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Motivation

..

Public key

▶ Strong algebraic
structure

▶ Security reduction
▶ Slow
.

Secret key

▶ Security from
cryptanalysis

▶ Fast

Bridging the gap

▶ Can we have an efficient design with strong algebraic structure?
▶ Security reduction from a wellunderstood problem?
▶ Extra features?
▶ Previous examples: SWIFFT, FSB, Lapin, HB family
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SPRING construction

Subset Product with Rounding over a ring

Fa,⃗s(x1, … , xk) ∶= S
⎛
⎜
⎜
⎝
a ⋅

k
􏾟
j=1

sxjj

⎞
⎟
⎟
⎠

▶ Latticebased PRF [BPR, Eurocrypt ’12]
▶ Polynomial ring Rp = ℤp[X]/(Xn + 1)
▶ Key: a, (si)ki=1 ∈ Rp
▶ Rounding function S

▶ e.g. MSB of each polynomial coefficient
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SPRING security

▶ Based on the RL W E assumption
▶ Secret polynomial s ∈ Rp, Rp = ℤp[X]/(Xn + 1)
▶ Distinguish (ai, ai ⋅ s + ei) from uniform
▶ Reduction to worstcase ideal lattice problems

▶ Deterministic version: RL W R assumption
▶ Secret polynomial s ∈ Rp
▶ Distinguish (ai, ⌊ai ⋅ s⌉) from uniform
▶ Rounding removes information, like adding noise

▶ Two SPRING outputs gives something similar to an LWR sample

▶ Fa,⃗s(x1, … , xk) ∶= S 􏿵a ⋅ ∏k
j=1 s

xj
j 􏿸

▶ Secret polynomials s, t
▶ Output (⌊t⌉, ⌊t ⋅ s⌉)
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From provable security to efficiency

▶ Security reduction require huge parameters

▶ What happens when we use small parameters?
▶ Security reduction not applicable as such
▶ Guideline towards reasonable constructions (mode of operation?)

▶ Bias can appear (was negligible with large parameters)
▶ Concrete security evaluation needed
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Choice of ring

SPRING
Fa,⃗s(x1, … , xk) ∶= S 􏿵a ⋅ ∏k

j=1 s
xj
j 􏿸 over Rp = ℤp[X]/(Xn + 1)

▶ Select parameters with fast polynomial product

1 Polynomial product very efficient using FFT algorithm
2 Arithmetic mod 2i + 1 is efficient in software

▶ Problem was studied for SWIFFT
▶ Use p = 257, n = 128
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Product in the ring R257

Fast polynomial product h = f ⋅ g

1 Evaluate f and g: fi = f(xi), gi = g(xi) (256 points)
2 Multiply values coefficientswise
3 Interpolate h s.t. h(xi) = fi × gi (degree 256)

▶ Let 𝜔 be a 256th root of unity, xi = 𝜔 i, 𝜔 = 41
Use FFT for evaluation/interpolation in n log(n)

▶ We want f ⋅ g mod x128 + 1
▶ x128 + 1 = ∏(x − 𝜔2i+1)
▶ Chinese Remainder: compute h mod x − 𝜔2i+1 i.e. h(𝜔2i+1)

▶ Evaluating f(𝜔2i+1)
▶ 𝜙 ∶ ∑ bi ⋅ xi ↦ ∑(bi ⋅ 𝜔 i) ⋅ xi
▶ 𝜙(f)(𝜔2i) = f(𝜔2i+1)

▶ FFT128(𝜙(f ⋅ g)) = FFT128(𝜙(f)) × FFT128(𝜙(g)) (coeff.wise ×)
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Implementation tricks

SPRING PRF
Fa,⃗s(x1, … , xk) ∶= S 􏿵a ⋅ ∏k

j=1 s
xj
j 􏿸

▶ Use FFT for the subset product

▶ ∏
xj=1

sj = 𝜙−1 􏿵FFT−1 􏿵⨉xj=1
FFT(𝜙(sj))􏿸􏿸

▶ Store ̃sj ∶= FFT(𝜙(sj)) (equivalent key)

▶ ∏
xj=1

sj = 𝜙−1 􏿵FFT−1 􏿵⨉xj=1
̃sj􏿸􏿸 (coefficientswise product)

▶ Use counter mode for a stream cipher
▶ Single addition instead of subsetsum
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SPRING over R257 (p = 257, n = 128)

.. Key sij
1024(k + 1) bits

.
1

.
x1

. x2.
⋮

.

xk

.
kbit input x

.

Subset sum

.

∑
j xjsij

.

1024bit state
(128 8bit words)

.

exp

.

exp

.

exp

.

exp

.

exp

.

exp

.

ℤ256 → ℤ257

.

x ↦ 3x mod 257

.

FFT

.

FFT over
(ℤ257)128

.

𝜔−0

.

𝜔−1

.

𝜔−2

.

𝜔−3

.

𝜔−4

.

𝜔−5

.

xi ↦ xi × 𝜔−i

.

msb

.

msb

.

msb

.

msb

.

msb

.

msb

.

ℤ257 → ℤ2
128bit output

.

x ↦ ⌊2x/257⌉
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Tweaks to the construction

Problems because of the small parameters

1 Polynomial are noninversible with high probability
▶ Product in a subspace
▶ Use only units for the key elements

2 Rounding from ℤ257 has a bias 1/257
▶ Output bits biased
▶ Combine bits to reduce bias: SPRINGBCH
▶ Or use ℤ514: SPRINGCRT
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SPRING-BCH

▶ Reduce the bias by combining output bits
▶ Pilingup lemma: bias(a ⊕ b) = bias(a) ⋅ bias(b)

▶ Multiply with the transpose of the generating matrix of a code
▶ Syndrome for the dual code
▶ Any linear combination of output bits is the sum of d biased bits
▶ Bias reduced exponentially in d

▶ We use an extended BCH code
▶ Efficient
▶ Best known distance

▶ Efficiency loss: only 64 output bits
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SPRING-CRT

▶ Use the ring R514 = ℤ514[X]/(Xn + 1)
▶ Unbiased rounding from ℤ514

▶ Chinese Remainder decomposition: R514 ≅ R257 × R2
▶ Compute modulo 257 and modulo 2, combine outputs

▶ Computation in R2:
▶ Efficient algorithms for subsetproduct in the paper
▶ In counter mode: single multiplication using PCLMUL, or tables
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Implementation

▶ Implementation using SIMD instructions
▶ Compute operations in parallel on vector of data
▶ SSE2 on Intel/AMD x86: desktop (Core) and embedded (Atom)
▶ NEON on ARM: embedded CPU (Cortex A in smartphones, tablets)

▶ Subset sum optimized with precomputed tables
▶ 2bit inputs: [0, s0, s1, s0 + s1]
▶ 8bit inputs: 256 entries

▶ Multiplication in R2 using PCLMUL instruction (if available),
or precomputed tables

▶ Bottleneck is FFT
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FFT implementation tricks

▶ Reuse efficient FFT from the SIMD hash function

▶ Decompose FFT as a twodimensional FFT
▶ Parallel FFT on lines and columns

▶ Elements in ℤ257 as 16bit words

▶ Partial reduction mod257 with (x&256) - (x>>8)
▶ Output in [−127, 383]

▶ Multiplication in ℤ257 using 16bit signed multiplication
▶ Reduce operands to [−128, 128] beforehand
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Performance

▶ 2030 cycle/byte on Core i7 using SSE
▶ Slow for a stream cipher, fast enough for practical use

▶ SPRINGCRTCTR is about 4.5 times slower than AESCTR
▶ Excluding hardware AES instructions
▶ Same ratio on a range of architectures

SPRINGBCH SPRINGCRT AESCTR

Single CTR Single CTR ����XXXXAESNI AESNI

ARM Cortex A15 220 170 250 77 17.8 N/A
Atom 247 137 235 76 17 N/A

Core i7 Nehalem 74 60 76 29.5 6.9 N/A
Core i7 Ivy Bridge 60 46 62 23.5 5.4 1.3
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Conclusion

S: Subset Product with Rounding over a ring
▶ Strong algebraic structure

▶ Simple design
▶ Subset sum, table lookup, FFT, table lookup with small output

▶ Large linear part good for masking, MPC

▶ Based on a design with security reduction
▶ Security reduction does not apply with small parameters
▶ Cryptanalysis is needed to evaluate the security
▶ Expected security: about 128 bit

▶ High parallelism
▶ Reasonable performances with vector instructions
▶ Good performances in hardware?

G. Leurent () SPRING FSE 2014 16 / 16



Pseudo-code for SPRING

Implementation

Key: (􏾧ai)127i=0 , (􏾧sij)127i=0
k−1
j=0 ∈ ℤ256

Input: x1, x2, … xk ∈ {0, 1}
1: for 0 ≤ i < k do
2: ui ← 􏾧ai +∑

j xj􏾧sij mod 256
3: ui ← 3ui mod 257
4: u⃗ ← FFT−1128(u⃗)
5: for 0 ≤ i < k do
6: ui ← ui ⋅ 𝜔−i mod 257
7: yi ← ⌊2 ⋅ ui/257⌉
8: return y⃗
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