40 <i>K √</i>	SM	\checkmark
BLISS-I	44	0.1	0.1	2K	7 <i>K</i>	5.6 <i>K</i> √	ROM	\checkmark
Ring-TESLA	17 <i>K</i>	0.1	0.1	12 <i>K</i>	8 <i>K</i>	$1.5K \times$	ROM	\checkmark
TESLA-768	49 <i>K</i>	0.6	0.4	3.1 <i>M</i>	4 <i>M</i>	$2.3K \times$	(Q)ROM	\checkmark
FS-Véron	n/a	n/a	n/a	32	160	$126K \times$	ROM	\checkmark
SIHDp751	16	7 <i>K</i>	5 <i>K</i>	48	768	$138K \times$	QROM	\checkmark

Table : Timings (ms) and key/signature sizes (bytes)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusion and Outlook

Two new efficient post-quantum signature schemes

Based on LowMC instances

New questions in various directions

Alternative symmetric primitives with few multiplications

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Something new, even more crazy than LowMC?
- 256-bit secure variant of Trivium/Kreyvium?
- More LowMC cryptanalysis
- Analysis regarding side-channels

Thank you.

Preprint: http://ia.cr/2016/1085 Full implementations and benchmarking: https://github.com/IAIK/fish-begol

▲ロト▲母ト▲目ト▲目ト 目 のへぐ

Signature Size

Fish

- ▶ Recall: OWF $f : D \rightarrow R$, $sk \leftarrow D$, $pk \leftarrow f(sk)$
- Security parameter: κ

OWF represented by arithmetic circuit with

- ringsize λ
- Multiplication-count a

Signaturesize = $c_1 + c_2 \cdot (c_3 + \lambda \cdot a)$ with $c_i = f_i(\kappa)$, reduction of constants using optimizations from ZKB++ [GCZ16]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

For Begol: signature size roughly doubles.

References I

[ARS⁺15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner. Ciphers for MPC and FHE. In EUROCRYPT, 2015.

- [ARS⁺16] Martin Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner. Ciphers for MPC and FHE. Cryptology ePrint Archive, Report 2016/687, 2016.
- [BG89] Mihir Bellare and Shafi Goldwasser. New paradigms for digital signatures and message authentication based on non-interative zero knowledge proofs. In CRYPTO, 1989.
- [DOR⁺16] David Derler, Claudio Orlandi, Sebastian Ramacher, Christian Rechberger, and Daniel Slamanig.
 Digital signatures from symmetric-key primitives.
 IACR Cryptology ePrint Archive, 2016:1085, 2016.

[Fis99] Marc Fischlin.

Pseudorandom function tribe ensembles based on one-way permutations: Improvements and applications.

In Advances in Cryptology - EUROCRYPT '99, pages 432-445, 1999.

References II

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature problems. In CRYPTO '86, 1986.

- [GCZ16] Steven Goldfeder, Melissa Chase, and Greg Zaverucha. Efficient post-quantum zero-knowledge and signatures. IACR Cryptology ePrint Archive, 2016:1110, 2016.
- [GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-knowledge for boolean circuits. In USENIX Security, 2016.
- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty computation. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 21–30, 2007.
- [Unr15] Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum random oracle model. In EUROCRYPT, 2015.