
On Symmetric Encryption with
Distinguishable Decryption Failures

Alexandra Boldyreva, Jean Paul Degabriele, Kenny Paterson,
and Martijn Stam

FSE - 12th Mar 2013

Outline

Distinguishable Decryption Failures

The Multiple-Error Setting

Conclusion

Attacks Based on Decryption Failures

Channel

Sender Receiver

Adversary

Attacks Based on Decryption Failures

Channel

Sender Receiver

Adversary

Attacks Based on Decryption Failures

Channel

Sender Receiver

Adversary

Attacks Based on Decryption Failures

Channel

Sender Receiver

Adversary

Attacks Based on Decryption Failures

Channel

Sender Receiver

Adversary

Attacks Based on Decryption Failures

Channel

Sender Receiver

Adversary

Attacks Based on Decryption Failures

The classic examples are Bleichenbacher’s attack on RSA and
Vaudenay’s padding oracle attack on CBC encryption.

These attacks motivated us to require IND-CCA security, but
does IND-CCA always guard against such attacks?

The decryption algorithm can have multiple checks that may
cause it to fail. Knowledge of which check failed may convey
more information to the adversary.

Distinguishable decryption failures enabled attacks against TLS
[CHVV 03], DTLS [AP 12], and IPsec [DP 10].

GAP: In IND-CCA the adversary only learns whether a ciphetext
is valid or not (distinct decryption failures always return ⊥).

Attacks Based on Decryption Failures

The classic examples are Bleichenbacher’s attack on RSA and
Vaudenay’s padding oracle attack on CBC encryption.

These attacks motivated us to require IND-CCA security, but
does IND-CCA always guard against such attacks?

The decryption algorithm can have multiple checks that may
cause it to fail. Knowledge of which check failed may convey
more information to the adversary.

Distinguishable decryption failures enabled attacks against TLS
[CHVV 03], DTLS [AP 12], and IPsec [DP 10].

GAP: In IND-CCA the adversary only learns whether a ciphetext
is valid or not (distinct decryption failures always return ⊥).

Attacks Based on Decryption Failures

The classic examples are Bleichenbacher’s attack on RSA and
Vaudenay’s padding oracle attack on CBC encryption.

These attacks motivated us to require IND-CCA security, but
does IND-CCA always guard against such attacks?

The decryption algorithm can have multiple checks that may
cause it to fail. Knowledge of which check failed may convey
more information to the adversary.

Distinguishable decryption failures enabled attacks against TLS
[CHVV 03], DTLS [AP 12], and IPsec [DP 10].

GAP: In IND-CCA the adversary only learns whether a ciphetext
is valid or not (distinct decryption failures always return ⊥).

A Common Response

"This is a flaw in the implementation. It can be easily fixed by
ensuring that errors are not distinguishable."

But errors are useful for troubleshooting; moreover side-channels
due to timing or interaction with other protocols (e.g. IPsec) are
hard to prevent.

On the other hand it is easy to model distinguishable decryption
failures – multiple-error schemes.

D : K × C →M∪ S⊥

where S⊥ = {⊥1,⊥2, . . . ,⊥n}

How does this affect the theory of symmetric encryption?

A Common Response

"This is a flaw in the implementation. It can be easily fixed by
ensuring that errors are not distinguishable."

But errors are useful for troubleshooting; moreover side-channels
due to timing or interaction with other protocols (e.g. IPsec) are
hard to prevent.

On the other hand it is easy to model distinguishable decryption
failures – multiple-error schemes.

D : K × C →M∪ S⊥

where S⊥ = {⊥1,⊥2, . . . ,⊥n}

How does this affect the theory of symmetric encryption?

Revisiting Classic Relations

The following relation is attributed to Bellare and Namprempre
[BN00], and to Katz and Yung [KY00].

IND-CPA ∧ INT-CTXT⇒ IND-CCA

This relation provides a simple technique for realizing IND-CCA
secure schemes in the symmetric setting.

Furthermore INT-CTXT + IND-CPA has become the target
security notion for authenticated encryption, since
INT-CTXT⇒ INT-PTXT.

Revisiting Classic Relations

The following relation is attributed to Bellare and Namprempre
[BN00], and to Katz and Yung [KY00].

IND-CPA ∧ INT-CTXT⇒ IND-CCA

This relation provides a simple technique for realizing IND-CCA
secure schemes in the symmetric setting.

Furthermore INT-CTXT + IND-CPA has become the target
security notion for authenticated encryption, since
INT-CTXT⇒ INT-PTXT.

Revisiting Classic Relations

In their work on SSH, Bellare, Kohno, and Namprempre [BKN04]
extended this relation to the stateful setting.

IND-CPA ∧ INT-sfCTXT⇒ IND-sfCCA

INT-sfCTXT and IND-sfCCA are strengthened variations, which
additionally capture replay and reordering attacks.

Any encryption scheme which satisfies these notions must be
stateful – hence the name.

Classic Relations in the Multiple-Error Setting

Theorem
If pseudorandom functions exist, then there exists a multiple-error
encryption scheme that is both IND-CPA and INT-CTXT secure, but
not IND-CCA secure.

IND-CPA ∧ INT-CTXT 6⇒ IND-CCA

A similar separation holds for the stateful setting:

IND-CPA ∧ INT-sfCTXT 6⇒ IND-sfCCA

As we shall see, it is possible to define ciphertext integrity in
two ways, both separations allow the stronger variant.

Classic Relations in the Multiple-Error Setting

Theorem
If pseudorandom functions exist, then there exists a multiple-error
encryption scheme that is both IND-CPA and INT-CTXT secure, but
not IND-CCA secure.

IND-CPA ∧ INT-CTXT 6⇒ IND-CCA

A similar separation holds for the stateful setting:

IND-CPA ∧ INT-sfCTXT 6⇒ IND-sfCCA

As we shall see, it is possible to define ciphertext integrity in
two ways, both separations allow the stronger variant.

Classic Relations in the Multiple-Error Setting

Theorem
If pseudorandom functions exist, then there exists a multiple-error
encryption scheme that is both IND-CPA and INT-CTXT secure, but
not IND-CCA secure.

IND-CPA ∧ INT-CTXT 6⇒ IND-CCA

A similar separation holds for the stateful setting:

IND-CPA ∧ INT-sfCTXT 6⇒ IND-sfCCA

As we shall see, it is possible to define ciphertext integrity in
two ways, both separations allow the stronger variant.

New Relations in the Multiple-Error Setting

Given the utility of these relations, an obvious question is whether
we can obtain something similar in the multiple-error setting.

IND-CVA ∧ INT-CTXT⇒ IND-CCA

Informally, IND-CVA is described as the IND-CPA game with
additional access to a ciphertext validity oracle which returns
decryption errors but no plaintext.

The stronger variant of ciphertext integrity is required.

Similar relations can be obtained for IND-sfCCA, IND$-CCA, and
IND$-sfCCA.

New Relations in the Multiple-Error Setting

Given the utility of these relations, an obvious question is whether
we can obtain something similar in the multiple-error setting.

IND-CVA ∧ INT-CTXT⇒ IND-CCA

Informally, IND-CVA is described as the IND-CPA game with
additional access to a ciphertext validity oracle which returns
decryption errors but no plaintext.

The stronger variant of ciphertext integrity is required.

Similar relations can be obtained for IND-sfCCA, IND$-CCA, and
IND$-sfCCA.

New Relations in the Multiple-Error Setting

Given the utility of these relations, an obvious question is whether
we can obtain something similar in the multiple-error setting.

IND-CVA ∧ INT-CTXT⇒ IND-CCA

Informally, IND-CVA is described as the IND-CPA game with
additional access to a ciphertext validity oracle which returns
decryption errors but no plaintext.

The stronger variant of ciphertext integrity is required.

Similar relations can be obtained for IND-sfCCA, IND$-CCA, and
IND$-sfCCA.

Defining Ciphertext Integrity

INT-CTXT* (weaker variant):

Expint-ctxt∗
SE (A)

K ← K
C← ∅,win← 0
AEnc(·),Try∗(·)

return win

Enc(m)

c ← EK (m)
C← C ∪ c
return c

Try∗(c)

m← DK (c)
if c 6∈ C and m ∈M

then win← true
if m ∈M then m← valid
else m← invalid
return m

Try queries reveal only whether a ciphertext is valid or not.

Defining Ciphertext Integrity

INT-CTXT (stronger variant):

Expint-ctxt
SE (A)

K ← K
C← ∅,win← 0
AEnc(·),Try(·)

return win

Enc(m)

c ← EK (m)
C← C ∪ c
return c

Try(c)

m← DK (c)
if c 6∈ C and m ∈M

then win← true
if m ∈M then m← valid

return m

Try queries reveal either that a ciphertext is valid or the error
that it generates.

Ciphertext Integrity

Obviously INT-CTXT⇒ INT-CTXT*, but is the converse true?

The new relations required strong ciphertext integrity, is this
necessary or is it just an artefact of the proof?

Both questions are settled through the following non-trivial
separation.

Theorem
Given a scheme with a sufficiently large message space that is both
IND-CVA and INT-CTXT*, we can construct a multiple-error scheme
that is both IND-CVA and INT-CTXT* but not IND-CCA.

IND-CVA ∧ INT-CTXT* 6⇒ IND-CCA

Ciphertext Integrity

Obviously INT-CTXT⇒ INT-CTXT*, but is the converse true?

The new relations required strong ciphertext integrity, is this
necessary or is it just an artefact of the proof?

Both questions are settled through the following non-trivial
separation.

Theorem
Given a scheme with a sufficiently large message space that is both
IND-CVA and INT-CTXT*, we can construct a multiple-error scheme
that is both IND-CVA and INT-CTXT* but not IND-CCA.

IND-CVA ∧ INT-CTXT* 6⇒ IND-CCA

Ciphertext Integrity

Obviously INT-CTXT⇒ INT-CTXT*, but is the converse true? NO

The new relations required strong ciphertext integrity, is this
necessary or is it just an artefact of the proof? NECESSARY

Both questions are settled through the following non-trivial
separation.

Theorem
Given a scheme with a sufficiently large message space that is both
IND-CVA and INT-CTXT*, we can construct a multiple-error scheme
that is both IND-CVA and INT-CTXT* but not IND-CCA.

IND-CVA ∧ INT-CTXT* 6⇒ IND-CCA

IND-CCA3

Rogaway and Shrimpton [RS06] introduced a notion that
captures concisely the goal for authenticated encryption:

IND-CCA3⇔ IND-CPA ∧ INT-CTXT.

For all adversaries A :

Pr
[
AEK (·),DK (·) = 1

]
− Pr

[
AEK ($|·|),⊥(·) = 1

]
≤ ε.

Can we extend this notion to the multiple-error setting? What
security would it guarantee?

IND-CCA3

Rogaway and Shrimpton [RS06] introduced a notion that
captures concisely the goal for authenticated encryption:

IND-CCA3⇔ IND-CPA ∧ INT-CTXT.

For all adversaries A :

Pr
[
AEK (·),DK (·) = 1

]
− Pr

[
AEK ($|·|),⊥(·) = 1

]
≤ ε.

Can we extend this notion to the multiple-error setting? What
security would it guarantee?

IND-CCA3

Rogaway and Shrimpton [RS06] introduced a notion that
captures concisely the goal for authenticated encryption:

IND-CCA3⇔ IND-CPA ∧ INT-CTXT.

For all adversaries A :

Pr
[
AEK (·),DK (·) = 1

]
− Pr

[
AEK ($|·|),⊥(·) = 1

]
≤ ε.

Can we extend this notion to the multiple-error setting? What
security would it guarantee?

IND-CCA3 in the Multiple-Error Setting

There exists a ⊥0∈ S⊥ such that for all adversaries A :

Pr
[
AEK (·),DK (·) = 1

]
− Pr

[
AEK ($|·|),⊥0(·) = 1

]
≤ ε.

IND-CCA3 provides the following security guarantees:

IND-CCA3⇔ IND-CPA ∧ INT-CTXT* ∧ INV-ERR.

Informally INV-ERR says that all invalid ciphertexts that an
adversary can come up with, will generate the same error.

It can further be shown that:

IND-CCA3⇒ IND-CVA ∧ INT-CTXT⇒ IND-CCA.

Hence IND-CCA3 still constitutes a good notion for
authenticated encryption, albeit perhaps it is too strong.

IND-CCA3 in the Multiple-Error Setting

There exists a ⊥0∈ S⊥ such that for all adversaries A :

Pr
[
AEK (·),DK (·) = 1

]
− Pr

[
AEK ($|·|),⊥0(·) = 1

]
≤ ε.

IND-CCA3 provides the following security guarantees:

IND-CCA3⇔ IND-CPA ∧ INT-CTXT* ∧ INV-ERR.

Informally INV-ERR says that all invalid ciphertexts that an
adversary can come up with, will generate the same error.

It can further be shown that:

IND-CCA3⇒ IND-CVA ∧ INT-CTXT⇒ IND-CCA.

Hence IND-CCA3 still constitutes a good notion for
authenticated encryption, albeit perhaps it is too strong.

IND-CCA3 in the Multiple-Error Setting

There exists a ⊥0∈ S⊥ such that for all adversaries A :

Pr
[
AEK (·),DK (·) = 1

]
− Pr

[
AEK ($|·|),⊥0(·) = 1

]
≤ ε.

IND-CCA3 provides the following security guarantees:

IND-CCA3⇔ IND-CPA ∧ INT-CTXT* ∧ INV-ERR.

Informally INV-ERR says that all invalid ciphertexts that an
adversary can come up with, will generate the same error.

It can further be shown that:

IND-CCA3⇒ IND-CVA ∧ INT-CTXT⇒ IND-CCA.

Hence IND-CCA3 still constitutes a good notion for
authenticated encryption, albeit perhaps it is too strong.

Authenticated Encryption Through Generic
Composition

In [BN00] Encrypt-then-MAC emerges as the preferred generic
composition for realizing authenticated encryption.

Krawczyk [Kra01] however, showed that MAC-then-Encrypt is
also IND-CCA secure when encryption is instantiated with CBC
mode or CTR mode.

Hence, when encryption is instantiated with CBC mode or CTR
mode, the question as to which generic composition is better
remains open.

Nonetheless practical cryptosystems (using CBC and CTR)
based on EtM have proved to be less vulnerable to attack than
ones based on MtE.

Authenticated Encryption Through Generic
Composition

In [BN00] Encrypt-then-MAC emerges as the preferred generic
composition for realizing authenticated encryption.

Krawczyk [Kra01] however, showed that MAC-then-Encrypt is
also IND-CCA secure when encryption is instantiated with CBC
mode or CTR mode.

Hence, when encryption is instantiated with CBC mode or CTR
mode, the question as to which generic composition is better
remains open.

Nonetheless practical cryptosystems (using CBC and CTR)
based on EtM have proved to be less vulnerable to attack than
ones based on MtE.

Re-examining Generic Compositions

Re-examining generic compositions in the light of distinguishable
decryption failures, provides new formal evidence to support this
observation.

We consider an Encode-then-Encrypt-then-MAC (EEM)
composition – to account for the pre-processing that is common
in practical schemes.

Theorem
For any multiple-error encoding scheme, any IND-CPA multiple-error
encryption scheme, and any UF-CMA MAC, the EEM composition
yields an IND-CCA3 secure scheme.

Re-examining Generic Compositions

Re-examining generic compositions in the light of distinguishable
decryption failures, provides new formal evidence to support this
observation.

We consider an Encode-then-Encrypt-then-MAC (EEM)
composition – to account for the pre-processing that is common
in practical schemes.

Theorem
For any multiple-error encoding scheme, any IND-CPA multiple-error
encryption scheme, and any UF-CMA MAC, the EEM composition
yields an IND-CCA3 secure scheme.

Re-examining Generic Compositions

This theorem says that EEM is a robust composition, since
security holds even when decryption failures are distinguishable,
and without assuming anything about the error behaviour of the
encoding or encryption components.

Attacks on SSL/TLS [CHVV03], IPsec [DP10], and DTLS [AP12]
serve as counterexamples that similar general statements
cannot be made about MAC-then-Encode-then-Encrypt.

It may seem unfair that we do not consider multiple-error MACs.
This is justified as follows:

- Most MACs verify the tag by recomputing the tag and comparing –
only one test condition.

- When this is implemented badly (the keyczar library example) it
results in the MAC itself not being secure.

Re-examining Generic Compositions

This theorem says that EEM is a robust composition, since
security holds even when decryption failures are distinguishable,
and without assuming anything about the error behaviour of the
encoding or encryption components.

Attacks on SSL/TLS [CHVV03], IPsec [DP10], and DTLS [AP12]
serve as counterexamples that similar general statements
cannot be made about MAC-then-Encode-then-Encrypt.

It may seem unfair that we do not consider multiple-error MACs.
This is justified as follows:

- Most MACs verify the tag by recomputing the tag and comparing –
only one test condition.

- When this is implemented badly (the keyczar library example) it
results in the MAC itself not being secure.

Re-examining Generic Compositions

This theorem says that EEM is a robust composition, since
security holds even when decryption failures are distinguishable,
and without assuming anything about the error behaviour of the
encoding or encryption components.

Attacks on SSL/TLS [CHVV03], IPsec [DP10], and DTLS [AP12]
serve as counterexamples that similar general statements
cannot be made about MAC-then-Encode-then-Encrypt.

It may seem unfair that we do not consider multiple-error MACs.
This is justified as follows:

- Most MACs verify the tag by recomputing the tag and comparing –
only one test condition.

- When this is implemented badly (the keyczar library example) it
results in the MAC itself not being secure.

Conclusion

We propose the multiple-error setting in order to obtain security
guarantees that are more relevant to practice.

Preventive Approach: Assign distinct error messages to the
distinct checks made during decryption⇒ achieve security that
is less implementation-dependent.

A Posteriori Analysis: Alternatively the multiple-error setting
can be used to model realizations of cryptographic protocols and
analyze the security of the implementation.

Conclusion

We propose the multiple-error setting in order to obtain security
guarantees that are more relevant to practice.

Preventive Approach: Assign distinct error messages to the
distinct checks made during decryption⇒ achieve security that
is less implementation-dependent.

A Posteriori Analysis: Alternatively the multiple-error setting
can be used to model realizations of cryptographic protocols and
analyze the security of the implementation.

Conclusion

We propose the multiple-error setting in order to obtain security
guarantees that are more relevant to practice.

Preventive Approach: Assign distinct error messages to the
distinct checks made during decryption⇒ achieve security that
is less implementation-dependent.

A Posteriori Analysis: Alternatively the multiple-error setting
can be used to model realizations of cryptographic protocols and
analyze the security of the implementation.

	Distinguishable Decryption Failures
	The Multiple-Error Setting
	Conclusion

