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Motivation

What would be the impact of quantum computers
on symmetric cryptography?

» Some physicists think they can build quantum computers

» NSA thinks we need quantum-resistant crypto (or do they?)
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Expected impact of quantum computers

» Some problems can be solved much faster with quantum computers
» Up to exponential gains
» But we don't expect to solve all NP problems
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Expected impact of quantum computers

» Some problems can be solved much faster with quantum computers
» Up to exponential gains
» But we don't expect to solve all NP problems

Impact on public-key cryptography

» RSA, DH, ECC broken by Shor’s algorithm

> Breaks factoring and discrete log in polynomial time
> Large effort to develop quantum-resistant algorithms (e.g. NIST)

Impact on symmetric cryptography

> Exhaustive search of a k-bit key in time 252 with Grover's algorithm
» Common recommendation: double the key length (AES-256)

» Encryption modes are secure [Unruh & al, PQC'16]

» Authentication modes broken w/ superposition queries [Crypto 16]
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Owverview of the talk
Main question

Is AES secure in a quantum setting?

» Symmetric design are evaluated with cryptanalysis:
» Differential (truncated, impossible, ...)
> Linear
> Integral

Algebraic

> eee

v

» We should study quantum cryptanalysis!

» Start with classical techniques

» Do we get a quadratic speedup?
» Do we need a quantum encryption oracle?
» How are different cryptanalysis techniques affected?

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017
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Security notions: Classical

v

PRF security: given access to P/P1, distinguishing E from random

v

Classical setting: classical computations

v

Classical security: classical queries
Cipher broken by adversary with

» data <« 2"
» time < 2K
> success > 3/4

v

P, P

) /

()
(SR Tl

cipher / random
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Security notions: Quantum Q1

v

PRF security: given access to P/P1, distinguishing E from random

v

Quantum setting: quantum computations

v

Classical security: classical queries
Cipher broken by adversary with

» data < 2"
» time < 2K2
> success > 3/4

v

P, P

/

N

cipher / random
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Security notions: Quantum Q2

v

PRF security: given access to P/P1, distinguishing E from random

v

Quantum setting: quantum computations

v

Quantum security: quantum (superposition) queries
Cipher broken by adversary with

» data < 2"
» time < 2K2
> success > 3/4

v

P, P
X, Pxx10) 2, PxIP(x))

/

N

cipher / random
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About the models

Q1 model: classical queries

» Build a quantum circuit from classical values

» Example: breaking RSA with Shor’s algorithm

Q2 model: superposition queries

» Access quantum circuit implementing the primitive with a secret key
» Example: breaking CBC-MAC with Simon’s algorithm

» The Q2 model is very strong for the adversary

» Simple and clean generalisation of classical oracle
» Aim for security in the strongest (non-trivial) model
» A Q2-secure block cipher is useful for security proofs of modes

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017 8/25
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Grover’s algorithm

» Search for a marked elementin a set X

> Set of marked elements M, with [M| > ¢ - |X|

Classical algorithm

1: loop

2 x < Setup()

3: if CHeck(x) then
4 return x

> Pick a random element in X, cost S
> Check if it is marked, cost C

» 1/e repetitions expected
» Complexity (S + C)/e

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017 9/25
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Grover’s algorithm

» Search for a marked elementin a set X
> Set of marked elements M, with [M| > ¢ - |X|

Grover Algorithm (as a quantum walk)

Quantum algorithm to find a marked element using:
» Setup: builds a uniform superposition of inputs in X

» CHeck: applies a control-phase gate to the marked elements

» Only 1/+/¢ repetitions needed
» Complexity (5 + Q)¢
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Grover’s algorithm

» Search for a marked elementin a set X
> Set of marked elements M, with [M| > ¢ - |X|

Grover Algorithm (as a quantum walk)

Quantum algorithm to find a marked element using:
» Setup: builds a uniform superposition of inputs in X

» CHeck: applies a control-phase gate to the marked elements

v

Only 1/+/¢ repetitions needed
Complexity (5 + Q)¢

v

v

Can produce a uniform superposition of M
Can provide an oracle without measuring (nesting)

v

v

Variant to measure ¢ (quantum counting)
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Brute-force attack

» We can use Grover's algorithm for a quantum brute-force key search

Capture a few known plaintext/ciphertext: C; = E,+(P;)
Setup: builds a uniform superposition of {0, 1} s=1
CHeck(xk): test whether C; = E,(P)) e=2"k Cc=

» Complexity O(24/?)
» Quadratic gain
» Uses the Q1 model

» Classical data (C;, P;)
» Quantum circuit independant of the secret key «*

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017 10/25
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Differential distinguisher: classical
» Assume a differential 6;,,, 0, given, with

h:=-log l';r[E(x ® 0j) = E(x) ® Oout] < n,

Classical algorithm: search for right pairs

1: for0 <i<2"do
2 Xx < RAND()

3: if E(x ® 0i,,) = E(x) ® O, then
4: return cipher

5: return random

» Complexity O(2")

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017
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Differential distinguisher: quantum
» Assume a differential 0;,, 0, given, with

h = —log PrlE(x ® 0in) = E(X) ® Sou] < 1,

Quantum algorithm: Grover search for right pair

Setup: builds a uniform superposition of {0,1}" S=
CHeck(x): test whether E(x ® 6;,) = E(x) ® Oyt e (6

» Complexity O(2?)
> Quadratic gain
» Uses the Q2 model

» Superposition queries to E with secret key

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017 12/25
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Last-Round attack: classical

Oin — Classical algorithm
‘; . 1 for0<i<2'do
) 2 x < RAND()
/ ; 3: > Filter possible output differences
5 p=2" 4 if E(x) ® E(x ® ;) € Ds,, then
.', : 5: Find last key candidates for (x, x @ 0;,)
' 6: Try all possibilities for remaining key bits
6out ~
/II E \\‘\ > ::Z_hout > Finding partial key candidates costs C;
‘v oy . > Between T and 2kout
Dﬁn

- > T=2h 4 204 . (G, + 2K how)

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017 13/25
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Last-Round attack: quantum Q2

Oy Quantum algorithm: Grover search for right pair
) Setup: builds a uniform superposition of
/ X = {x:E(x) ® E(x® ) € Din}
v L using nested Grover algorithm S = 2(74)/2
/ P ::2 CHeck(x): Find last key cand. for (x, x ® 0;,)
: _ Run nested Grover over remaining key bits
! &= zn_h_Aﬁn C = CZ + z(k_hout)/z
\\ 4 out
6,‘7‘\” X > Repeat key recovery with right pair
/II E \\‘\ > =52_hout > Finding partial key candidates costs C;
¢ vy : > Between 1 and 2kout/2
Dﬁn

: > T= 22 4 2hen+aw2

Kaplan, Leurent, Leverrier & Naya-Plasencia

+ Z(k_hout)/z)
t
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Last-Round attack: quantum Q1

- » Previous attack uses superposition queries

> Alternatively, make 2h classical queries

> Interesting if 2" < 2//2
» E.g. AES-256

P :_Z_h Quantum algorithm: Grover search for right pair

Setup: builds superposition of classical data

using quantum memory S=1
: CHEeck(x): same as Q2
X g = 2"h-4dn C = G, + 2 (k=hout)/2
: out
p — Z_hout
- » T = 2h 4 2h-n+Ag)2 . (C* + z(k—hout)/Z)
out
Quantum Differential and Linear Cryptanalysis FSE 2017 15/25
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Truncated differential distinguisher: classical
» Assume vector spaces Di,, Doyt given (dim. A;,, Agyt), with

hie—tog, Py

/! I

[E(x ®0) ® E(x) € Dout] < n =Agu,

Classical algorithm (using structures)

1: for 0 <i< 2h-24in do

2 X < RAND()

3 L—{E(x®0):0¢€ D}

4: if Ay1,y2 € Lst. y1 @y, € Doyt then
5 return cipher

6:

return random

» Complexity O(2h4n)

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017 16/25
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Truncated differential distinguisher: quantum
» Assume vector spaces Di,, Doyt given (dim. A;,, Ayyt), with

hi=- lng 625

/! i

[E(x®0) ® E(x) € Doutl < n— Ay,

Quantum algorithm: Grover search for structure with right pair

Setup: builds a uniform superposition of {0,1}" S=1

CHEck(x): test whether Ayq,y, € x® Di, s.t. y1 @ y) € Doyt

g=2"M2%n C=7

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017
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Finding collisions
» Fidingy1,y, € Lst. y1 ®y2 € Doyt truncate and find collisions
Classical algorithm
: Sort(L)
: forO<i<|L do

1
2
3: if L[i] = L[i + 1] then return L[/]
4: return L

» Complexity O(N)

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017
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Finding collisions
» Fidingy1,y, € Lst. y1 ®y2 € Doyt truncate and find collisions
Classical algorithm
1: Sort(L)
2: forO<i<|Lldo
3: if L[i] = L[i + 1] then return L[/]
4

: return L

» Complexity O(N)

Quantum algorithmic: Ambainis” element distinctness

» Quantum walk algorithm to find collisions
» Complexity O(N?3) — less than quadratic speedup!
> Uses memory O(N??)
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Truncated differential distinguisher: quantum
» Assume vector spaces Di,, Doyt given (dim. A;,, Ayyt), with

hi=- lng 625

/! i

[E(x®0) ® E(x) € Doutl < n— Ay,

Quantum algorithm: Grover search for structure with right pair

Setup: builds a uniform superposition of {0, 1}" S=1

CHeck(x): test whether Ayq,y; € x® Di s.t. y1 ®ys € Doyt
o= 2—h+2Ain G = 22A;n/3

» Complexity O(2"/>=4n3) — less than quadratic speedup
» Uses the Q2 model

> Superposition queries to E with secret key

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017 19/25
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Last-Round attack: classical

Classical algorithm

p=2"

~
A~

P :'Z_hout

Kaplan, Leurent, Leverrier & Naya-Plasencia

Quantum Differential and Linear Cryptanalysis

1
2
3:
4:
5
6
7

: for 0 <i < 2h%4n do
x < RAND()
L —{Ex®0):6€ D}
> Filter possible output differences
if Ay1,y2 € Lst. y1 @y € Doy then
Find last key candidates for (y1,y>)
Try all possibilities for remaining key bits

» Finding partial key candidates costs C;_,
> Between T and 2kout
>» T = Zh_Ain + zh_n+Aﬁn . (Ckout + Zk_hout)

FSE 2017 20/25
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Truncated differential
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Round attack: quantum Q2
Assume each structure has pairs with difference in Dy,

Q2 algo: Grover search for structure with right pair

Setup: unif. superposition  S=1,¢ = 92Ai,=h
CHeck(x): Grover search over pairs in x ® D,

Setup: Ambainis to find pairs
with output in Dy,
CHEeck(x7,x2): Find last key candidates

Run nested Grover over remaining key bits,
g’ = Z_ZAin"'(”_Aﬁn), C’ = CZ + Z(k_hout)/z

out

JL Z(kfhout)/z)

S’ = 2(n=Agr)/3

C — 2Ain7(n7Aﬁn)/6 + 2Ain+(Aﬂn7n)/2 (CZ

out

P :.Z_hout

Kaplan, Leurent, Leverrier & Naya-Plasencia

> T= 220866 p(honsdan) 2 (Cr oy 2lkhow)2
out

FSE 2017 21/25

Quantum Differential and Linear Cryptanalysis



Kaplan, Leurent, Leverrier & Naya-Plasencia

Truncated differential
ooe

Last-Round attack: quantum Q1

H > Alternatively, use classical queries
> Filter pairs with output in Dg, classically

Q1 algo: Grover search for structure with right pair

P :_Z_h Setup: builds superposition of classical data
: using quantum memory 5=1
CHEeck(x1,x2): Find last key candidates

Run nested Grover over remaining key bits
e = znfthﬁn, C = CZ + Z(kfhout)/z

ut

~
A~

P :.Z_hout
+ Z(k_hout)/z)

out

> T - Zh_Ain + z(h_n+Aﬁn)/2 . (C;(

Quantum Differential and Linear Cryptanalysis FSE 2017 22/25
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Summary: simplified complexities

» Simple differential distinguisher
De=2"  Dg=2"=Dc  Doy=2"=Dc
Te=2" Tor = 2" = Tc Tz = 2/ = \T¢
» Simple differential LR attack
Dc=2" Doy =2"=Dc Doy =2V =\
Tc=2"+C  Tq=2"+C Tqz = 2"+ C, = Tc
>

Truncated differential distinguisher

Dc =24 Do =24 =D Dgqp = 2M2"403 5 \Dc

Te =24 Tqr = 2040 = T¢ Tqy = 20203 5 [T
Truncated differential LR attack Assuming > 1 filtered pairs / structure
D¢ = 2h= Dqp = 2" = D¢ Dg, = 212~ -4w)/6 5 /D¢
Tc=22n 1 G Tqp =24+ G, Tqp = 2M20-20) 4 > T

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017 23/25
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Concrete examples

» Truncated differential attacks have less than quadratic speedup
» Can become worse than Grover key search (not an attack)

» The best quantum attack is not always
a quantum version of the best classical attack

LAC (reduced LBlock, n = 64)

> Differential with probability 27613

> Classical distinguisher with complexity 262
» Quantum distinguisher with complexity 2317

» Truncated differential with A, = 12, Ao = 20,27 = 2744 4+ 27553

» Classical distinguisher with complexity 2602
» Quantum distinguisher with complexity 2334

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017 24/25



Conclusion
oeo

Concrete examples

» Truncated differential attacks have less than quadratic speedup
» Can become worse than Grover key search (not an attack)

» The best quantum attack is not always
a quantum version of the best classical attack

KLEIN-64 (n = 64)

» Truncated differential with h = 69.5, A;, =16, Ag, = 32, k = 64,
kout = 32, hout =45

» Classical attack with complexity

» Quantum attack with complexity > 232

258.2
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Concrete examples

» Truncated differential attacks have less than quadratic speedup
» Can become worse than Grover key search (not an attack)

» The best quantum attack is not always
a quantum version of the best classical attack

KLEIN-96 (n = 64)

» Truncated differential with h = 78, A;, = 32, Ag, = 32, k =96,
kout = 48, hout =52
» Classical attack with complexity 2°°
» Q2 attack with complexity 2473
» QI attack with complexity 2479

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017 24/25
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Conclusions

» We fixed some mistakes from the ToSC version
> Updated version on arXiv:1510.05836

v

Quantification of classical attacks using Grover and Ambainis
> Differential, truncated differential and linear cryptanalysis

> “It's complicated”
» Up to quadratic speedup

> If key search is the best classical attack,
Grover key search is the best quantum attack

v

Data complexity can only be reduced using quantum queries
Cipher with k > n are most likely to see quadratic speedup
> Attacks with classical queries (Q1 model) possible

v

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017 25/25


https://arxiv.org/abs/1510.05836

Bonus slide: Linear cryptanalysis

» Linear distinguisher

Dc =1/e? Dqi = 1/e2 = Dc Dqz = 1/¢ = /D¢
Te =1/e2 Tqr = 1/e2 =T¢ Tqa =1/e = \Tc

» Linear attack with £ r-round distinguishers (Matsui 1)

D¢ =1/¢? Dqi = {/e? > D¢ Dqy = {/¢ > D¢
Te=0/e? + 250 Top = €/e? + 20702 T, = /e + 207012 5 [T

» Last-round linear attack (Matsui 2)

Dc=1/e2  Dqy =1/e* = D¢ Dqy = 2kw2je > /D¢
Tc = Ck Taqr = 1/e2 + /Gy Tz = VG = VTc

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017 26/25
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