Improved Rebound Attack on the Finalist Grøstl

Jérémy Jean¹ María Naya-Plasencia² Thomas Peyrin³

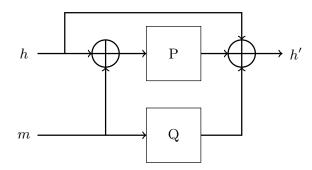
¹École Normale Supérieure, France

²University of Versailles, France

³Nanyang Technological University, Singapore

FSE'2012 - March 19, 2012

Grøstl & SHA-3 Cryptanalysis Techniques Grøstl-256 Grøstl-512 Conclusion

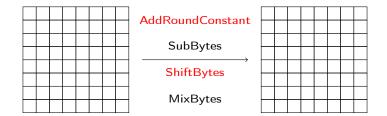

SHA-3 Competition Finalists

- ▶ In December 2010, the NIST chose the 5 finalists of the SHA-3 competition:
 - BLAKE
 - Grøstl
 - JH
 - Keccak
 - Skein
- This year, the winner will be chosen.

Grøstl: Compression Function (CF)

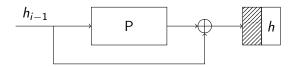
Grøstl-v0 [Knudsen et al. 08] has been tweaked for the final:

- Grøst1-256: |h| = |m| = 512 bits.
- Grøst1-512: |h| = |m| = 1024 bits.



Grøstl & SHA-3 Cryptanalysis Techniques Grøstl-256 Grøstl-512 Conclusion

Grøstl: Internal Permutations


Permutations P and Q apply the wide-trail strategy from the ${\tt AES}.$

- ▶ Grøst1-256: 10 rounds on state a 8×8 .
- \triangleright Grøst1-512: 14 rounds on state a 8 \times 16.

Tweak: constants in ${\tt ARK}$ and ${\tt Sh}$ changed to introduce asymmetry between P and Q

Once all blocks of message have been treated: truncation.

Grøstl: Best Analysis After the Tweak

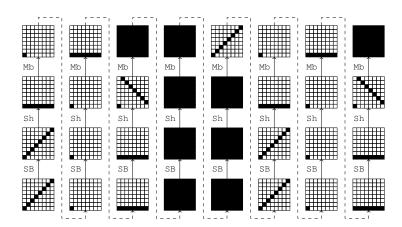
- ► Grøst.1-256:
 - [Sasaki et al A10]: 8-round permutation distinguisher.
 - [Gilbert et al. FSE10]: 8-round CF distinguisher.
 - [Boura et al. FSE11]: 10-round zero-sum.
- ▶ Grøstl-512
 - [Schläffer 2011]: 6-round collision on the CF.

Our New Results 1/2

▶ Based on the rebound technique [Mendel et al. FSE09].

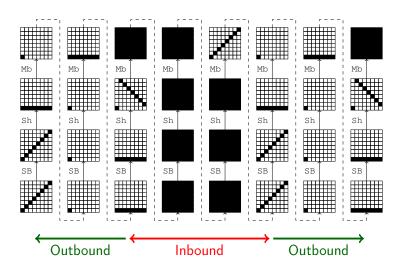
 Based on a way of finding solutions for three consecutive full active rounds: new.

They apply both to 256 and 512 versions.

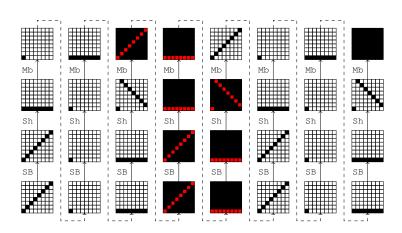

Our New Results 2/2

➤ On Grøst1-256, we provide distinguishers for 9 rounds of the permutation (total: 10).

On Grøst1-512, we provide distinguishers for 8, 9 and 10 rounds of the permutation (total: 14).


Rebound Attack

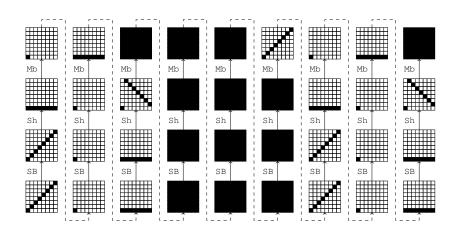
Grøstl & SHA-3



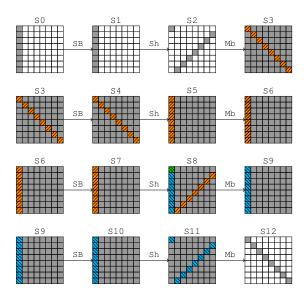
Rebound Attack

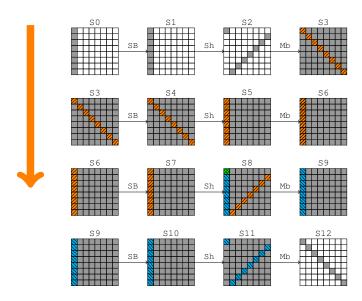
Grøstl & SHA-3

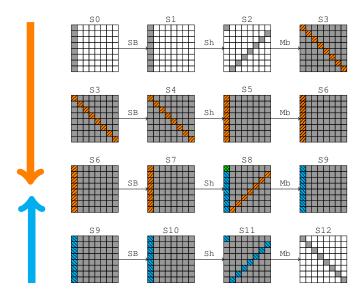
SuperSBox

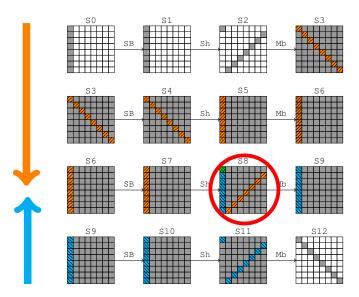


 $SuperSBox = SB \circ MC \circ SB$


Grøstl-256 Permutation


Grøstl & SHA-3 Cryptanalysis Techniques Grøstl-256 Grøstl-512 Conclusion


Differential Characteristic for 9 rounds



røst1 & SHA-3 Cryptanalysis Techniques Grøst1-256 Grøst1-512 Conclusion

Inbound for 3 Full-Active Rounds: Analysis

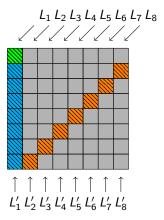
Counting

- 8 forward SuperSBox sets of 2⁶⁴ values and differences
- 8 backward SuperSBox sets of 2⁶⁴ values and differences
- Overlapping on 512 bits of values + 512 bits of differences

Number of Solutions Expected

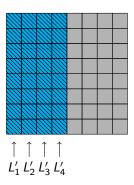
$$2^{8 \times 64} 2^{8 \times 64} 2^{-512-512} = 2^{512+512-512-512} = 1$$

Limited Birthday

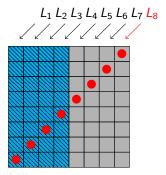

2³⁸⁴ operations

Our Algorithm

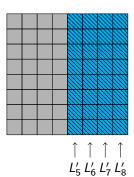
2²⁵⁶ operations, memory 2⁶⁴


Solving the 3 Active Rounds: Context

The 8 forward L_i overlaps the 8 backwards L'_i like this:


Solving the 3 Active Rounds: Step 1

We start by choosing one element in each of the four first L'_i .


Solving the 3 Active Rounds: Step 2

This determines a single element in each L_i .

Solving the 3 Active Rounds: Step 3

Each determined element in the remaining L'_i exists with $p = 2^{-8 \times 8}$.

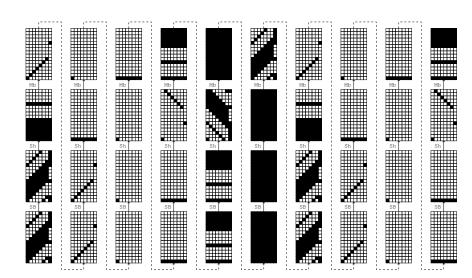
Summing Up

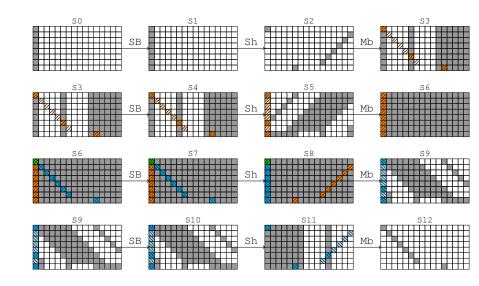
Inbound Phase

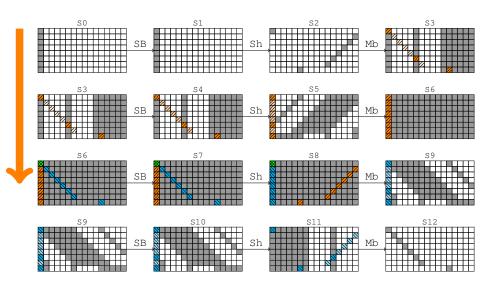
In total we try 2^{256} combinations of (L'_1, L'_2, L'_3, L'_4) and each gives a solution with probability: $2^{-4 \times 8 \times 8} = 2^{-256}$.

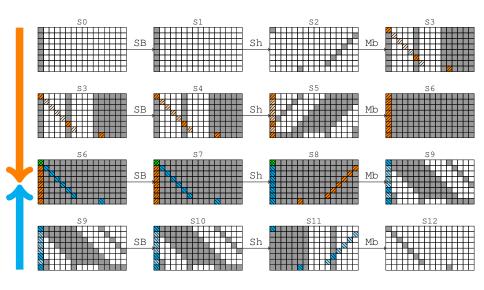
Outbound Phase

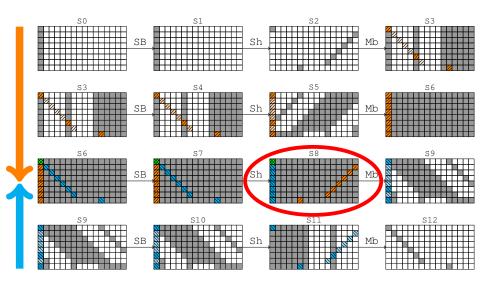
Probability $2^{-2\times56}$ to pass two $8\to1$ transitions in the MixBytes.


Distinguisher


We distinguish the 9-round permutation in $2^{256+112} = 2^{367}$ operations and 2^{64} in memory.


Note: This compares to a generic complexity of 2^{384} operations.


Grøstl-512 Permutation


Differential Characteristic for 10 rounds

Observations

Counting

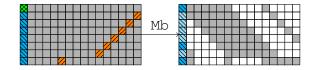
- 16 forward SuperSBox sets of 2⁶⁴ values and differences
- 16 backward SuperSBox sets of 2⁶⁴ values and differences
- Overlapping on 1024 bits of values + 1024 bits of differences

Number of Solutions Expected

$$2^{16\times 64} \ 2^{16\times 64} \ 2^{-1024-1024} = 2^{1024+1024-1024-1024} = 1$$

Limited Birthday

2896 operations

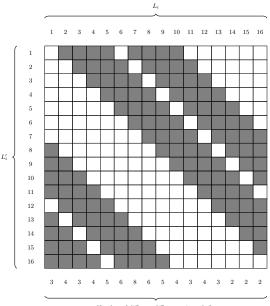

Our Algorithm

2²⁸⁰ operations, memory 2⁶⁴

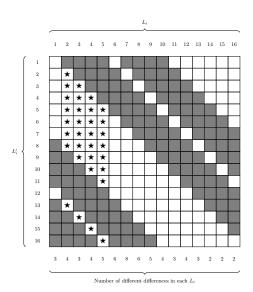
Algorithm: Guess-and-Determine Approach

Constraints

The differences around the MixBytes layer are restricted since the right state is not *fully* active.



Notations

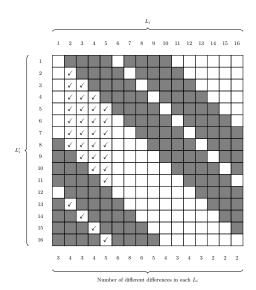

- Forward SuperSBoxes: L_1, \ldots, L_{16} .
- Backward SuperSBoxes: L'_1, \ldots, L'_{16} .

røstl & SHA-3 **Cryptanalysis Techniques** Grøst1-256 **Grøst1-512 Conclusio**

Algorithm: Guess-and-Determine Approach

Guess-and-Determine Algorithm

Current Complexity


2256

Current Probability

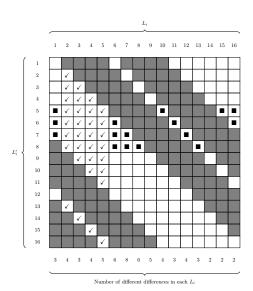
1

- Known value and difference
- Known difference
- * Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Current Complexity

2256


Current Probability

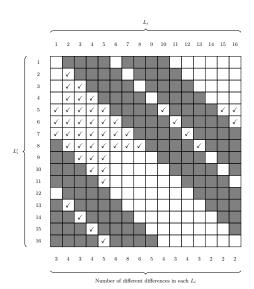
1

Next step: L'_5, L'_6, L'_7, L'_8 .

- √ Known value and difference
- Known difference
- * Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Current Complexity


2256

Current Probability

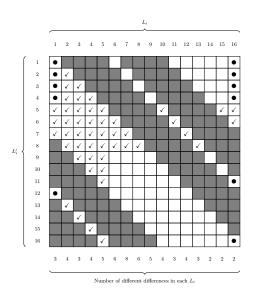
1

- Known value and difference
- Known difference
- * Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Current Complexity

 2^{256}


Current Probability

1

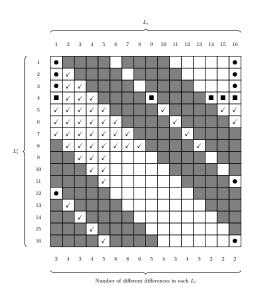
Next step: L_1, L_{16} .

- √ Known value and difference
- Known difference
- * Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Current Complexity

2256


Current Probability

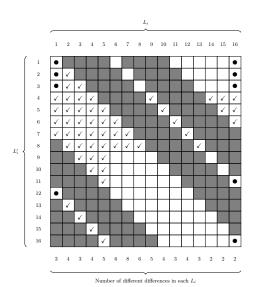
1

Next step: L'_4 .

- Known value and difference
- Known difference
- * Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Current Complexity


2256

Current Probability

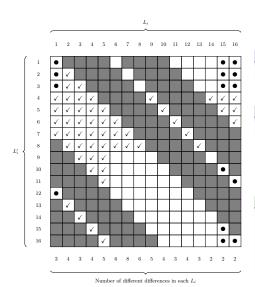
1

- √ Known value and difference
- Known difference
- * Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Current Complexity

2256


Current Probability

1

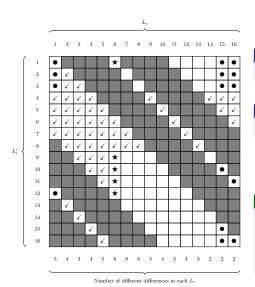
Next step: L_{15} .

- √ Known value and difference
- Known difference
- ★ Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Current Complexity

2256


Current Probability

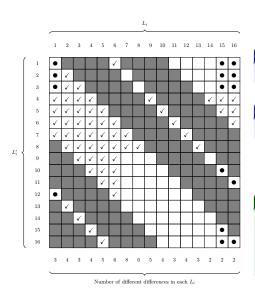
1

Next step: L_6 .

- Known value and difference
- Known difference
- ★ Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Current Complexity


2²⁵⁶⁺¹⁶

Current Probability

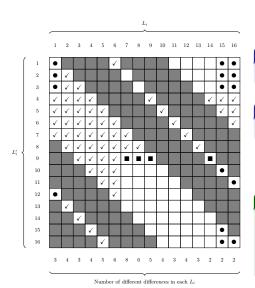
1

- √ Known value and difference
- Known difference
- * Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Current Complexity

2256+16


Current Probability

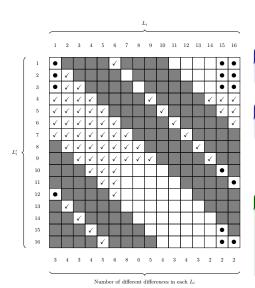
1

Next step: L'_{o} .

- Known value and difference
- Known difference
- ★ Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Current Complexity


2256+16

Current Probability

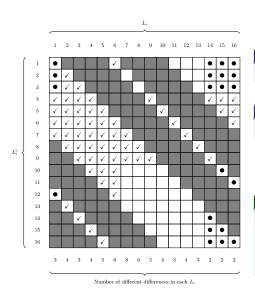
1

- √ Known value and difference
- Known difference
- ★ Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Current Complexity

2256+16


Current Probability

1

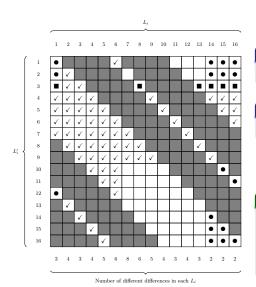
Next step: L_{14} .

- √ Known value and difference
- Known difference
- ★ Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Current Complexity

2256+16


Current Probability

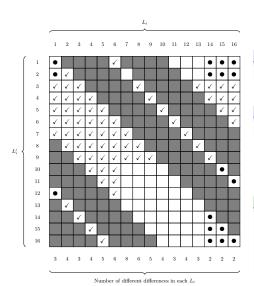
1

Next step: L_3' .

- Known value and difference
- Known difference
- ★ Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Current Complexity


2256+16

Current Probability

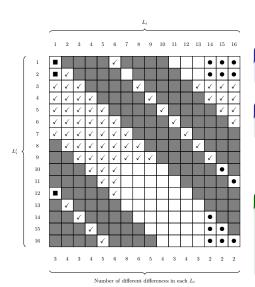
1

- Known value and difference
- Known difference
- * Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Current Complexity

2256+16


Current Probability

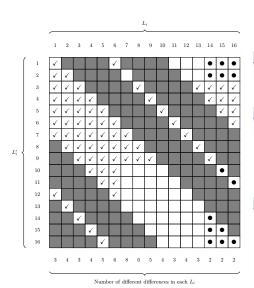
1

Next step: L_1 .

- Known value and difference
- Known difference
- ★ Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Current Complexity


2256+16

Current Probability

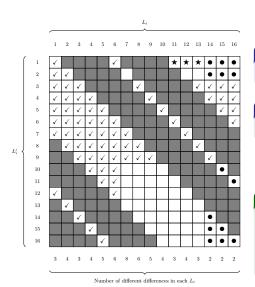
1

- Known value and difference
- Known difference
- ★ Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Current Complexity

2256+16


Current Probability

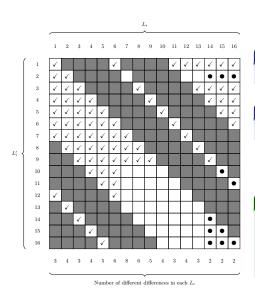
1

Next step: L'_1 .

- Known value and difference
- Known difference
- ★ Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Current Complexity


256+16+8

Current Probability

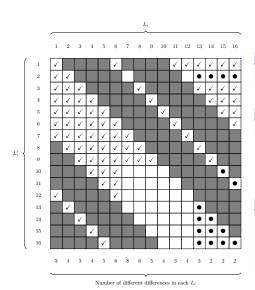
1

- √ Known value and difference
- Known difference
- * Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Current Complexity

256+16+8


Current Probability

1

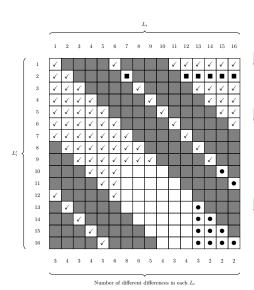
Next step: L_{13} .

- Known value and difference
- Known difference
- ★ Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Current Complexity

256+16+8

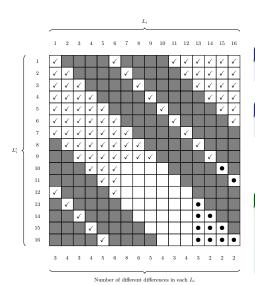

Current Probability

1

Next step: L_2' .

- Known value and difference
- Known difference
- ★ Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm


Current Complexity

256+16+8

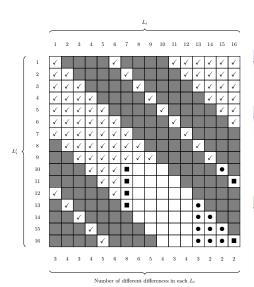
Current Probability

1

- √ Known value and difference
- Known difference
- * Guessed value and difference
- Highlight current step

Current Complexity

256+16+8

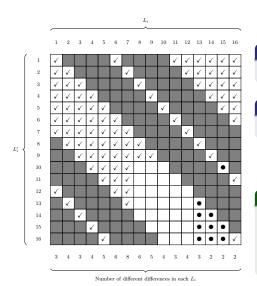

Current Probability

1

Next step: L_7 , L_{16} .

- √ Known value and difference
- Known difference
- ★ Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm


Current Complexity

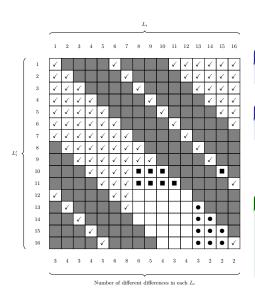
256+16+8

Current Probability

1

- √ Known value and difference
- Known difference
- * Guessed value and difference
- Highlight current step

Current Complexity


256+16+8

Current Probability

Next step: L'_{10}, L'_{11} .

- Known value and difference
- Known difference
- Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm

Current Complexity

256+16+8

Current Probability

 $2^{-8\cdot(1)}$

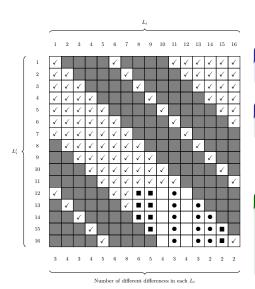
- Known value and difference
- Known difference
- * Guessed value and difference
- Highlight current step

2 3 5 $L'_{:}$ 10 13 14 15 16

Number of different differences in each L_i

Current Complexity

256+16+8

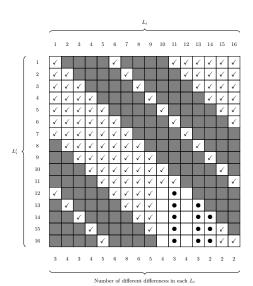

Current Probability

 $2^{-8\cdot(1)}$

Next step: L_8, L_9, L_{11}, L_{15} .

- √ Known value and difference
- Known difference
- ★ Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm


Current Complexity

256+16+8

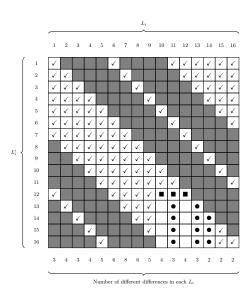
Current Probability

2-8·(1+2)

- √ Known value and difference
- Known difference
- * Guessed value and difference
- Highlight current step

Current Complexity

256+16+8

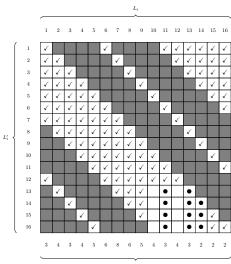

Current Probability

2-8-(1+2)

Next step: L'_{12} .

- Known value and difference
- Known difference
- * Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm


Current Complexity

256+16+8

Current Probability

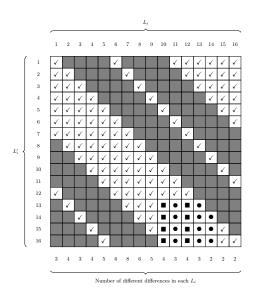
 $2^{-8\cdot(1+2+3)}$

- √ Known value and difference
- Known difference
- * Guessed value and difference
- Highlight current step

Number of different differences in each L_i

Current Complexity

256+16+8

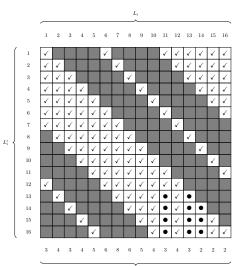

Current Probability

 $2^{-8 \cdot (1+2+3)}$

Next step: L_{10} , L_{12} .

- Known value and difference
- Known difference
- Guessed value and difference
- Highlight current step

Guess-and-Determine Algorithm


Current Complexity

256+16+8

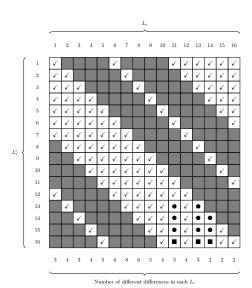
Current Probability

 $2^{-8\cdot(1+2+3)}$

- √ Known value and difference
- Known difference
- * Guessed value and difference
- Highlight current step

Number of different differences in each L_i

Current Complexity

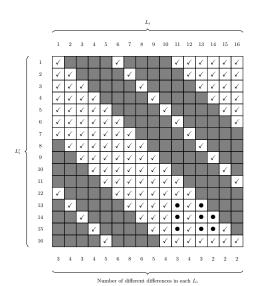

256+16+8

Current Probability

$$2^{-8 \cdot (1+2+3)}$$

Next step: L_2' .

- Known value and difference
- Known difference
- ★ Guessed value and difference
- Highlight current step


Current Complexity

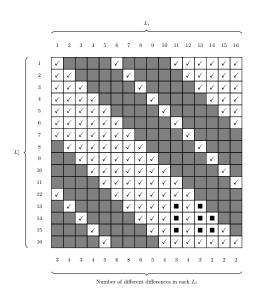
256+16+8

Current Probability

 $2^{-8 \cdot (1+2+3+5)}$

- √ Known value and difference
- Known difference
- ★ Guessed value and difference
- Highlight current step

Current Complexity

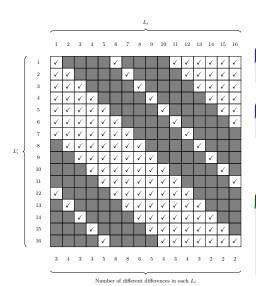

256+16+8

Current Probability

$$2^{-8\cdot(1+2+3+5)}$$

Next step: $L'_{13}, L'_{14}, L'_{15}$.

- √ Known value and difference
- Known difference
- ★ Guessed value and difference
- Highlight current step


Current Complexity

256+16+8

Current Probability

 $2^{-8 \cdot (1+2+3+5+8+8+8)}$

- √ Known value and difference
- Known difference
- * Guessed value and difference
- Highlight current step

Final Complexity

$$2^{256+16+8} = 2^{280}$$

Final Probability

$$2^{-8\cdot(1+2+3+5+8+8+8)} = 2^{-280}$$

The End

- √ Known value and difference
- Known difference
- * Guessed value and difference
- Highlight current step

Summing Up

Inbound Phase

In total we try: $2^{256+16+8} = 2^{280}$ possibilities, and each gives a solution with probability

$$2^{-8\times(1+2+3+5+8+8+8)} = 2^{-280}$$

Outbound Phase

Again:
$$\mathbb{P}(\text{outbound}) = 2^{-2 \times 56} = 2^{-112}$$
.

Distinguisher

Finally, we distinguish the 10-round permutation in $2^{280+112} = 2^{392}$ operations and 2^{64} in memory.

This compares to a generic complexity of 2⁴⁴⁸ operations.

Conclusion

- We have provided new rebound results on building blocks of both versions of Grøst1 that improve the previous number of analysed rounds.
- ▶ We propose a way to solve 3 fully active states in the middle.
- The results do not threaten the security of Grøst1, but we believe they will help better understanding AES-based constructions and their bounds regarding rebound techniques.

Conclusion

- We have provided new rebound results on building blocks of both versions of Grøst1 that improve the previous number of analysed rounds.
- ▶ We propose a way to solve 3 fully active states in the middle.
- ► The results do not threaten the security of Grøstl, but we believe they will help better understanding AES-based constructions and their bounds regarding rebound techniques.

Thank you!