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Motivation

What would be the impact of quantum computers
on symmetric cryptography?

▶ Some physicists think they can build quantum computers

▶ NSA thinks we need quantumresistant crypto (or do they?)
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Expected impact of quantum computers
▶ Some problems can be solved much faster with quantum computers

▶ Up to exponential gains
▶ But we don’t expect to solve all NP problems

Impact on public-key cryptography

▶ RSA, DH, ECC broken by Shor’s algorithm
▶ Breaks factoring and discrete log in polynomial time
▶ Large effort to develop quantumresistant algorithms (e.g. NIST)

Impact on symmetric cryptography

▶ Exhaustive search of a kbit key in time 2k/2 with Grover’s algorithm
▶ Common recommendation: double the key length (AES256)

▶ Encryption modes are secure [Unruh  al, PQC’16]
▶ Authentication modes broken w/ superposition queries [Crypto ’16]
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Overview of the talk
Main question

Is AES secure in a quantum setting?

▶ Symmetric design are evaluated with cryptanalysis:
▶ Differential (truncated, impossible, ...)
▶ Linear
▶ Integral
▶ Algebraic
▶ ...

▶ We should study quantum cryptanalysis!

▶ Start with classical techniques
▶ Do we get a quadratic speedup?
▶ Do we need a quantum encryption oracle?
▶ How are different cryptanalysis techniques affected?

Kaplan, Leurent, Leverrier & Naya-Plasencia Quantum Differential and Linear Cryptanalysis FSE 2017 4 / 25



Introduction Brute-force Differential Truncated differential Conclusion

Security notions: Classical

▶ PRF security: given access to P/P−1, distinguishing E from random
▶ Classical setting: classical computations
▶ Classical security: classical queries
▶ Cipher broken by adversary with

▶ data≪ 2n
▶ time≪ 2k
▶ success > 3/4 P,P−1

x y

cipher / random
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Security notions: Quantum Q1

▶ PRF security: given access to P/P−1, distinguishing E from random
▶ Quantum setting: quantum computations
▶ Classical security: classical queries
▶ Cipher broken by adversary with

▶ data≪ 2n
▶ time≪ 2k/2
▶ success > 3/4 P,P−1

x y

cipher / random

Q
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Security notions: Quantum Q2

▶ PRF security: given access to P/P−1, distinguishing E from random
▶ Quantum setting: quantum computations
▶ Quantum security: quantum (superposition) queries
▶ Cipher broken by adversary with

▶ data≪ 2n
▶ time≪ 2k/2
▶ success > 3/4 P,P−1

∑
x 𝜓x|x⟩|0⟩ ∑

x 𝜓x|x⟩|P(x)⟩

cipher / random

Q
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About the models
Q1 model: classical queries

▶ Build a quantum circuit from classical values
▶ Example: breaking RSA with Shor’s algorithm

Q2 model: superposition queries

▶ Access quantum circuit implementing the primitive with a secret key
▶ Example: breaking CBCMAC with Simon’s algorithm

▶ The Q2 model is very strong for the adversary
▶ Simple and clean generalisation of classical oracle
▶ Aim for security in the strongest (nontrivial) model
▶ A Q2secure block cipher is useful for security proofs of modes
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Grover’s algorithm

▶ Search for a marked element in a set X
▶ Set of marked elementsM, with |M| ≥ 𝜀 ⋅ |X|

Classical algorithm

1: loop
2: x← Setup() ▷ Pick a random element in X, cost S
3: if Check(x) then ▷ Check if it is marked, cost C
4: return x

▶ 1/𝜀 repetitions expected
▶ Complexity (S + C)/𝜀
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Grover’s algorithm
▶ Search for a marked element in a set X
▶ Set of marked elementsM, with |M| ≥ 𝜀 ⋅ |X|

Grover Algorithm (as a quantum walk)

Quantum algorithm to find a marked element using:
▶ Setup: builds a uniform superposition of inputs in X
▶ Check: applies a controlphase gate to the marked elements

▶ Only 1/√𝜀 repetitions needed
▶ Complexity (S + C)/√𝜀

▶ Can produce a uniform superposition ofM
▶ Can provide an oracle without measuring (nesting)
▶ Variant to measure 𝜀 (quantum counting)
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Brute-force attack

▶ We can use Grover’s algorithm for a quantum bruteforce key search

1 Capture a few known plaintext/ciphertext: Ci = E𝜅∗(Pi)
2 Setup: builds a uniform superposition of {0, 1}k S = 1
3 Check(𝜅): test whether Ci = E𝜅(Pi) 𝜀 = 2−k,C = 1

▶ Complexity O(2k/2)
▶ Quadratic gain

▶ Uses the Q1 model
▶ Classical data (Ci,Pi)
▶ Quantum circuit independant of the secret key 𝜅∗
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Differential distinguisher: classical

▶ Assume a differential 𝛿in, 𝛿out given, with

h ∶= − log Pr
x
[E(x ⊕ 𝛿in) = E(x) ⊕ 𝛿out] ≪ n,

Classical algorithm: search for right pairs

1: for 0 ≤ i < 2h do
2: x← Rand()
3: if E(x ⊕ 𝛿in) = E(x) ⊕ 𝛿out then
4: return cipher
5: return random

▶ Complexity O(2h)
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Differential distinguisher: quantum
▶ Assume a differential 𝛿in, 𝛿out given, with

h ∶= − log Pr
x
[E(x ⊕ 𝛿in) = E(x) ⊕ 𝛿out] ≪ n,

Quantum algorithm: Grover search for right pair

1 Setup: builds a uniform superposition of {0, 1}n S = 1
2 Check(x): test whether E(x ⊕ 𝛿in) = E(x) ⊕ 𝛿out 𝜀 = 2−h,C = 1

▶ Complexity O(2h/2)
▶ Quadratic gain

▶ Uses the Q2 model
▶ Superposition queries to E with secret key

Kaplan, Leurent, Leverrier & Naya-Plasencia Quantum Differential and Linear Cryptanalysis FSE 2017 12 / 25



Introduction Brute-force Differential Truncated differential Conclusion

Last-Round attack: classical

p = 2−h

p = 2−hout

𝛿in

𝛿out

Dfin

Classical algorithm

1: for 0 ≤ i < 2h do
2: x← Rand()
3: ▷ Filter possible output differences
4: if E(x) ⊕ E(x ⊕ 𝛿in) ∈ Dfin then
5: Find last key candidates for (x, x ⊕ 𝛿in)
6: Try all possibilities for remaining key bits

▶ Finding partial key candidates costs Ckout
▶ Between 1 and 2kout

▶ T = 2h + 2h−n+𝛥fin ⋅ 􏿴Ckout + 2k−hout􏿷
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Last-Round attack: quantum Q2

p = 2−h

p = 2−hout

𝛿in

𝛿out

Dfin

Quantum algorithm: Grover search for right pair

1 Setup: builds a uniform superposition of
X = {x ∶ E(x) ⊕ E(x ⊕ 𝛿in) ∈ Dfin}
using nested Grover algorithm S = 2(n−𝛥fin)/2

2 Check(x): Find last key cand. for (x, x ⊕ 𝛿in)
Run nested Grover over remaining key bits

𝜀 = 2n−h−𝛥fin ,C = C∗kout + 2(k−hout)/2

▶ Repeat key recovery with right pair

▶ Finding partial key candidates costs C∗kout
▶ Between 1 and 2kout/2

▶ T = 2h/2 + 2(h−n+𝛥fin)/2 ⋅ 􏿴C∗kout + 2(k−hout)/2􏿷
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Last-Round attack: quantum Q1

p = 2−h

p = 2−hout

𝛿in

𝛿out

Dfin

▶ Previous attack uses superposition queries
▶ Alternatively, make 2h classical queries

▶ Interesting if 2h < 2k/2
▶ E.g. AES256

Quantum algorithm: Grover search for right pair

1 Setup: builds superposition of classical data
using quantum memory S = 1

2 Check(x): same as Q2
𝜀 = 2n−h−𝛥fin ,C = C∗kout + 2(k−hout)/2

▶ T = 2h + 2(h−n+𝛥fin)/2 ⋅ 􏿴C∗kout + 2(k−hout)/2􏿷
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Truncated differential distinguisher: classical
▶ Assume vector spaces Din,Dout given (dim. 𝛥in, 𝛥out), with

h ∶= − log Pr
x,𝛿∈Din

[E(x ⊕ 𝛿) ⊕ E(x) ∈ Dout] ≪ n − 𝛥out,

Classical algorithm (using structures)

1: for 0 ≤ i < 2h−2𝛥in do
2: x← Rand()
3: L← {E(x ⊕ 𝛿) ∶ 𝛿 ∈ Din}
4: if ∃ y1, y2 ∈ L s.t. y1 ⊕ y2 ∈ Dout then
5: return cipher
6: return random

▶ Complexity O(2h−𝛥in)
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Truncated differential distinguisher: quantum
▶ Assume vector spaces Din,Dout given (dim. 𝛥in, 𝛥out), with

h ∶= − log Pr
x,𝛿∈Din

[E(x ⊕ 𝛿) ⊕ E(x) ∈ Dout] ≪ n − 𝛥out,

Quantum algorithm: Grover search for structure with right pair

1 Setup: builds a uniform superposition of {0, 1}n S = 1
2 Check(x): test whether ∃ y1, y2 ∈ x ⊕Din s.t. y1 ⊕ y2 ∈ Dout

𝜀 = 2−h+2𝛥in ,C = ?

▶ Complexity O(2h/2−𝛥in/3) less than quadratic speedup
▶ Uses the Q2 model

▶ Superposition queries to E with secret key
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Finding collisions
▶ Fiding y1, y2 ∈ L s.t. y1 ⊕ y2 ∈ Dout: truncate and find collisions

Classical algorithm

1: Sort(L)
2: for 0 < i < |L| do
3: if L[i] = L[i + 1] then return L[i]
4: return ⊥

▶ Complexity Õ(N)

Quantum algorithmic: Ambainis’ element distinctness

▶ Quantum walk algorithm to find collisions
▶ Complexity O(N2/3) less than quadratic speedup!
▶ Uses memory O(N2/3)
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Truncated differential distinguisher: quantum
▶ Assume vector spaces Din,Dout given (dim. 𝛥in, 𝛥out), with

h ∶= − log Pr
x,𝛿∈Din

[E(x ⊕ 𝛿) ⊕ E(x) ∈ Dout] ≪ n − 𝛥out,

Quantum algorithm: Grover search for structure with right pair

1 Setup: builds a uniform superposition of {0, 1}n S = 1
2 Check(x): test whether ∃ y1, y2 ∈ x ⊕Din s.t. y1 ⊕ y2 ∈ Dout

𝜀 = 2−h+2𝛥in ,C = 22𝛥in/3

▶ Complexity O(2h/2−𝛥in/3) less than quadratic speedup
▶ Uses the Q2 model

▶ Superposition queries to E with secret key
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Last-Round attack: classical

p = 2−h

p = 2−hout

Din

Dout

Dfin

Classical algorithm

1: for 0 ≤ i < 2h−2𝛥in do
2: x← Rand()
3: L← {E(x ⊕ 𝛿) ∶ 𝛿 ∈ Din}
4: ▷ Filter possible output differences
5: if ∃ y1, y2 ∈ L s.t. y1 ⊕ y2 ∈ Dout then
6: Find last key candidates for (y1, y2)
7: Try all possibilities for remaining key bits

▶ Finding partial key candidates costs Ckout
▶ Between 1 and 2kout

▶ T = 2h−𝛥in + 2h−n+𝛥fin ⋅ 􏿴Ckout + 2k−hout􏿷
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Last-Round attack: quantum Q2

p = 2−h

p = 2−hout

Din

Dout

Dfin

Assume each structure has pairs with difference in Dfin

Q2 algo: Grover search for structure with right pair

1 Setup: unif. superposition S = 1, 𝜀 = 22𝛥in−h

2 Check(x): Grover search over pairs in x ⊕Din
1 Setup: Ambainis to find pairs

with output in Dfin S′ = 2(n−𝛥fin)/3

2 Check(x1, x2): Find last key candidates
Run nested Grover over remaining key bits,

𝜀′ = 2−2𝛥in+(n−𝛥fin),C′ = C∗kout + 2(k−hout)/2

C = 2𝛥in−(n−𝛥fin)/6 + 2𝛥in+(𝛥fin−n)/2 􏿴C∗kout + 2(k−hout)/2􏿷

▶ T = 2h/2−(n−𝛥fin)/6+2(h−n+𝛥fin)/2 ⋅􏿴C∗kout + 2(k−hout)/2􏿷
Kaplan, Leurent, Leverrier & Naya-Plasencia Quantum Differential and Linear Cryptanalysis FSE 2017 21 / 25



Introduction Brute-force Differential Truncated differential Conclusion

Last-Round attack: quantum Q1

p = 2−h

p = 2−hout

Din

Dout

Dfin

▶ Alternatively, use classical queries
▶ Filter pairs with output in Dfin classically

Q1 algo: Grover search for structure with right pair

1 Setup: builds superposition of classical data
using quantum memory S = 1

2 Check(x1, x2): Find last key candidates
Run nested Grover over remaining key bits

𝜀 = 2n−h−𝛥fin ,C = C∗kout + 2(k−hout)/2

▶ T = 2h−𝛥in + 2(h−n+𝛥fin)/2 ⋅ 􏿴C∗kout + 2(k−hout)/2􏿷
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Summary: simplified complexities
▶ Simple differential distinguisher

DC = 2h DQ1 = 2h = DC DQ2 = 2h/2 = √DC

TC = 2h TQ1 = 2h = TC TQ2 = 2h/2 = √TC
▶ Simple differential LR attack

DC = 2h DQ1 = 2h = DC DQ2 = 2h/2 = √DC

TC = 2h + Ck TQ1 = 2h + C∗k TQ2 = 2h/2 + C∗k ≈ √TC
▶ Truncated differential distinguisher

DC = 2h−𝛥in DQ1 = 2h−𝛥in = DC DQ2 = 2h/2−𝛥in/3 > √DC

TC = 2h−𝛥in TQ1 = 2h−𝛥in = TC TQ2 = 2h/2−𝛥in/3 > √TC
▶ Truncated differential LR attack Assuming > 1 filtered pairs / structure
DC = 2h−𝛥in DQ1 = 2h−𝛥in = DC DQ2 = 2h/2−(n−𝛥fin)/6 > √DC

TC = 2h−𝛥in + Ck TQ1 = 2h−𝛥in + C∗k TQ2 = 2h/2−(n−𝛥fin)/6 + C∗k > √TC
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Concrete examples

▶ Truncated differential attacks have less than quadratic speedup
▶ Can become worse than Grover key search (not an attack)
▶ The best quantum attack is not always
a quantum version of the best classical attack

LAC (reduced LBlock, n = 64)

▶ Differential with probability 2−61.5

▶ Classical distinguisher with complexity 262.5
▶ Quantum distinguisher with complexity 231.75

▶ Truncated differential with 𝛥in = 12, 𝛥out = 20, 2h = 2−44 + 2−55.3
▶ Classical distinguisher with complexity 260.9
▶ Quantum distinguisher with complexity 233.4
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Introduction Brute-force Differential Truncated differential Conclusion

Concrete examples

▶ Truncated differential attacks have less than quadratic speedup
▶ Can become worse than Grover key search (not an attack)
▶ The best quantum attack is not always
a quantum version of the best classical attack

KLEIN-64 (n = 64)

▶ Truncated differential with h = 69.5, 𝛥in = 16, 𝛥fin = 32, k = 64,
kout = 32, hout = 45

▶ Classical attack with complexity 258.2
▶ Quantum attack with complexity > 232
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Concrete examples

▶ Truncated differential attacks have less than quadratic speedup
▶ Can become worse than Grover key search (not an attack)
▶ The best quantum attack is not always
a quantum version of the best classical attack

KLEIN-96 (n = 64)

▶ Truncated differential with h = 78, 𝛥in = 32, 𝛥fin = 32, k = 96,
kout = 48, hout = 52

▶ Classical attack with complexity 290
▶ Q2 attack with complexity 247.3
▶ Q1 attack with complexity 247.96
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Conclusions
▶ We fixed some mistakes from the ToSC version

▶ Updated version on arXiv:1510.05836

▶ Quantification of classical attacks using Grover and Ambainis
▶ Differential, truncated differential and linear cryptanalysis

▶ “It’s complicated”
▶ Up to quadratic speedup

▶ If key search is the best classical attack,
Grover key search is the best quantum attack

▶ Data complexity can only be reduced using quantum queries
▶ Cipher with k > n are most likely to see quadratic speedup

▶ Attacks with classical queries (Q1 model) possible
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Bonus slide: Linear cryptanalysis
▶ Linear distinguisher

DC = 1/𝜀2 DQ1 = 1/𝜀2 = DC DQ2 = 1/𝜀 = √DC

TC = 1/𝜀2 TQ1 = 1/𝜀2 = TC TQ2 = 1/𝜀 = √TC

▶ Linear attack with ℓ rround distinguishers (Matsui 1)

DC = 1/𝜀2 DQ1 = ℓ/𝜀2 > DC DQ2 = ℓ/𝜀 > √DC

TC = ℓ/𝜀2 + 2k−ℓ TQ1 = ℓ/𝜀2 + 2(k−ℓ)/2 TQ2 = ℓ/𝜀 + 2(k−ℓ)/2 > √TC

▶ Lastround linear attack (Matsui 2)

DC = 1/𝜀2 DQ1 = 1/𝜀2 = DC DQ2 = 2kout/2/𝜀 > √DC

TC = Ck TQ1 = 1/𝜀2 + √Ck TQ2 = √Ck = √TC
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