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Abstract. GOST is a well known block cipher which was developed in the Soviet Union during
the 1970’s as an alternative to the US-developed DES. In spite of considerable cryptanalytic effort,
until very recently there were no published single key attacks against its full 32-round version which
were faster than the 2256 time complexity of exhaustive search. In February 2011, Isobe used the
previously discovered reflection property in order to develop the first such attack, which requires
232 data, 264 memory and 2224 time. In this paper we introduce a new fixed point property and a
better way to attack 8-round GOST in order to find improved attacks on full GOST: Given 232 data
we can reduce the memory complexity from an impractical 264 to a practical 236 without changing
the 2224 time complexity, and given 264 data we can simultaneously reduce the time complexity to
2192 and the memory complexity to 236.
Keywords: Block cipher, cryptanalysis, GOST, reflection property, fixed point property, 2D meet
in the middle attack

1 Introduction

During the 1970’s, the US decided to publicly develop the Data Encryption Standard (DES),
which was the first standardized block cipher intended for civilian applications. At roughly the
same time, the Soviet Union decided to secretly develop GOST [14], which was supposed to be
used in civilian applications as well but in a more controlled way. The general design of GOST
was finally published in 1994, but even today some of the crucial elements (e.g., the choice of
Sboxes) do not appear in the public description, and a different choice can be made for each
application.

GOST is a Feistel structure over 64-bit blocks. The round function consists of adding (modulo
232) a 32-bit round key to the right half of the block, and then applying the function f described
in Figure 1. This function has an Sbox layer consisting of eight different 4× 4 Sboxes, followed
by a rotation of the 32-bit result by 11 bits to the left using the little-endian format (i.e. the
LSB of the 32-bit word enters the rightmost entry of the first Sbox).

The full GOST has 32 rounds, and its key schedule is extremely simple: the 256-bit key is
divided into eight 32-bit words (K1,K2, ...,K8). Each round of GOST uses one of these words as
a round key in the following order: in the first 24 rounds, the keys are used in their cyclic order
(i.e. K1 in rounds 1,9,17, K2 in rounds 2,10,18, and so forth). In the final 8 rounds (25–32), the
round keys are used in reverse order (K8 in round 25, K7 in round 26, and so forth).

A major difference between the design philosophies of DES and GOST was that the pub-
licly available DES was intentionally chosen with marginal parameters (16 rounds, 56-bit keys),
whereas the secretive GOST used larger parameters (32 rounds, 256-bit keys) which seemed to
offer an extra margin of security. As a result, DES was broken theoretically (by using differential
and linear techniques) and practically (by using special purpose hardware) about 20 years ago,
whereas in the case of GOST, all the single key attacks [1, 9, 17] published before 2011 were only
applicable to reduced-round versions of the cipher.1

The first single key attack on the full 32-round version of GOST was published by Isobe at
FSE’11 [8]. It exploited a surprising reflection property which was first pointed out by Kara [9]
in 2008: Whenever the left and right halves of the state after 24 rounds are equal (which happens

1 Attacks on full GOST in the stronger related-key model are known for about a decade, see [7, 10, 11, 16, 17].
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Fig. 1. One round of GOST

with probability 2−32), the last 16 rounds become the identity mapping, and thus the effective
number of rounds is reduced from 32 to 16. Isobe developed a new key-extraction algorithm for
the remaining 16 rounds of GOST which required 2192 time and 264 memory, and used it 232

times for different plaintext/ciphertext pairs in order to get the full 256-bit key using a total of
232 data, 264 memory, and 2224 time. This is much faster than exhaustive search, but neither
the time complexity nor the memory complexity are even close to being practical.

Shortly afterwards, Courtois [4] published on ePrint a new attack on the full GOST. It uses
a very different algebraic approach, but had an inferior complexity of 264 data, 264 memory, and
2248 time. Later, Courtois and Misztal [5] described a differential attack which again used 264

data and memory, but reduced the time complexity to 2226.

In this paper we improve several aspects of these previously published attacks. We describe a
new fixed point property, and show how to use either the previous reflection property or the new
fixed point property in order to reduce the general cryptanalytic problem of attacking the full
32-round GOST into an attack on 8-round GOST with two known input-output pairs. We then
develop a new way to extract all the 2128 possible values of the full 256-bit key given only two
known 64-bit input-output pairs of 8-round GOST, which requires 2128 time and 236 memory2

(all the previously published attacks on 8-round GOST have an impractical memory complexity
of at least 264). By combining these improved elements, we can get the best known attacks on
GOST for the two previously considered data complexities of 232 and 264.

Our new results on GOST (including the fixed point based attack) use well known and easy
to analyze cryptanalytic techniques such as “Guess and Determine” and “meet-in-the-middle”.
A month after this paper appeared on eprint [6] (and more than four months after its results
were publicly disclosed in a public talk by Adi Shamir at MIT), Courtois posted to ePrint his
independently discovered attacks [3], which use several different algebraic techniques. Some of
his attacks are also based on the fixed point property, but all of them have higher claimed
complexities: Given 232 data, the best attack in [3] has a time complexity of 2224 and a memory
complexity of 2128, and given 264 data, the best attack in [3] has a time complexity of 2216 and
a negligible memory complexity. We include the results of [3] in Table 1 (which summarizes
all the previously known single-key attacks on the full GOST, our new results, and Courtois’
subsequent results) for the sake of completeness.

An important observation about Isobe’s attack is that it uses in an essential way the as-
sumption that the Sboxes are invertible. Since the GOST standard does not specify the Sboxes,
and there is no need to make them invertible in a Feistel structure, Isobe’s attack might not

2 We can reduce the memory complexity by an additional factor of 217 (to 219) if we are willing to increase the
time by a factor of 212 (to 2140). This may seem like an unattractive tradeoff since the 236 memory complexity
is already practical, but one can argue that 219 words fit into the cache whereas 236 do not, which may result
in a big performance penalty.



Reference Data Memory Time Self-Similarity 8-Round Attack Sboxes

(KP)†† Property

[8] 232 264 2224 Reflection - Bijective

[4] 264 264 2248 Other (unnamed) Algebraic Russian
Banks [15]

[5] 264 264 2226 None (differential - Russian
attack) Banks [15]

[3]††† 232 2128 2224 Reflection - any

[3]††† 264 Negligible 2216 fixed point Algebraic Russian
Banks [15]

This paper 264 236 2192† fixed point 2DMITM any

This paper 264 219 2204† fixed point low-memory any

This paper 232 236 2224† Reflection 2DMITM any

This paper 232 219 2236† Reflection low-memory any
† The time complexity can be slightly reduced by exploiting GOST’s comple-

mentation properties (as described in Appendix C)
†† Known plaintext
††† Published on ePrint after the original version of this paper [6].

Table 1. Single-key Attacks on the Full GOST

be applicable to some valid incarnations of this standard. A similar problem occurs in most
of Courtois’ attacks [3–5], as their complexities are only estimated for one particular choice of
Sboxes described in [15] which is used in the Russian banking system, and it is possible that for
other choices of Sboxes the complexities will be different. Our new attacks do not suffer from
these limitations, since they can be applied with the same complexity to any given set of Sboxes.

2 Overview of Our New Attacks on the Full GOST

The 32 rounds of GOST can be described using only two closely related 8-round encryption
functions. Let GKi1

,...,Kij
be j rounds of GOST under the subkeys Ki1 , ...,Kij (where i1, ..., ij ∈

{1, 2, ..., 8}), and let (PL, PR) be a 64-bit plaintext, such its right half, PR, enters the first round.
Then GOSTK(PL, PR) = GK8,...,K1(GK1,...,K8(GK1,...,K8(GK1,...,K8(PL, PR)))).

Our new attacks on the full GOST exploit its high degree of self-similarity using a general
framework which is shared by other attacks: the algorithm of each attack consists of an outer
loop which iterates over the given 32-round plaintext-ciphertext pairs, and uses each one of
them to obtain suggestions for two input-output pairs for GK1,...,K8 . For each suggestion of the
8-round input-output pairs, we apply an 8-round attack which gives suggestions for the 256-bit
GOST key. We then verify the key suggestions by using some of the other plaintext-ciphertext
pairs. The self-similarity properties of GOST ensure that the 8-round attack needs to be applied
a relatively small number of times, leading to attacks which are much faster than exhaustive
search.

We describe several attacks on the full GOST which belong to this common framework but
differ according to the property and the type of 8-round attack we use. The two self-similarity
properties are:

1. The reflection property which was first described in [9], where it was used to attack 30 rounds
of GOST (and 2224 weak keys of the full GOST). This property was later exploited in [8] to
attack the full GOST for all keys. We describe this property again in Section 3.1 for the sake
of completeness.



2. A new fixed point property which is described in Section 3.2.

The two properties differ according to the amount of data required to satisfy them, and thus
offer different points on a time/data tradeoff curve.

Given two 8-round input-output pairs, we describe in this paper several possible attacks of
increasing sophistication:

1. A very basic meet-in-the-middle (MITM) attack [2], which is described in Section 4.1.
2. An improved MITM attack, described in Section 4.2, which uses the idea of equivalent keys

(first described by Isobe in [8]).
3. A low-memory attack, described in Section 5, which requires 219 memory and 2140 time.
4. A new 2-dimensional meet-in-the-middle (2DMITM) attack, described in Section 6, which

requires 236 memory and 2128 time.

In order to attack the full GOST, we first select one of the two self-similarity properties
to use in the outer loop of the attack according to the number of plaintext-ciphertext pairs
available: in case we have 264 pairs available, we select the fixed point property, and if we only
have 232 pairs, we select the reflection property. We then select one of last two 8-round attacks
according to the amount of available memory: in case we have 236 memory available, we select
the 2DMITM attack, and if we only have 219 memory, we select the low-memory attack. The
outcome of this selection is an attack algorithm of the form:

1. For each plaintext-ciphertext pair (P,C):
(a) Assuming that (P,C) satisfies the conditions of the self-similarity property, derive sug-

gestions for two 8-round input-output pairs (I,O) and (I∗, O∗).
(b) For each suggestion for (I,O) and (I∗, O∗):

i. Execute the 8-round attack on (I,O) and (I∗, O∗) in order to derive suggestions for
the key, and test each suggestion by performing trial encryptions on the remaining
plaintext-ciphertext pairs.

The total time complexity of our attacks is calculated by multiplying the complexity of the
8-round attack by the expected number of times it needs to be applied according to the self-
similarity property: An arbitrary (P,C) pair satisfies the fixed point property with probability
of about 2−64. Thus, it requires about 264 known (P,C) pairs to succeed with high probability,
and since we do not know in advance which pair satisfies the property, we need to repeat step 1
of the attack 264 times. For each (P,C) pair, the fixed point property immediately suggests two
8-round input-output pairs (which are correct if the pair indeed satisfies the property). Hence,
we need to perform step 1.(b) of the attack only once per (P,C) pair. In total, we need to execute
the 8-round attack about 264 times. On the other hand, an arbitrary (P,C) pair satisfies the
reflection property with a much higher probability of about 2−32. Thus, it requires about 232

known (P,C) pairs, and we need to repeat the attack only 232 times. However, for each (P,C)
pair, the reflection property suggests a large number of 264 values for (I,O) and (I∗, O∗) (out
of which only one is correct if the pair indeed satisfies the property). Hence, we need to perform
step 1.(b) of the attack 264 times per (P,C) pair. In total, we need to execute the 8-round attack
about 232+64 = 296 times.

Altogether, we obtain four new attacks on the full GOST. In three out of the four cases,
we obtain better combinations of complexities than in all the previously published attacks.
In the remaining case, we use the reflection property and the low-memory 8-round attack to
significantly reduce the memory requirements of Isobe’s attack [8], at the expense of a small
time complexity penalty. We note that the computation required by each one of our attacks can
be easily parallelized, and thus using x CPUs reduces the expected running time of the attack
by a factor of x.



As described in Appendix C, the time complexity of all these attacks can be slightly reduced
by exploiting GOST’s complementation properties. However, in some of these improved attacks
we have to use chosen rather than known plaintexts, which reduces their attractiveness.

3 Obtaining Two 8-Round Input-Output Pairs for GOST

In this section, we describe the two self-similarity properties of GOST which we exploit in order
to obtain two 8-round input-output pairs.

3.1 The Reflection Property [8, 9]

Assume that the encryption of a plaintext P after 24 rounds of GOST results in a 64-bit value
Y , such that the 32-bit right and left halves of Y are equal (i.e. YR = YL). Thus, exchanging the
two halves of Y at the end of round 24 does not change the intermediate encryption value. In
rounds 25–32, the round keys K1–K8 are applied in the reverse order, and Y undergoes the same
operations as in rounds 17–24, but in the reverse order. As a result, the encryption of P after
32 rounds, which is the ciphertext C, is equal to its encryption after 16 rounds (see Figure 2).
By guessing the state of the encryption of P after 8 rounds, denoted by the 64-bit value X, we
obtain two 8-round input-output pairs (P,X) and (X,C). For an arbitrary key, the probability
that a random plaintext gives such a symmetric value Y after 24 rounds is 2−32, implying that
we have to try about 232 known plaintexts (in addition to guessing X) in order to obtain the
two pairs. Note that the reflection property actually gives us another “half pair” (Ĉ, Y ), where
the 64-bit word Ĉ is obtained from C by exchanging the right and left 32-bit halves of C, and
the 32-bit right and left halves of Y are equal.3 However, it is not clear how to exploit this
additional knowledge in order to significantly improve the running time of our attacks on the
full GOST which are based on the reflection property.
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Fig. 2. The Reflection Property of GOST

3.2 The Fixed Point Property

Assume that for a plaintext P , GK8,...,K1(P ) = P . Since rounds 9–16 and 17–24 are identical to
rounds 1–8, we obtain P after 16 and 24 rounds as well. In rounds 25–32, the round keys K1–K8

are applied in the reverse order, and we obtain some arbitrary ciphertext C (see Figure 3). The
knowledge of P and C immediately gives us the 8-round input-output pairs (P, P ) and (Ĉ, P̂ )
(in which the right and left 32-bit halves of P and C are exchanged).

For an arbitrary key, the probability that a random plaintext is a fixed point is about 2−64,
implying that we need about 264 known plaintexts to have a single fixed point, from which we

3 In our attacks, we use 8-round input-output pairs whose encryption starts with K1 and thus need to apply
the Feistel structure in the reverse order (starting from round 32) for input-output pairs obtained for rounds
25–32. Since in Feistel structures the right and left halves of the block are exchanged at the end (rather than
at the beginning) of the round function, we exchange the right and left sides of the input and the output of

the input-output pairs obtained for rounds 25–32. We call (Ĉ, Y ) a “half pair” since we have to guess only 32
additional bits in order to find it, once (P,C) is known.



obtain the two input-output pairs needed in our attack. If we have only c·264 known plaintexts for
some fraction c, we expect this fixed point to occur among the given plaintexts with probability
c, and thus the time complexity, the data complexity, and the success probability are all reduced
by the same linear factor c. Consequently, it makes sense to try the fixed point based attack
even when we are given only a small fraction of the entire code book of GOST. Such a graceful
degradation when we are given fewer plaintexts (which also occurs for the reflection property)
should be contrasted with other attacks such as slide attacks, in which we have to wait for some
random birthday phenomenon to occur among the given data points. Since the existence of
birthdays has a much sharper threshold, the probability of finding an appropriate pair of points
goes down quadratically rather than linearly in c, and thus they are much more likely to fail in
such situations.

We note that our fixed point property is closely related to a previously published property
which (in addition to the assumption the P is an 8-round fixed point) also assumes that the
right and left halves of P are equal. Such a plaintext exists for an arbitrary key with probability
2−32 and thus was used in [9] to attack 2224 weak keys of the full GOST. The same property
was also used later in [13] in cryptanalysis of the GOST hash function.
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Fig. 3. The fixed point property of GOST

4 Simple Meet-in-the-middle Attacks on 8 Rounds of GOST

Meet-in-the-middle (MITM) attacks can be efficiently applied to block ciphers in which some
intermediate encryption variables (bits, or combinations of bits) depend only on a subset of key
bits from the encryption side and on another subset of key bits from the decryption side: the at-
tacker guesses the relevant key bits from the encryption and the decryption sides independently,
and tries only keys in which the values suggested by the computed intermediate variables match.
While the full 32-round GOST resists such attacks, 8-round GOST uses completely independent
round keys. Thus, the full 64-bit value after 4 encryption rounds depends only on round keys
K1–K4 from the encryption side and on round keys K5–K8 from the decryption side.

4.1 The Basic Meet-in-the-middle Attack

We describe how to mount a simple meet-in-the-middle attack on 8 rounds of GOST given two
8-round input-output pairs and several additional 32-round plaintext-ciphertext pairs:

1. For each of the 2128 possible values of K1–K4, encrypt both inputs and obtain two 64-bit
intermediate encryption values after 4 rounds of GOST (i.e., 2128 intermediate values of 128
bits each). Store the intermediate values in a list, sorted according to these 128 bits, along
with the corresponding value of K1–K4.

2. For each of the 2128 possible values of K5–K8, decrypt both outputs, obtain two 64-bit
intermediate values and search the sorted list for these two values.

3. For each match, obtain the corresponding value of K1–K4 from the sorted list and derive a
full 256-bit key by concatenating the value of value of K1–K4 with the value of K5–K8 of the
previous step. Using the full key, perform a trial encryption of several plaintexts and return
the full key, i.e., the one that remains after successfully testing the given 32-round pairs.



We expect to try about 2128+128−128 = 2128 full keys in step 3 of the attack, out of which only
the correct key is expected to pass the exhaustive search of step 3. Including the 2128 8-round
encryptions which are performed in each of the first two steps of the attack, the total time
complexity of the attack is slightly more than 2128 GOST encryptions. The memory complexity
of the attack is about 2128 words of 256 bits.4

4.2 An Improved Meet-in-the-middle Attack Using Equivalent Keys

In this section, we use a more general variant of Isobe’s equivalent keys idea [8] to significantly
improve the memory complexity of the attack. Both our and Isobe’s MITM attacks are based
on a 4-round attack that uses one 4-round input-output pair to find all the 264 possible values
of subkeys K1–K4 that yield this pair. However, our MITM attack is more general since we can
attack all possible incarnations of the GOST standard, whereas Isobe’s attack works only on
those which use bijective Sboxes.5 An additional advantage of our MITM attack over Isobe’s
one, is that our attack can use any two input-output pairs for 8-round GOST, regardless of how
they are obtained. We can thus use the same algorithm to exploit both the reflection and the
fixed point properties. On the other hand, Isobe’s attack is restricted to the case of a single
input-output pair obtained for the first 16 rounds of GOST (by guessing the intermediate values
obtained after 4 and 12 rounds) and thus can be combined with the reflection property, but
cannot be directly applied to the two input-output pairs produced by the fixed point property.

We now describe Isobe’s 4-round attack procedure: Denote the 4-round input (divided into
two 32-bit words) by (XL, XR) and the output by (YL, YR). Denote the middle values (after the
second round) by (ZL, ZR) (see Figure 4). Then:

ZL = XL ⊕ f(XR �K1)

ZR = YR ⊕ f(YL �K4)

YL ⊕ ZL = f(ZR �K3)

XR ⊕ ZR = f(ZL �K2)

Isobe’s attack assumes bijective Sboxes (making f invertible), and finds the equivalent keys
as follows:6 for each value of K1,K2, compute ZL from the first equation and ZR from the
fourth equation. From the second equation we have: K4 = f−1(ZR ⊕ YR) � YL and from the
third equation: K3 = f−1(ZL ⊕ YL) � YR.

Our 8-round attack is a variant of Isobe’s MITM attack, given two 8-round input-output
pairs (I,O) and (I∗, O∗):

1. For each possible value of the 64-bit word Y = (YL, YR) obtained after 4 encryption rounds
of I:

(a) Apply the 4-round attack on (I, Y ) to obtain 264 candidates for K1–K4.

(b) Partially encrypt I∗ using the 264 candidates and store Y ∗ = (Y ∗L , Y
∗
R) in a list with

K1–K4.

4 Note that it is possible obtain a time-memory tradeoff: we partition the 2128 possible values of K1–K4 into 2x

sets of size 2128−x (for 0 ≤ x ≤ 128), and run the second and third steps of the attack independently for each
set. Thus, the memory complexity decreases by a factor 2x to 2128−x, and the time complexity increases by a
factor of 2x to 2128+x.

5 The Feistel structure of GOST does not require bijective Sboxes and the published standard does not discuss
this issue, but all the known choices of Sboxes happen to be bijective (perhaps due to the weakness of non-
bijective Sboxes against differential cryptanalysis).

6 In case f is not bijective, then for a random (XL, XR) and (YL, YR) there exist an average of 264 equivalent keys
which can be found using a simple preprocessing MITM algorithm that requires about 264 time and memory.



(c) Apply the 4-round attack on (Y,O) to obtain 264 candidates for K5–K8.

(d) Partially decrypt O∗ using each one of the 264 candidates and obtain Y ∗ = (Y ∗L , Y
∗
R).

(e) Search the list obtained in step (b) for Y ∗, and test the full 256-bit keys for which there
is a match.

The expected time complexity of steps (a–d) is about 264 (regardless of the algorithm that
is used to find the equivalent keys). The time complexity of step (e) is also about 264 since we
expect to try about 264+64−64 = 264 full keys. Steps (a–e) are performed 264 times, hence the
total time complexity of the attack is about 2128 GOST encryptions, which is similar to the first
attack. However, the memory complexity is significantly reduced from 2128 to slightly more than
264 words of 64 bits.
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Fig. 4. Four Rounds of GOST

5 A New Attack on 8 Rounds of GOST with Lower Memory Complexity

Simple meet-in-the-middle attacks, such as the ones described in Sections 4.1 and 4.2 are much
faster than exhaustive search for the entire 256-bit key. However, they do not fully exploit the
slow diffusion of the key bits in 4 rounds of GOST. As a result, these MITM attacks use a
large amount of memory to store the many intermediate encryption values obtained for all the
possible values of large sets of key bits. In this section, we describe an improved 8-round attack
which exploits the slow diffusion properties of 4 rounds of GOST in order to reduce the memory
complexity from the impractical value of 264 to the very practical value of 219 words of memory,
with a very small time complexity penalty. The main idea of this attack is to guess the 4 round
keys K5–K8 and apply an optimized “Guess and Determine” attack on the remaining 4 rounds
using two input-output pairs. In the 4-round attacks we have 128-bits of unknown key and 128
bits of input-output pairs. Thus, we expect that only one value for K1–K4 exists (although
there are likely to be input-output pairs for which the encryptions of the inputs does not match
the outputs for any of the keys, and input-output pairs for which the encryptions of the inputs
matches the outputs for several values of K1–K4).

In the rest of this section we describe the algorithm for deriving the 32 bits of K1 and the
32 bits of K4. Afterwards, deriving the values of K2 and K3 is immediate using the third and
forth equations of Section 4.2 (ZL and ZR are known from the first and second equations).



5.1 Overview of the “Guess and Determine” Attack on 4-Round GOST

Now that we deal with 4-round GOST, we apply a typical “Guess and Determine” attack which
traverses a tree of partial guesses for the round keys K1 and K4 and intermediate encryption
values. The tree is composed of layers of nodes `i for integral 0 ≤ i ≤ k, where each layer contains
nodes that specify the potential values (i.e. guesses) for a certain subset of key and intermediate
encryption values. In each layer we expand each node by guessing the values of a small number
of additional key bits and state bits that are needed to calculate some intermediate encryption
bits, both from the encryption and the decryption sides. We then calculate the bits by evaluating
the Feistel structure from both sides on a small number of bits, compare the values obtained,
and discard guesses in which the values do not match (i.e., we discard child nodes that do not
satisfy a predicate which checks the consistency of intermediate encryption values).

We traverse the partial guess tree starting from the root using DFS (which requires only a
small amount of memory). In our attack, the nodes of the last layer of the tree `k contain guesses
for the full key, which can be verified using trial encryptions.

The total number of operations performed during the traversal is proportional to the total
number of nodes in the tree. However, the operations performed when expanding a single node
work only on a few bits (rather than on full words). At the same time, when expanding a full
path of nodes in the tree from the root to the last layer, we work on the full-size Feistel structure
to obtain a guess for the full key. Hence, we estimate the time complexity of expanding a full
path by a single Feistel structure evaluation on a full 64-bit input. Using this estimation, we can
upper bound the time complexity of the tree traversal (in terms of Feistel structure evaluations)
as the width of the tree, or the size of the layer which contains the highest number of nodes. Note
that when counting the number of nodes in a layer for the time complexity analysis, we must
also include nodes that were expanded and discarded since they do not satisfy the predicate of
the previous layer.

5.2 Notations

Assume that we have two input-output pairs for 4 encryption rounds of GOST under the subkeys
K1,K2,K3,K4. Similarly to Section 4.2, denote the input, output and middle values (after using
K2) for the first pair by (XL, XR), (YL, YR) and (ZL, ZR), respectively. For the second pair,
denote these values by (X∗L, X

∗
R), (Y ∗L , Y

∗
R) and (Z∗L, Z

∗
R) respectively.

Since our attack analyzes 4-bit words (which are outputs of single Sboxes), we introduce
additional notations: Define the functions f0, f1, ..., f7 where each f i takes a 4-bit word as an
input, and outputs a 4-bit word by applying Sbox i to the input. Denote by W i the i’th bit of
the 32-bit word W , and by W i,j the (j − i + 1)-bit word composed of consecutive bits of W
starting from bit i and ending at bit j. We treat W as a cyclic word, and thus W 24,3 contains
12 bits which are bits 24 to 31 and 0 to 3 of W .

5.3 An Attack on 4 Rounds of Simplified GOST

We start by describing an attack on 4 rounds of a simplified variant of GOST (which we call
S-GOST), in which the round-key addition is replaced by XOR, and the 11-bit rotation is
replaced by 12-bit rotation. The simplified variant is easier to analyze since it provides much
slower diffusion of the key bits compared to full GOST: unlike addition, the XOR operation does
not produce carries, and since 12 is a multiple of 4, rotating by 12 bits implies that the output
of any Sbox effects the input of only a single Sbox in the next round.

We now describe the basic procedure preformed by a node in layer 0 of our guess tree for
S-GOST. The procedure requires the value of K0,3

1 (whose value we guess before executing the



procedure), and expands nodes in the next layer, which suggest a value for the additional 4 bits
of K20,23

4 . The steps of this procedure can be easily verified using a variant of Figure 4 where
the addition is replaced by XOR.

1. Given K0,3
1 and X0,3

R , compute Z12,15
L ≡ f0(X0,3

R ⊕K0,3
1 ) for both pairs (i.e., given K0,3

1 and

X∗0,3R , compute Z∗12,15L ≡ f0(X∗0,3R ⊕K0,3
1 )).

2. Obtain f0(Z0,3
R ⊕K

0,3
3 ) ≡ Z12,15

L ⊕Y 12,15
L for both pairs. Then, invert7 f0 to obtain Z0,3

R ⊕K
0,3
3

and Z∗0,3R ⊕K0,3
3 .

3. XOR the two expressions calculated in step 2, to eliminate K0,3
3 , and obtain the value of

Z0,3
R ⊕ Z∗0,3R .

4. XOR the 4-bit difference obtained in step 3 to the difference Y 0,3
R ⊕ Y ∗0,3R and obtain the

value of T = Z0,3
R ⊕Y 0,3

R ⊕Z∗0,3R ⊕Y ∗0,3R ≡ (f(YL⊕K4)⊕f(Y ∗L ⊕K4))
0,3 (from the encryption

side).
5. For each of the 24 possible values of K20,23

4 :
(a) Allocate a node in the next layer.
(b) Evaluate the expression f5(Y 20,23

L ⊕K20,23
4 ) ⊕ f5(Y ∗20,23L ⊕K20,23

4 ) from the decryption

side by plugging the current value of K20,23
4 into the expression. Discard nodes which do

not agree with the value T .

Note that given K0,3
1 , we expect the procedure above to process a single child in the next

layer: in step 5 we have a 4-bit condition on 4 bits of the key K20,23
4 , and thus we expect one

node to satisfy the predicate. Moreover, step 5 can be optimized by using a small amount of
precomputation and memory in order to calculate in advance the solutions to the 4-bit condition
(as described in Appendix A.1).

We now generalize the procedure above in order to derive more key bits in a similar way:

– Since encryption and decryption are completely symmetric (except the order of the subkeys),
steps 1–5 can also be performed from the decryption side: in steps 1–5 we use the value of
K0,3

1 in order to obtain the value of K20,23
4 , and thus we define the symmetric steps 6–10

which use the value of K20,23
4 in order to obtain the value of K20+20,23+20

1 , i.e. K8,11
1 .

– Given any integer 0 ≤ i ≤ 7, we can rotate the indices of all the 32-bit words in steps 1–10
by 4i bits. Namely, given i, we define analogues steps 1–10 which use the value of K4i,4i+3

1

to obtain the value of K4i+20,4i+23
4 and K4i+8,4i+11

1 .

In order to derive the full 32-bit values of K1 and K4, we define a tree which contains 9
layers `0, `1, ..., `8 (and an additional root node). The nodes of each layer are expanded using the
generalized procedure which uses 4 bits of K1 in order to derive 4 additional bits of K1 and 4
additional bits of K4. Since the 10 steps of the procedure for expanding the nodes of layers 0–7
are basically the same, we call this procedure an iteration, and index it according to the value
of i (which determines the 4-bit chunks that we work on).

5.4 Extending the Attack to 4 Rounds of the Real GOST

In order to extend the iteration procedure from S-GOST to full GOST, we need to make several
adjustments. The most significant adjustments are given below:

– Since the round keys are added (and not XORed) to the state, we have to guess the carry bits
into the LSBs of several addition operations of 4-bit words. For example, in the expression
f5(Y 20,23

L � K20,23
4 ) ⊕ f5(Y ∗20,23L � K20,23

4 ) evaluated in step 5, we have to guess two carry

bits (one for Y 20,23
L and one for Y ∗20,23L ).

7 We expect one solution on average. However, in case the inversion has more than one solution, we need to try
each one. In case the inversion has no solution, we can discard the node.



– GOST uses 11-bit rotation (instead of 12-bit rotation), and thus the 4-bit chunks that we
work on in each iteration are not aligned. Consequently, we have to guess additional state bits
in order to compare the evaluation of the 4-bit predicates from both sides. For example, since
20 + 11 = 31, in step 5 of the iteration we actually calculate (f(YL ⊕K4)⊕ f(Y ∗L ⊕K4))

31,2

from the decryption side. Thus, we additionally guess bit 31 of this expression from the
encryption side.

These adjustment create strong dependencies between iterations with consecutive indexes
(i.e., i and i + 1), namely:

– The carry bits required by iteration i+ 1 are known after iteration i. For example, iteration
1 requires the carry into bit 24 of the addition operation YL � K4 (in order to calculate
f6(Y 24,27

L �K24,27
4 )⊕ f6(Y ∗24,27L �K24,27

4 ) in step 5). This bit can be calculated after step 5

of iteration 0, where the 4-bit value of Y 20,23
L �K20,23

4 is calculated in order to evaluate the
predicate.

– The state bits required by iteration i+1 are known after iteration i. For example, iteration 1
requires calculation of bit 3 of the expression f(YL �K4)⊕ f(Y ∗L �K4) from the encryption
side. However, this bit is already guessed in step 4 of iteration 0.

This suggests that we perform the iterations in their natural order, namely assign layer `i
iteration i for 0 ≤ i ≤ 7. As a result, we need to guess carry and state bits only in the first
iteration. Afterwards, the required carry and state bits for each iteration can be calculated by
the knowledge from the previous one. On the other hand, we pay a (relatively small) penalty
on key bit guesses since key bits required by iteration i + 2 are derived in iteration i (and not
in iteration i + 1). Since iteration i requires key bits K4i,4i+3

1 , we need to guess 4 key bits in

both iterations 0 and 1 (K0,3
1 and K4,7

1 ). For iterations i ≥ 2, the required key bits are already
derived in previous iterations (as shown in Table 2).

We note that since there is no carry into the LSBs of addition operations, starting the process
with iteration 0 has the advantage that we do not need to guess the carries for all the addition
operations (e.g., we do not need to guess the carry into the addition f0(X0,3

R �K0,3
1 ) in step 1).

The full details and analysis of the “Guess and Determine” attack are given in Appendix A,
most of which is not required in order to understand the rest of this paper. It shows that the
expected number of nodes in the widest layer of the partial guess tree is 214, and it is obtained
at iterations 1 to 5 (this was also verified using simulations performed on a PC). Basically, the
number 214 is obtained due to the 8 key-bit guesses (K0,3

1 and K4,7
1 ) and 6 additional carry and

state bit guesses in iteration 0. This gives an expected time complexity of about 214 4-round
Feistel structure evaluations for two input-output pairs, which is equivalent to about 212 full
GOST evaluations. Since we apply this 4-round attack 2128 times, the time complexity of the
8-round attack is about 2128+12 = 2140 GOST evaluations. In terms of memory, the attack has
a completely practical complexity of 225 bits, which is equivalent to 219 64-bit words.

Iteration 0 1 2 3 4 5 6 7

K1 bits derived 0–3 4-7 8–11 12–15 16–19 20–23 24–27 28–31
8–11 12–15 16–19 20–23 24–27 28–31 0–3 4–7

K4 bits derived 20–23 24–27 28–31 0–3 4–7 8–11 12–15 16–19
The key bits which are already known from previous iterations are underlined.

Table 2. The key bits derived in each iteration



6 A New 2-Dimensional Meet-in-the-middle Attack on 8 Rounds of GOST

In this section, we present a new attack on 8 rounds of GOST given two input-output pairs,
which combines the ideas of the “Guess and Determine” attack (which progresses horizontally
across the state) and the MITM attack (which progresses vertically across the rounds). Unlike
the attack of the previous section, we do not guess the last 4 round keys in advance. Instead,
we divide the 8-round Feistel structure horizontally by splitting it into a top part, which uses
round keys K1–K4, and a bottom part, which uses round keys K5–K8.

Our main observation is that due to the slow diffusion of the data bits into the state, we
can run a substantial part of the “Guess and Determine” attack of Section 5 with very partial
knowledge of Y and Y ∗ (obtained after 4 rounds of encryption). This allows us to split the
“Guess and Determine” attack into two partial 4-round attacks which we run a relatively small
number of times (once for each value of the bits of Y and Y ∗ that it requires). Our full 4-round
attacks on the top and bottom parts combine the suggestions of the partial attacks in order to
suggest values for the 4-round keys. Finally, we use an 8-round attack which joins the suggestions
of the two partial attacks in order to obtain suggestions for the full 256-bit key.

Schematically, we split the top and bottom parts of the block cipher vertically into two
(potentially overlapping) cells, such that on each cell we execute an independent partial attack
to obtain suggestions for some subset of key bits. We then join all the suggestions to obtain
suggestions for the full key using three MITM attacks. This can be visualized using a 2 × 2
matrix (as shown in Figure 5), where the horizontal line separates the four initial and final
rounds of the 8-round block cipher, and the dashed vertical line separates the left and right cells
in each one of the top and bottom parts.

Top MITM

K1–K4

Intermediate
encryption bits

K5–K8

Bottom MITM

Joint MITM

1

Fig. 5. The general framework of the 2-dimensional meet-in-the-middle attack

After the MITM attacks on the top and bottom parts of the Feistel structure, we obtain
2128 suggestions for K1–K4 and 2128 suggestions for K5–K8, each accompanied by corresponding
128-bit values of Y and Y ∗. Note that so far we did not filter out any possible keys, and thus
the final MITM attack, which compares the 128-bit values of Y and Y ∗ to obtain about 2128

suggestions for the full key, is essentially the basic MITM attack of Section 4.1, which would
normally require 2128 memory.

To reduce the memory consumption, we guess many of the 128 bits of Y and Y ∗ in advance
(in the outer loop of the 8-round attack). For each possible value of those bits, we execute the
2DMITM (2-dimensional MITM) attack described above, but obtain fewer suggestions for the
key which we have to store. This increases the number of times that we execute the partial
4-round attacks and could potentially increase the overall time complexity of the full 8-round



attack. However, this is not the case, as the partial 4-round attacks are relatively efficient (the
time complexity of each one is at most 218) and is executed only 282 times. Thus, the partial
4-round attacks are not the bottleneck of the time complexity of the attack.8

6.1 Details of the 8-Round Attack

Formally, we define the following sets which contain bits of Y and Y ∗:

– S1 is the set of bits that we guess in the outer loop of the 8-round attack.

– S2 is chosen such that S1
⋂
S2 = ∅, and S1

⋃
S2 is the minimal set that contains all the bits

of Y and Y ∗ which are required by the partial 4-round attack on the left cell of the top part.

– S3 is chosen such that S1
⋂
S3 = ∅, and S1

⋃
S3 is the minimal set of bits which are required

by the partial 4-round attack on the right cell of the top part.

For the bottom MITM attack, we define S4 and S5 in a similar way to S2 and S3, respectively.
Note that since the 4-round attacks on both the top and bottom parts require all the 128
intermediate bits, S2

⋃
S3 = S4

⋃
S5.

The details of the 4-round attacks are given in the next section. We now refer to them as
black boxes, and give the algorithm of the full 8-round attack:

1. For each value of the bits of the set S1:

(a) Perform the 4-round attack on the top part of the Feistel structure, and obtain a list
with values of K1–K4, sorted according to the value of the bits of S2

⋃
S3.

(b) Perform the 4-round attack on the bottom part of the Feistel structure. For each value
of S4

⋃
S5 = S2

⋃
S3 (given along with the value of K5–K8), search the list obtained in

the previous step of matches. For each match test the full key K1–K8.

6.2 Details of the 4-Round Attacks

We concentrate first on the top part of the 8-round Feistel structure: each one of the two partial
4-round attacks on the top part sequentially executes a subset of the iterations defined in Section
5, and is called an iteration batch. The first (left) iteration batch executes iterations 0–3, and
the second (right) executes iterations 4–7.

After performing iteration batches 0–3 and 4–7 independently, we get suggestions for the
values of some key bits, along with some carry and state bits. We then discard inconsistent
suggestions by comparing the values of the common bits that are derived by batches. We partition
these bits into three groups (which are fully specified in Appendix B):

– G1 contains 16 key bits which are derived by both of the left and right batches.

– G2 contains 6 carry and state input bits that we guess in iteration 0. These bits are also
contained in the set of output bits of iteration 7 (of the right batch), and can thus be used
to discard inconsistent suggestions made by the two batches.

– G3 contains 10 carry and state input bits that we guess in iteration 4. This bits are also
contained in the set of iteration output bits of iteration 3 (of the left batch), and can thus
be used to discard inconsistent suggestions made by the two batches.

Assume that the values of all the bits of S1 are known. We now give the algorithm of the
MITM attack performed on the top part of the 8-round Feistel structure:

8 Note again that we expect about 2128 keys to fulfill the filtering conditions of the two input-output pairs. Thus,
the time required for the attack to list all of them cannot be reduced below 2128 (without exploiting additional
filtering conditions).



1. For each value of the bits of S2, perform the left batch. Save all the nodes of the final layer
in a list. These nodes contain the values 40 bits of K1 and K4 (including the values of the
bits of G1), and also the values of the bits of G3. In addition to the information obtained by
each node, save the value of the initial guess of the bits of G2, and the value of the bits of
S2 per node. Sort the list according to the values of G1,G2 and G3.

2. For each value of the bits of S3, perform the right batch. For each node in the final layer
obtain the value of the bits of G1,G2 and G3 and search the list obtained in the first step
for their value. For each match, save the value of the full K1–K4 in a sorted list according
to the value of the bits of S2

⋃
S3.

The iteration batches of the MITM attack on the bottom part of the Feistel structure are
performed from the decryption side and are completely analogous to the iteration batches on
the top part (i.e. in iteration 0, we start by guessing K0,3

8 , and derive K20,23
5 and K8,11

8 ). We
also define analogous sets to G1,G2 and G3 for the bottom part.

The specific choices of S1–S5 are given in Appendix B. This choice of sets satisfies |S1| = 92
and |S2| = |S3| = |S4| = |S5| = 18.

We now analyze the complexity of the MITM attack on the top part of the Feistel structure:
as specified in Section A.2, when starting the iteration batch from iteration 0, the expected
maximal size of the tree is 214. It is obtained after iteration 1, and is maintained until the end
of iteration 5 (even though we do not perform 5 consecutive iterations in this attack). The time
complexity of the first step of the attack is thus about 2|S2|+14 = 214+18 = 232, and this is
also the size of the sorted list at the end of the first step. The maximal size of the tree of the
iteration batch 4–7 is 214+4 = 218 (as described in Appendix B, we have to guess 4 more carry bits
compared to iterations 0–3). Thus, the time complexity of expanding the tree in the second step is
2|S3|+18 = 236. The time and memory complexities of the remainder of step 2 (in which we match
the batches) are 2|S2|+|S3|+14+18−(|G1|+|G2|+|G3|) = 2|S2|+|S3|+14+18−(16+6+10) = 2|S2|+|S3| = 236.
Note that it is not surprising that the time and memory complexities of the matching part of the
attack reduce to 2|S2|+|S3|, since given the full 128-bit intermediate value, we expect that only
one key survives the filtering conditions. Altogether, the memory complexity of the top MITM
attack is about 236 64-bit words. The time complexity is dominated by step 2 and is equivalent
to about 236 4-round Feistel structure evaluations, which is equivalent to about 233 evaluations
of the full GOST cryptosystem. For the bottom MITM attack, we obtain the same time and
memory complexities, since the sizes of S4 and S5 are equal to the sizes of S2 and S3, and the
sets corresponding to G1, G2 and G3 are completely symmetrical.

6.3 The Complexity of the 8-Round Attack on GOST

We can now analyze the complexity of the attack described in Section 6.1: The time complexities
of each of the MITM attacks on the bottom and top parts in steps (a) and (b) are equivalent to
about 236 4-round Feistel structure evaluations, as calculated above. The number of expected
matches for which we run the full cipher in step (b) is 236+36−36 = 236. Hence, the time complexity
of these steps is equivalent to a bit more than 236 full GOST evaluations. Since |S1| = 92, the
total time complexity of the attack is equivalent to about 292+36 = 2128 GOST evaluations. The
total memory complexity of the attack is about 236 64-bit words, and is dominated by the sorted
list calculated in step (a).

7 Conclusions and Open Problem

In this paper we introduced several new techniques such as the fixed point property and two
dimensional meet in the middle attacks, and used them to greatly improve the best known attacks



on the full 32-round GOST. In particular, we reduced the memory complexity of the attacks
from an impractical 264 to a practical 236 (and to an even more practical 219 complexity, which
can fit into the cache of modern microprocessors, with a small penalty in the running time).
The lowest time complexity of our attacks is 2192, which is 232 times better than previously
published attacks but still very far from being practical. Consequently, we are concerned about
the demonstrated weaknesses in the design of GOST (especially in its simplistic key schedule),
but do not advocate that its current users should stop using it right away.

The main open problems left in this paper are whether it is possible to find faster attacks, and
how to better exploit other amounts of available data (in addition to the 232 and 264 complexities
considered in this paper, which are the natural thresholds for our techniques).

Acknowledgements: The authors thank Nathan Keller, Pierre-Alain Fouque and Charles
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A Appendix: The Full 4-Round ”Guess and Determine” Attack

In this section we give the full details of the the 4-Round ”Guess and Determine” attack.

A.1 Optimization Methods Used in the 4-Round Attack

Since the time complexity of the attack is determined by the widest layer of the tree, we use
several optimizations in order to obtain effective filtering conditions while guessing the smallest
possible number of bits in each layer. These optimizations ensure that the expected number of
children per node at a given layer is small, and thus reduce the expected width of the next layer.
As a result, we can recover the possible keys that generate the given input-output pairs more
efficiently. The optimizations that we use are described below (some of which were already used
in the attack on S-GOST in Section 5.3):

1. We optimize the basic process of expanding a node described in Section 5.3 by using a more
direct approach which gives the same result. For example, we calculate the values of the 4
intermediate encryption bits, Z31,2

R , from the encryption side of the Feistel structure. The

consistency predicate on these bits can now be viewed as an equation on 4 bits of K4 (K20,23
4 )

from the decryption side. In the basic approach we solve this equation by exhaustive search
on the 16 possible values of K20,23

4 . Instead, we precompute and store the solutions to the
equation for all its 220 possible values, and use this small precomputed table to directly derive
the values of K20,23

4 (i.e. we expand only the nodes that satisfy the consistency predicate in
advance). This direct approach is more efficient than the basic approach since the size of the
layers of the guess tree (including the size of the widest layer) is reduced in exchange for a
small amount of precomputation and memory.

2. Given the case of two input-output pairs, we use differential methods in order to simultane-
ously reduce the number of unknown bits and constraint bits in our equations. For example,
refer to step 3 in Section 5.3, where we eliminate the 4 bits of K0,3

3 from the predicate. As a
result, the size of our precomputed tables can be reduced.

3. To minimize the number of required carry and state bit guesses, we work on consecutive
chunks of bits from right to left (i.e., we perform the iterations sequentially as justified in
Section 5.4).

4. Initially, we guess values that are required to calculate the four LSBs of several addition
operations (i.e., we start the process from iteration 0, as justified in Section 5.4).

A.2 Details and Analysis of the 4-Round Attack

Consider the equations of Section 4.2 for the first pair, and similar equations for the second
pair. Let Ci for be the 32-bit carry word produced by the addition of the round key Ki to the
corresponding state word (note that C0

i = 0 and we can ignore the last carry produced at bit 31
which has no effect on the encryption). From each one of these four 32-bit equations, we derive
eight equations which equate 4-bit words, and are indexed by i ∈ {0, 1, ..., 7}:
(Ei

1): Z
4i+11,4i+14
L = X4i+11,4i+14

L ⊕ f i(X4i,4i+3
R �K4i,4i+3

1 � C4i
1 )

(Ei
2): Z

4i+11,4i+14
R = Y 4i+11,4i+14

R ⊕ f i(Y 4i,4i+3
L �K4i,4i+3

4 � C4i
4 )

(Ei
3): Y

4i+11,4i+14
L ⊕ Z4i+11,4i+14

L = f i(Z4i,4i+3
R �K4i,4i+3

3 � C4i
3 )

(Ei
4): X

4i+11,4i+14
R ⊕ Z4i+11,4i+14

R = f i(Z4i,4i+3
L �K4i,4i+3

2 � C4i
2 )

In addition to the carry words defined above, we define CS2 and CS3 as the 32-bit words
(ZL � Z∗L)⊕ ZL ⊕ Z∗L and (ZR � Z∗R)⊕ ZR ⊕ Z∗R respectively.



As described in Section 5, our tree contains 9 layers (`0, `1, ..., `8). The procedure for expand-
ing the nodes of layer i ∈ {0, 1, ..., 7} uses equations Ei

1, E
i+2
1 , Ei+5

2 , Ei
3 and Ei+5

4 (the index
additions are performed numerically modulo 8).

Table 3 gives the iteration inputs and outputs calculated in each step of the iteration algo-
rithm for i ∈ {0, 1, ..., 7}. Note that the carry and state bits and expressions which are outputs
of the iteration i, serve as inputs to iteration i + 1.

Step Key Carry State Key Carry State
input input input output output output

(1) K4i,4i+3
1 C4i

1 , - - C4i+4
1 , -

C∗4i1 C∗4i+4
1

(3) - - - - C4i+4
3 � (ZR � Z∗R)4i+3

C∗4i+4
3 �
CS4i+4

3

(4) - C4i
3 � (ZR � Z∗R)4i+31 - - -

C∗4i3 �
CS4i

3

(5) - C4i+20
4 , - K4i+20,4i+23

4 - -
C∗4i+20

4

(6) - C4i+20
4 , - - C4i+24

4 , -
C∗4i+20

4 C∗4i+24
4

(8) - - - - C4i+24
2 � (ZL � Z∗L)4i+23

C∗4i+24
2 �
CS4i+24

2

(9) - C4i+20
2 � (ZL � Z∗L)4i+19 - - -

C∗4i+20
2 �
CS4i+20

2

(10) - C4i+8
1 , - K4i+8,4i+11

1 C4i+12
1 , -

C∗4i+8
1 C∗4i+12

1

Steps (2) and (7) do not use any iteration input or calculate any iteration output.
Table 3. Iteration inputs used and iteration outputs calculated in each step of the iteration algorithm for i ∈
{0, 1, ..., 7}

The steps of iteration i ∈ {0, 1, ..., 7} are given below.9 Note that steps 6–10 are analogous
to steps 1–5, but are performed from the decryption side.

1. Given the inputs K4i,4i+3
1 , C4i

1 , C∗4i1 , use equation Ei
1 to calculate Z4i+11,4i+14

L for both pairs.

2. Given Z4i+11,4i+14
L (from step (1)), use equation Ei

3 to calculate Z4i,4i+3
R �K4i,4i+3

3 �C4i
3 for

both pairs.
3. Subtract the expressions calculated in step (2), Z4i,4i+3

R � K4i,4i+3
3 � C4i

3 and Z∗4i,4i+3
R �

K4i,4i+3
3 �C∗4i3 , to eliminate K4i,4i+3

3 , and obtain the value of (Z4i,4i+3
R �Z∗4i,4i+3

R )� (C4i
3 �

C∗4i3 � CS4i
3 ).

4. Subtract the input C4i
3 �C∗4i3 �CS4i

3 from the 3 LSBs of the expression calculated in step (3),
and concatenate the 3-bit result with the input (ZR�Z∗R)4i+31 to obtain (ZR�Z∗R)4i+31,4i+2.

5. Given (ZR�Z∗R)4i+31,4i+2 (from step (4)) and the carries C4i+20
4 , C∗4i+20

4 , solve the equation

obtained by subtracting right hand side of Ei+5
2 to obtain K4i+20,4i+23

4 .

6. Given C4i+20
4 , C∗4i+20

4 , and K4i+20,4i+23
4 (derived in step (5)), use equation Ei+5

2 to calculate

Z4i+31,4i+2
R for both pairs.

9 For the sake of simplicity, we do not mention the carry and state output bits in the description of the steps,
and just list them in Table 3.



7. Given Z4i+31,4i+2
R (from step (6)), use equation Ei+5

4 to calculate Z4i+20,4i+23
L �K4i+20,4i+23

2 �
C4i+20
2 for both pairs.

8. Subtract the expressions calculated in step (7), Z4i+20,4i+23
L � K4i+20,4i+23

2 � C4i+20
2 and

Z∗4i+20,4i+23
L � K4i+20,4i+23

2 � C∗4i+20
2 to eliminate K4i+20,4i+23

2 , and obtain the value of

(Z4i+20,4i+23
L � Z∗4i+20,4i+23

L ) � (C4i+20
2 � C∗4i+20

2 � CS4i+20
2 ).

9. Subtract the input C4i+20
2 �C∗4i+20

2 �CS4i+20
2 from the 3 LSBs of the expression calculated

in step (8), and concatenate the 3-bit result with the input (ZL � Z∗L)4i+19 to obtain (ZL �
Z∗L)4i+19,4i+22.

10. Given (ZL � Z∗L)4i+19,4i+22 (from step (9)) and the inputs C4i+8
1 , C∗4i+8

1 , solve the equation

obtained by subtracting right hand side of Ei+2
1 to obtain K4i+8,4i+11

1 .

All the steps of this iteration algorithm involve simple operations on 4-bit words (addition,
subtraction, XOR and application of a 4× 4 Sbox, or its inverse). The exceptional steps are (5)
and (10), where we have to solve the equations obtained by subtracting the right hand sides of
Ei+5

2 and Ei+2
1 , respectively. Each equation adds a 4-bit constraint on 4 unknown bits of the

key, and thus we expect a single solution on average. The solutions to each equation can be
derived by using the basic approach of exhaustive search over the 24 possible values of the 4
key bits. However, we speed up the process for each equation by precomputing and storing the
solutions for each of the 24 possible values of the equation and for each of the 216 values of the
16 relevant input or output bits that participate in the equation. A table for a single equation
has 24+16 = 220 entries, where each entry has an average of a single 4-bit solution (222 bits, or
216 words of 64 bits in total per table), and requires a negligible precomputation time compared
to the complexity of the full attack on GOST.

We now analyze the expected time complexity of the algorithm by calculating the width of
the layers of the tree according to the expected number of guesses required at each stage of the
algorithm: in general, iteration i requires the following input bits (as specified in Table 3): 4
bits of K1 in step (1), 6 single carry bits in steps (1),(5),(6) and (8) (note that steps (5) and (6)
require the same carry bits), 4 carry expression bits in steps (4) and (9) (note that the value
of each carry expression is either -2,-1,0 or 1) and 2 state bit expressions in steps (4) and (9).
Altogether, iteration i requires 4 + 6 + 4 + 2 = 16 input bits. However, in iteration 0 (which
is the first iteration performed), the carry inputs required in step (1) and the carry expression
required in step (4) are known to be zero. Thus, iteration 0 requires only 12 unknown iteration
input bits which we have to guess, thus the expected size of the second layer is 212. Note that
the inverse Sbox computed in steps (2) and (7) is expected to provide a single output value per
input (i.e. step (2) and (7) are not expected to increase the width of the guess tree). In addition,
the equations solved in steps (5) and (10), are expected to have a single solution, as explained
above.

In iteration 1 (where we derive layer 2 of the tree), iteration inputs which are carry and
state bits are already known from the output of iteration 0. Moreover, after step (10) of the
first iteration, we know the values of C8

1 and C∗81 . This gives us a 2-bit filtering condition on
K4,7

1 (we only try values of K4,7
1 which are consistent with the carries). In this sense, the carries

guessed in step (10) of the first iteration are “consumed” by the second iteration. Thus, after
the first two iterations, we obtain K20,27

4 and K8,15
1 from guessing 8 bits of the first key, K0,7

1 . In
addition, we have an expected number of 28−2 = 26 additional guesses (counting the carry and
state bit guesses of steps (2)–(10) of iteration 0, without the 2-bit guess of step (10)). Thus, the
expected size of layer 2 is 28+6 = 214, which is larger than the 212 expected size of layer 1, but
not by a large factor.

In iteration 2, we derive K28,31
4 and K16,19

1 from K8,11
1 . Since K8,11

1 is already known at this
stage, we do not need to guess it again. Thus, the size of layer 3 remains the same as in layer
2, namely 214 possible solutions. This pattern continues until the end of iteration 5, where our



partial guess nodes include the values of K0,31
1 and K20,11

4 (as shown in Table 2). In iterations

6 and 7, we derive the remaining bits of K4 (K12,19
4 ) and the bits of K1 (K0,7

1 ) which were
already guessed, and give us additional 4-bit filtering conditions on the guesses in each of these
iterations. Thus, layer 7 of the tree in expected to contain 214−4 = 210 nodes. Iteration 7 is the
final iteration, in which besides the 4-bit filtering condition on K4,8

1 , we also obtain the remaining
6 iteration inputs guessed in iteration 0. We thus receive additional filtering conditions of 6 bits
and expect the final layer to contain 210−4−6 = 1 node (a single value for K1 and K4, as expected
when we compare the total number of key and input-output constraint bits).

The expected number of nodes in the widest layer of the partial guess tree is 214, and it is
obtained at iterations 1 to 5 (which define layers 2 to 6 in the tree). Thus, the time complexity of
the algorithm is about 214 Feistel structure evaluations for each one of the two input-output pairs,
and 215 evaluations altogether. Since we work on a 4-round Feistel structure which contains a
fraction of 2−3 of the 32 rounds of the full GOST, we estimate that the expected time complexity
of this attack is equivalent to about 215−3 = 212 GOST evaluations. We apply this 4-round attack
for each one of the 2128 possible values of the last 4 round keys (K5,K6,K7 and K8), and thus
the time complexity of the 8-round attack is about 2128+12 = 2140 GOST evaluations.

In terms of memory, we store precomputed tables for steps (5) and (10) in each iteration.
The equations solved in these two steps are of the same structure for each one of the 8 iterations
and differ only according to the Sbox used. Thus, we need 8 such tables (one for each Sbox),
which require 8 · 222 = 225 bits of memory. The additional memory required to store other
intermediate variables and to store our state in the DFS traversal is negligible compared to
the space consumed by the precomputed tables. Hence, the attack has a completely practical
memory complexity of 225 bits, which is equivalent to 219 64-bit words.

B Appendix: Parameters for the 2-Dimensional Meet-in-the-middle Attack

In this section, we specify our choices of G1–G3 and S1–S5:

– G1 contains the 16 key bits which are derived by both the left batch (iterations 0–3) and the
right batch (iterations 4–7), as specified in Table 4.

– G2 contains the carry and state iteration input bits that we guess in iteration 0, not including
step (10) (the bits that we guess in step (10) are already used as filtering conditions in
iteration 1). Using Table 3, we get |G2| = 6 (using the fact that the carry bits are known to
be zero).

– G3 contains the carry and state iteration input bits that we guess in iteration 4 (the first
iteration of the right batch), not including the bits that we guess in step (10). Using Table
3, we get that |G3| = 10 (unlike iteration 0, in iteration 4 no carry bits and expressions are
known in advance).

In order to determine the sets S1–S5 we refer to Table 4, which gives the indices of the
intermediate encryption bits required by iterations 0–7 of the top part of the 8-round Feistel
structure. In order to calculate the indices of these bits, recall from Section A.2 that iteration i ∈
{0, 1, ..., 7} uses equations Ei

1, E
i+2
1 , Ei+5

2 , Ei
3 and Ei+5

4 , out of which only Ei+5
2 and Ei

3 require

bits of Y and Y ∗: Ei+5
2 requires Y 4i+31,4i+2

R and Y 4i+20,4i+23
L , and Ei

3 requires Y 4i+11,4i+14
L (note

that iteration i also requires the same indices for Y ∗). Altogether, iterations 0–3 require the 82
intermediate bits Y 31,14

R , Y 11,3
L , Y ∗31,14R and Y ∗11,3L , and iterations 4–7 require the 82 intermediate

bits of Y 15,30
R , Y 27,19

L , Y ∗15,30R and Y ∗27,19L . After calculating the indices of the intermediate
encryption bits that the iteration batches of the top part require, we can easily derive the
analogous indices that the iteration batches of the bottom part require, taking into account that
the right and left 32-bit halves of Y and Y ∗ are exchanged at the end of round 4. Thus, we



Iteration 0 1 2 3 4 5 6 7

K1 bits (0–3) (4–7) 8–11 12–15 (16–19) (20–23) 24–27 28–31
derived 8–11 12–15 (16–19) (20–23) 24–27 28–31 (0–3) (4–7)

K4 bits 20–23 24–27 28–31 0–3 4–7 8–11 12–15 16–19
derived

Bits of R[31, 2] R[3, 6] R[7, 10] R[11, 14] R[15, 18] R[19, 22] R[23, 26] R[27, 30]
Y and Y ∗ L[11, 14] L[15, 18] L[19, 22] L[23, 26] L[27, 30] L[31, 2] L[3, 6] L[7, 10]
required L[20, 23] L[24, 27] L[28, 31] L[0, 3] L[4, 7] L[8, 11] L[12, 15] L[15, 19]

Key bits which are known from previous iterations of the batch are underlined. Key bits of G1 (derived by both
of the iteration batches) appear is parenthesis. The bits of Y and Y ∗ are denoted as follows: R[i, j] denotes Y i,j

R

and Y ∗i,jR , L[i, j] denotes Y i,j
L and Y ∗i,jL .

Table 4. The key bits derived and the intermediate encryption bits required in each iteration of the left and right
batches

need to exchange the right and left halves of the bits calculated for the top part: for the bottom
part, the left batch requires the 82 intermediate encryption bit values of Y 31,14

L ,Y 11,3
R ,Y ∗31,14L and

Y ∗11,3R and the right batch requires the 82 bits of Y 15,30
L ,Y 27,19

R ,Y ∗15,30L and Y ∗27,19R .

The sets S1–S5 that we choose are given in table 5. Note that since the right and left 32-bit
halves of Y and Y ∗ are exchanged at the end of round 4, we choose S1 so that it contains the
same bit indices from both halves of Y and Y ∗. As a result, the sets used during the iteration
batches are of the same size (|S2| = |S3| = |S4| = |S5| = 18). This implies that the iteration
batches of both the top and the bottom parts are performed the same number of times (218) for
a given value of the 92 bits of S1.

S1 Y 10,19
L , Y 23,3

L , Y 10,19
R , Y 23,3

R , Y ∗10,19L , Y ∗23,3L , Y ∗10,19R , Y ∗23,3R

S2 Y 20,22
L , Y 4,9

R , Y ∗20,22L , Y ∗4,9R

S3 Y 4,9
L , Y 20,22

R , Y ∗4,9L , Y ∗20,22R

S4 Y 20,22
R , Y 4,9

L , Y ∗20,22R , Y ∗4,9L

S5 Y 4,9
R , Y 20,22

L , Y ∗4,9R , Y ∗20,22L

Table 5. The sets S1–S5

C Appendix: Exploiting GOST’s Complementation Property

The full GOST block cipher has a well-known complementation property. If the plaintext P =
(PL, PR) is encrypted under K = (K1,K2, . . . ,K8) to the ciphertext C = (C1, C2), then the
encryption of P ∗ = (PL ⊕ e31, PR ⊕ e31) under K = (K1 ⊕ e31,K2 ⊕ e31, . . . ,K8 ⊕ e31) is
C∗ = (C1 ⊕ e31, C2 ⊕ e31) (where e31 is the 32-bit vector whose entries are all zero, except the
MSB, which is one.).

At the same time, in our attacks on reduced-round GOST, we notice the existence of two
less known complementation properties: for
GK1,K2,K3,K4(PL, PR) = (TL, TR), GK1⊕e31,K2,K3⊕e31,K4(PL, PR ⊕ e31) = (TL, TR ⊕ e31) and
GK1,K2⊕e31,K3,K4⊕e31(PL ⊕ e31, PR) = (TL ⊕ e31, TR).

One can use these three complementation properties in all of our attacks (even though each
one of them leads to a different improvement factor). For example, consider the meet-in-the-
middle attack suggested in Section 4.2. In this attack, we obtain two 8-round input-output pairs
(I,O) and (I∗, O∗). The attack starts by guessing Y (the partial encryption of I after four



rounds). The naive way to implement the search loop is to try any possible value of Y , and
then any value of K3,K4 to obtain the candidate values of K1,K2. However, for each guess of
Y, I,K3,K4, consider the 264 candidates for K1,K2. If we consider the list of candidates for
Y ⊕ (e31, e31), I ⊕ (e31, e31),K3 ⊕ e31,K4 ⊕ e31, it is the same as the previous one (up to the
MSBs of K1 and K2). The same is true for the other two complementation properties.

In other words, instead of computing the three additional lists (for each of the three comple-
mentation properties) we can perform this step only once. As there are four 4-round steps (we
need to deal with (I, Y ), (Y,O), (I∗, Y ∗) and (Y ∗, O∗)), we can save three out of the 16 4-round
steps (i.e., for each I, I ⊕ (0, e31), I ⊕ (e31, 0) and I ⊕ (e31, e31) with all the corresponding Y ’s
we compute the list only once).

We note that in the attacks based on the fix point point property, the first input-output pair is
actually (I, I), hence, one can use the complementation property again (once for (I, I⊕(e31, e31))
and once for (I ⊕ (0, e31), I ⊕ (e31, 0)). Additionally, as O∗ is I (up to a swap), one can again
save two out of the four rounds computations. In total, this improvement results in an overall
saving of 7/16 in the 8-round attack.

In the unoptimized fixed-point attack there are 2192 steps of full-GOST trial encryptions,
and 2192 executions of the 8-round attack, which result in a total time complexity equivalent to
(32 + 16) · 2192 = 48 · 2192 rounds of GOST. Using this improvement, the total running time is
reduced to (32 + 9) · 2192 = 41 · 2192 rounds of GOST, a speed up of about 14.6%.

In the reflection-based attacks one can optimize the trial encryptions: instead of performing
2224 full-GOST trial encryptions, it is possible to exploit the additional “half pair” and obtain
an additional 32-bit filtering condition by running 8 rounds of GOST. As a result, the trial
encryptions require less than 2224 full-GOST evaluations, while the 8-round attacks take more
than that. Thus, unlike the fixed-point-based attacks, in the reflection-based attacks the 8-round
attacks form the bottleneck, and reducing their complexity gives a more significant savings. We
note that the complex attack procedure of Section 6 can also be improved by changing the order
of the loop. To do so, one needs to reorder the guess of X, and Y accordingly. Therefore, using
a chosen plaintext model for the reflection-based attacks (to obtain 232 appropriate plaintext-
ciphertext pairs), it is possible to perform the analysis for three out of the four 4-round phases
only once. This reduces the running time to 7/16 of the original time complexity. The total
running time of the improved attack is thus reduced to 2222.8 applications of the 8-round attack.



Zero Correlation Linear Cryptanalysis
with Reduced Data Complexity

Andrey Bogdanov1⋆ and Meiqin Wang1,2⋆

1 KU Leuven, ESAT/COSIC and IBBT, Belgium
2 Shandong University, Key Laboratory of Cryptologic Technology and Information Security, Ministry of

Education, Shandong University, Jinan 250100,China

Abstract. Zero correlation linear cryptanalysis is a novel key recovery technique for block ci-
phers proposed in [5]. It is based on linear approximations with probability of exactly 1/2 (which
corresponds to the zero correlation). Some block ciphers turn out to have multiple linear approxi-
mations with correlation zero for each key over a considerable number of rounds. Zero correlation
linear cryptanalysis is the counterpart of impossible differential cryptanalysis in the domain of lin-
ear cryptanalysis, though having many technical distinctions and sometimes resulting in stronger
attacks.
In this paper, we propose a statistical technique to significantly reduce the data complexity using the
high number of zero correlation linear approximations available. We also identify zero correlation
linear approximations for 14 and 15 rounds of TEA and XTEA. Those result in key-recovery attacks
for 21-round TEA and 25-round XTEA, while requiring less data than the full code book. In the
single secret key setting, these are structural attacks breaking the highest number of rounds for
both ciphers.
The findings of this paper demonstrate that the prohibitive data complexity requirements are not
inherent in the zero correlation linear cryptanalysis and can be overcome. Moreover, our results
suggest that zero correlation linear cryptanalysis can actually break more rounds than the best
known impossible differential cryptanalysis does for relevant block ciphers. This might make a
security re-evaluation of some ciphers necessary in the view of the new attack.
Keywords: block ciphers, key recovery, linear cryptanalysis, zero correlation linear cryptanalysis,
data complexity, TEA, XTEA

1 Introduction

1.1 Motivation

Differential and linear cryptanalyses [3, 30] are the two basic tools for evaluating the security
of block ciphers such as the former U.S. encryption standard DES as well as its successor
AES. While DES was developed at the time when differential and linear cryptanalyses were not
publicly known, the design of AES provably addresses these attacks.

Design strategies have been proposed such as the wide-trail design strategy [13] or decor-
relation theory [42] to make ciphers resistant to the basic flavours of differential and linear
cryptanalysis. However, a proof of resistance according to these strategies does not necessarily
imply resistance to the extensions of these techniques such as impossible differential cryptanal-
ysis [1, 6] and the recently proposed zero correlation linear cryptanalysis [5].

Standard differential cryptanalysis uses differentials with probabilities significantly higher
than those expected for a randomly drawn permutation. Similarly, basic linear cryptanalysis
uses linear approximations whose probabilities detectably deviate from 1/2. At the same time,
impossible differential cryptanalysis and zero correlation linear cryptanalysis are based on struc-
tural deviations of another kind: Differentials with zero probability are targeted in impossible
differential cryptanalysis and linear approximations with probability of exactly 1/2 correlation
are exploited in zero correlation linear cryptanalysis. Thus, zero correlation linear cryptanalysis

⋆ Both authors are corresponding authors.



can be seen as the counterpart of impossible differential cryptanalysis in the domain of linear
cryptanalysis.

The name of the attack originated from the notion of correlation [11,34]: If 1+c
2 is the proba-

bility for a linear approximation to hold, c is called the correlation of this linear approximation.
Clearly, putting c = 0 yields an unbiased linear approximation of probability 1/2, or a zero
correlation linear approximation.

Impossible differential cryptanalysis has been known to the cryptographic community since
over a decade now. It has turned out a highly useful tool of attacking block ciphers [2,15,27–29,
41]. In fact, among meet-in-the-middle [14] and multiset-type attacks [18], it is the impossible
differential cryptanalysis [28] that breaks the highest numbers of rounds of AES-128 and AES-
256 in the classical single-key attack model as to date, the recent biclique cryptanalysis [4] being
the notable exception though.

Zero correlation linear cryptanalysis is a novel promising attack technique that bears some
technical similarities to impossible differential cryptanalysis but has its theoretical foundation
in a different mathematical theory. Despite its newness, it has already been demonstrated to
successfully apply to round-reduced AES and CLEFIA even in its basic form [5], which is highly
motivating for further studies.

In this paper, we show how to remove the data requirement of the full codebook which
was the major limitation of basic zero correlation linear cryptanalysis [5]. As an application of
zero correlation linear cryptanalysis and this data complexity reduction technique, we propose
attacks against round-reduced TEA and XTEA. For both ciphers, we can cryptanalyze more
rounds than it was previously possible using less than the full code book.

1.2 Contributions

The work at hand has two major contributions.

Data complexity reduction for zero correlation linear cryptanalysis. The data require-
ments of the full codebook have been a crucial limitation for the recent zero correlation linear
cryptanalysis to become a major cryptanalytic technique, though the length of the fundamen-
tal property (the length of the zero correlation linear approximation) was demonstrated to be
comparable to that of impossible differentials for several cipher structures [5]. Overcoming this
annoying limitation, a statistical technique of data complexity reduction for zero correlation
linear cryptanalysis is the first contribution of this paper.

The data complexity reduction technique is based on the fact that, like any exploitable
impossible differential, a typical zero correlation linear approximation is truncated : That is,
once a zero correlation linear approximation has been identified that holds for all keys, it will as
a rule imply an entire class of similar zero correlation linear approximations to exist. Those can
be typically obtained by just changing several bits of the input mask, output mask or both. In
other words, in most practical cases, there will be multiple zero correlation linear approximations
available to the adversary which has been ignored by the previous analysis.

However, unlike in impossible differential cryptanalysis, the actual value of the correlation has
to be estimated in zero correlation linear cryptanalysis and it is not enough to just wait for the
impossible event to occur. In fact, the idea we use for zero correlation linear cryptanalysis is more
similar to that of multiple linear cryptanalysis: We estimate the correlation of each individual
linear approximation using a limited number of texts. Then, for a group of zero correlation linear
approximations (i.e. for the right key), we expect the cumulative deviation of those estimations
from 0 to be lower than that for a group of randomly chosen linear approximations (i.e. for a
wrong key). Given the statistical behaviour of correlation for a randomly drawn permutation
[12, 35], this consideration results in a χ2 statistic and allows for a theoretical analysis of the



complexity and error probabilities of a zero correlation linear attack that are confirmed by
experiments.

Table 1. Summary of cryptanalytic results on round-reduced TEA∗ and XTEA in the single-key setting

attack #rounds data comp. compl. memory Pr[success] ref.

TEA

impossible differential 11 252.5 CP 284 NA NA [32]
truncated differential 17 1920 CP 2123.37 NA NA [20]
impossible differential 17 257 CP 2106.6 249 NA [8]

zero correlation linear 21 262.62 KP 2121.52 negligible 0.846 this paper

zero correlation linear 23 264 2119.64 negligible 1 this paper

XTEA

impossible differential 14 262.5 CP 285 NA NA [32]
truncated differential 23 220.55 CP 2120.65 NA 0.969 [20]
meet-in-the-middle 23 18 KP 2117 1− 2−1025 [37]

impossible differential 23 262.3 CP 2114.9 294.3 NA [8]
impossible differential 23 263 2101 MA +2105.6 2103 NA [8]

zero correlation linear 25 262.62 KP 2124.53 230 0.846 this paper

zero correlation linear 27 264 2120.71 negligible 1 this paper

CP: Chosen Plaintexts, KP: Known Plaintexts.
Memory: the number of 32-bit words.
∗The effective key length for TEA is 126 bit

Zero correlation linear cryptanalysis of round-reduced TEA and XTEA. TEA (Tiny
Encryption Algorithm) is one of the first lightweight block ciphers. It is a 64-bit block cipher
based on a balanced Feistel-type network with a simple ARX round function. TEA has 64 rounds
and accepts a key of 128 bits. It favours both efficient hardware [22] and software implementa-
tions. TEA was designed by Wheeler and Needham and proposed at FSE’94 [43]. It was used in
Microsoft’s Xbox gaming console for checking software authenticity until its weakness as a hash
function was used [40] to compromise the chain of trust. The block cipher XTEA [33] is the fixed
version of TEA eliminating this property (having the same number rounds, block size, and key
size). TEA and XTEA being rather popular ciphers, both are implemented in the Linux kernel.

Similarly to the complementation property of DES, TEA has an equivalent key property
and its effective key size is 126 bits (compared to 128 bits suggested by the nominal key input
size) [23]. Kelsey, Scheier and Wagner [24] proposed a practical related-key attack on the full
TEA. Using complementation cryptanalysis [7], up to 36 rounds of XTEA can be attacked with
related keys for all keys. The work [7] also contains related-key attacks for up to 50 rounds of
XTEA working for a weak key class.

In the classical single-key setting, however, by far not all rounds of TEA are broken by
structural attacks (whereas the effective key size is 126 bits for the full cipher). The truncated
differential result on 17 rounds remains the best cryptanalysis of TEA [20]. Impossible differential
cryptanalysis [8] has yielded a faster attack against 17 rounds of TEA. Similarly, 23 rounds of
XTEA have been cryptanalyzed so far using truncated differential [20], impossible differential [8]
and well as meet-in-the-middle attacks [37]. That is, for both TEA and XTEA, there has been
no progress in terms of the number of attacked rounds since 2003.

In this paper, using zero correlation linear cryptanalysis, we cryptanalyze 21 rounds of TEA
and 25 rounds of XTEA with 262.62 known plaintexts (in contrast to chosen texts required in
impossible differential cryptanalysis). Certainly, zero correlation linear cryptanalysis for lower
number of rounds yields a lower data complexity for both TEA and XTEA. Moreover, unlike
most impossible differential attacks including those on TEA and XTEA [8], zero correlation linear
cryptanalysis is able to profit from the full code available. If all 264 texts are available to the



adversary, we propose zero correlation linear cryptanalysis for 23 rounds of TEA and 27 rounds
of XTEA. Our cryptanalytic results are summarized and compared to previous cryptanalysis in
Table 1.

As opposed to the initial intuition expressed in [5], both major contributions of this work
— the data complexity reduction and the new attacks on more rounds of TEA and XTEA —
demonstrate that zero correlation linear cryptanalysis can actually perform better than impossi-
ble differential cryptanalysis. Moreover, we expect the security of more ciphers to be reevaluated
under the consideration of zero correlation linear cryptanalysis.

1.3 Outline

We start with a review of the basic zero correlation linear cryptanalysis for block ciphers in
Section 2. In Section 3, we introduce a χ2 statistical technique for reducing the data requirements
of zero correlation linear cryptanalysis and thoroughly investigate its complexity. In Section 4,
the 14- and 15-round zero correlation linear approximations are demonstrated for block ciphers
TEA and XTEA. Section 5 gives several zero correlation key recoveries for round-reduced TEA
and XTEA. We conclude in Section 6. Appendices contain proofs of some technical statements
as well as further zero correlation linear attacks on round-reduced TEA and XTEA.

2 Basic zero correlation linear cryptanalysis

Zero correlation linear cryptanalysis has been introduced in [5]. Below we briefly review its basic
ideas and methods.

2.1 Linear approximations with correlation zero

Consider an n-bit block cipher fK with key K. Let P denote a plaintext which is mapped to
ciphertext C under key K, C = fK(P ). If ΓP and ΓC are nonzero plaintext and ciphertext linear
masks of n bit each, we denote by ΓP → ΓC the linear approximation

Γ T
P P ⊕ Γ T

CC = 0.

Here, Γ T
AA denotes the multiplication of the transposed bit vector ΓA (linear mask for A) by a

column bit vector A over F2. The linear approximation ΓP → ΓC has probability

pΓP ,ΓC
= Pr

P∈Fn
2

{Γ T
P P ⊕ Γ T

CC = 0}. (1)

The value
cΓP ,ΓC

= 2pΓP ,ΓC
− 1 (2)

is called the correlation (or bias) of linear approximation ΓP → ΓC . Note that pΓP ,ΓC
= 1/2 is

equivalent to zero correlation cΓP ,ΓC
= 0:

pΓP ,ΓC
= Pr

P∈Fn
2

{Γ T
P P ⊕ Γ T

CC = 0} = 1/2. (3)

In fact, for a randomly drawn permutation of sufficiently large bit size n, zero is the most
frequent single value of correlation for a nontrivial linear approximation. Correlation goes to
small values for increasing n, the probability to get exactly zero decreases as a function of n
though. More precisely, the probability of the linear approximation ΓP → ΓC with ΓP , ΓC 6= 0
to have zero correlation has been shown [5, Proposition 2] to be approximated by

1√
2π

2
4−n
2 . (4)



2.2 Two examples

Given a randomly chosen permutation, however, it is hard to tell a priori which of its nontrivial
linear approximations in particular has zero correlation. At the same time, it is often possible
to identify groups of zero correlation linear approximations for a block cipher fK once it has
compact description with a distinct structure. Moreover, in many interesting cases, these linear
approximations will have zero correlation for any key K. Here are two examples provided in [5]:

– AES: The data transform of AES has a set of zero correlation linear approximations over
4 rounds (3 full rounds appended by 1 incomplete rounds with MixColumns omitted). If
Γ and Γ ′ are 4-byte column linear masks with exactly one nonzero byte, then each of the
linear approximations (Γ, 0, 0, 0) → (Γ ′, 0, 0, 0) over 4 AES rounds has zero correlation [5,
Theorem 2].

– CLEFIA-type GFNs: CLEFIA-type generalized Feistel networks [39] (also known as type-
2 GFNs with 4 lines [44]) have zero correlation linear approximations over 9 rounds, if
the underlying F-functions of the Feistel construction are invertible. For a 6= 0, the linear
approximations (a, 0, 0, 0) → (0, 0, 0, a) and (0, 0, a, 0) → (0, a, 0, 0) over 9 rounds have zero
correlation [5, Theorem 1].

D

E

rounds covered by
zero correlation

linear approximation

plaintext P

plaintext C

partial encryption

partial decryption

check for zero correlation

Fig. 1. High-level view of key recovery in zero correlation linear cryptanalysis

2.3 Key recovery with zero correlation linear approximations

Based on linear approximations of correlation zero, a technique similar to Matsui’s Algo-
rithm 2 [30] can be used for key recovery. Let the adversary have N known plaintext-ciphertexts
and ℓ zero correlation linear approximations {ΓE → ΓD} for a part of the cipher, with
ℓ = |{ΓE → ΓD}|. The linear approximations {ΓE → ΓD} are placed in the middle of the
attacked cipher. Let E and D be the partial intermediate states of the data transform at the
boundaries of the linear approximations.

Then the key can be recovered using the following approach (see also Figure 1):

1. Guess the bits of the key needed to compute E and D. For each guess:



(a) Partially encrypt the plaintexts and partially decrypt the ciphertexts up to the boundaries
of the zero correlation linear approximation ΓE → ΓD.

(b) Estimate the correlations {ĉΓE ,ΓD
} of all linear approximations in {ΓE → ΓD} for the

key guess using the partially encrypted and decrypted values E and D by counting how
many times Γ T

EE ⊕ Γ T
DD is zero over N input/output pairs, see (1) and (2).

(c) Perform a test on the estimated correlations {ĉΓE ,ΓD
} for {ΓE → ΓD} to tell of the

estimated values of {ĉΓE ,ΓD
} are compatible with the hypothesis that all of the actual

values of {cΓE ,ΓD
} are zero.

2. Test the surviving key candidates against a necessary number of plaintext-ciphertext pairs
according to the unicity distance for the attacked cipher.

Step 1(c) of the technique above relies on an efficient test distinguishing between the hypoth-
esis that {cΓE ,ΓD

} are all zero and the alternative hypothesis. The work [5] requires the exact
evaluation of the correlation value (defined by the probability of a linear approximation) and the
data complexity is restricted to N = 2n in [5]. Thus, a small number ℓ of linear approximations
is usually enough in [5] and ĉΓE ,ΓD

= cΓE ,ΓD
, though the data complexity of the full codebook

is too restrictive.
For most ciphers (including the examples of Subsection 2.2), however, a large number ℓ of zero

correlation linear approximations is available. This freedom is not used in [5]. At the same time,
it has been shown in the experimental work [9] that any value of correlation can be used for key
recovery in a linear attack with reduced data complexity, once enough linear approximations are
available. Despite its convincing experimental evidence, [9] gives no theoretical data complexity
estimations and does not provide any ways of constructing linear approximations with certain
properties.

In the next section of this paper, we provide a framework for reducing the data complexity
N if many zero correlation linear approximations are known.

3 Reduction of data complexity with many approximations

3.1 Distinguishing between two normal distributions

Consider two normal distributions: N (µ0, σ0) with mean µ0 and standard deviation σ0, and
N (µ1, σ1) with mean µ1 and standard deviation σ1. A sample s is drawn from either N (µ0, σ0)
or N (µ1, σ1). It has to be decided if this sample is from N (µ0, σ0) or from N (µ1, σ1). The test
is performed by comparing the value s to some threshold value t. Without loss of generality,
assume that µ0 < µ1. If s ≤ t, the test returns ”s ∈ N (µ0, σ0)”. Otherwise, if s > t, the test
returns ”s ∈ N (µ1, σ1)”. There will be error probabilities of two types:

β0 = Pr{”s ∈ N (µ1, σ1)”|s ∈ N (µ0, σ0)},
β1 = Pr{”s ∈ N (µ0, σ0)”|s ∈ N (µ1, σ1)}.

Here a condition is given on µ0, µ1, σ0, and σ1 such that the error probabilities are β0 and β1.
The proof immediately follows from the basics of probability theory (see e.g. [17, 19]) and is
given in Appendix A for completeness.

Proposition 1. For the test to have error probabilities of at most β0 and β1, the parameters of
the normal distributions N (µ0, σ0) and N (µ1, σ1) with µ0 6= µ1 have to be such that

z1−β1
σ1 + z1−β0

σ0
|µ1 − µ0|

= 1,

where z1−β1
and z1−β0

are the quantiles of the standard normal distribution.



3.2 A known plaintext distinguisher with many zero correlation linear
approximations

Let the adversary be given N known plaintext-ciphertext pairs and ℓ zero correlation linear
approximations for an n-bit block cipher. The adversary aims to distinguish between this cipher
and a randomly drawn permutation.

The procedure is as follows. For each of the ℓ given linear approximations, the adversary
computes the number Ti of times the linear approximations are fulfilled on N plaintexts, i ∈
{1, . . . , ℓ}. Each Ti suggests an empirical correlation value ĉi = 2Ti

N − 1. Then, the adversary
evaluates the statistic:

ℓ
∑

i=1

ĉ2i =
ℓ
∑

i=1

(

2
Ti

N
− 1

)2

. (5)

It is expected that for the cipher with ℓ known zero correlation linear approximations, the
value of statistic (5) will be lower than that for ℓ linear approximations of a randomly drawn
permutation. In a key-recovery setting, the right key will result in statistic (5) being among the
lowest values for all candidate keys if ℓ is high enough. In the sequel, we treat this more formally.

3.3 Correlation under right and wrong keys

Consider the key recovery procedure outlined in Subsection 2.3 given N known plaintext-
ciphertext pairs. There will be two cases:

– Right key guess: Each of the values ĉi in (5) approximately follows the normal distribution
with zero mean and standard deviation 1/

√
N with good precision (c.f. e.g. [21, 38]) for

sufficiently large N :
ĉi ∼ N (0, 1/

√
N).

– Wrong key guess: Each of the values ĉi in (5) approximately follows the normal distribution
with mean ci and standard deviation 1/

√
N for sufficiently large N :

ĉi ∼ N (ci, 1/
√
N) with ci ∼ N (0, 2−n/2),

where ci is the exact value of the correlation which is itself distributed as N (0, 2−n/2) over
random permutations with n ≥ 5 — a result due to [12,35]. Thus, our wrong key hypothesis
is that for each wrong key, the adversary obtains a permutation with linear properties close
to those of a randomly chosen permutation.

3.4 Distribution of the statistic

Based on these distributions of ĉi, we now derive the distributions of statistic (5) in these two
cases.

Right key guess. In this case, we deal with ℓ zero correlation linear approximations:

ℓ
∑

i=1

ĉ2i ∼
ℓ
∑

i=1

N 2
(

0, 1/
√
N
)

=
1

N

ℓ
∑

i=1

N 2(0, 1) =
1

N
χ2
ℓ ,

where χ2
ℓ is the χ2-distribution with ℓ degrees of freedom which has mean ℓ and standard

deviation
√
2ℓ, assuming the independency of underlying distributions. For sufficiently large ℓ,

χ2
ℓ converges to the normal distribution. That is, χ2

ℓ approximately follows N (ℓ,
√
2ℓ), and:

ℓ
∑

i=1

ĉ2i ∼
1

N
χ2
ℓ ≈

1

N
N
(

ℓ,
√
2ℓ
)

= N
(

ℓ

N
,

√
2ℓ

N

)

. (6)



Proposition 2. Consider ℓ nontrivial zero correlation linear approximations for a block cipher
with a fixed key. If N is the number of known plaintext-ciphertext pairs, Ti is the number of times
such a linear approximation is fulfilled for i ∈ {1, . . . , ℓ}, and ℓ is high enough, then, assuming
the counters Ti are independent, the following approximate distribution holds for sufficiently
large N and n:

ℓ
∑

i=1

(

2
Ti

N
− 1

)2

∼ N
(

ℓ

N
,

√
2ℓ

N

)

.

Wrong key guess. The wrong key hypothesis is that we deal with pick a permutation at
random for each wrong key. Therefore, the ℓ given linear approximations will have randomly
drawn correlations, under this hypothesis. Thus, as mentioned above:

ℓ
∑

i=1

ĉ2i ∼
ℓ
∑

i=1

N 2
(

ci, 1/
√
N
)

, where ci ∼ N
(

0, 2−n/2
)

.

First, we show that the underlying distribution of ĉi is actually normal with mean 0. Then
we show that the sum approximately follows χ2-distribution assuming the independency of
underlying distributions, and can be approximated by another normal distribution.

Since
N
(

ci, 1/
√
N
)

= ci +N
(

0, 1/
√
N
)

= N
(

0, 1/
√
2n
)

+N
(

0, 1/
√
N
)

= N
(

0,
√

1/N + 1/2n
)

,

the distribution above is a χ2-distribution with ℓ degrees of freedom up to a factor, under the
independency assumption:

∑ℓ
i=1N 2

(

ci, 1/
√
N
)

=
∑ℓ

i=1N 2
(

0,
√

1
N + 1

2n

)

=
(

1
N + 1

2n

)
∑ℓ

i=1N 2 (0, 1)
=
(

1
N + 1

2n

)

χ2
ℓ .

As for the right keys, for sufficiently large ℓ, χ2
ℓ can be approximated by the normal distribution

with mean ℓ and standard deviation
√
2ℓ. Thus:

∑ℓ
i=1 ĉ

2
i ∼

(

1
N + 1

2n

)

χ2
ℓ ≈

(

1
N + 1

2n

)

N
(

ℓ,
√
2ℓ
)

= N
(

ℓ
N + ℓ

2n ,
√
2ℓ
N +

√
2ℓ

2n

)

.

Proposition 3. Consider ℓ nontrivial linear approximations for a randomly drawn permutation.
If N is the number of known plaintext-ciphertext pairs, Ti is the number of times a linear ap-
proximation is fulfilled for i ∈ {1, . . . , ℓ}, and ℓ is high enough, then, assuming the independency
of Ti, the following approximate distribution holds for sufficiently large N and n:

ℓ
∑

i=1

(

2
Ti

N
− 1

)2

∼ N
(

ℓ

N
+

ℓ

2n
,

√
2ℓ

N
+

√
2ℓ

2n

)

.

3.5 Data complexity of the distinguisher

Combining Propositions 2 and 3 with Proposition 1, one obtains the condition:

z1−β1

(√
2ℓ
N

+
√
2ℓ

2n

)

+z1−β0

√
2ℓ
N

( ℓ
N
+ ℓ

2n )−
ℓ
N

= 1.



The left part of this equation can be simplified to

2n+0.5

N
√
ℓ
(z1−β0

+ z1−β1
) +

z1−β1

√
2

√
ℓ

,

which yields

Theorem 1. With the assumptions of Propositions 1 to 3, using ℓ nontrivial zero correlation
linear approximations, to distinguish between a wrong key and a right key with probability β1 of
false positives and probability β0 of false negatives, a number N of known plaintext-ciphertext
pairs is sufficient if the following condition is fulfilled:

2n+0.5

N
√
ℓ
(z1−β0

+ z1−β1
) +

z1−β1

√
2√

ℓ
= 1.

The success probability of an attack is defined by the probability β0 of false negatives. The
probability β1 of false positives determines the number of surviving key candidates and, thus,
influences the computational complexity of the key recovery.

4 Linear approximations with correlation zero for TEA and XTEA

In [5], a sufficient condition is given for a linear approximation to have a correlation of zero.
Namely, if for a linear approximation there exist no linear characteristics with non-zero correla-
tion contributions, then the correlation of the linear approximation is exactly zero.

4.1 The block ciphers TEA and XTEA

TEA is a 64-round iterated block cipher with 64-bit block size and 128-bit key which consist
of four 32-bit words K[0],K[1],K[2] and K[3]. TEA does not have any iterative key schedule
algorithm. Instead, the key words are used directly in round functions. The round constant is
derived from the constant δ = 9e3779b9x and the round number. We denote the input and the
output of the r-th round for 1 ≤ r ≤ 64 by (Lr, Rr) and (Lr+1, Rr+1), respectively. Lr+1 = Rr

and Rr+1 is computed as follows:

Rr+1 =

{

Lr + (((Rr ≪ 4) +K[0])⊕ (Rr + i · δ)⊕ (Rr ≫ 5 +K[1])) r = 2i− 1, 1 ≤ i ≤ 32,

Lr + (((Rr ≪ 4) +K[2])⊕ (Rr + i · δ)⊕ (Rr ≫ 5 +K[3])) r = 2i, 1 ≤ i ≤ 32.

Like TEA, XTEA is also a 64-round Feistel cipher with 64-bit block and 128-bit key. Its 128-
bit secret key K is represented by four 32-bit words K[0],K[1],K[2] and K[3] as well. The
derivation of the subkey word number is slightly more complex though. The input of the r-th
round is (Lr, Rr) and the output is (Lr+1, Rr+1). Again, Lr+1 = Rr and Rr+1 is derived as:

Rr+1 =

{

Lr + (((Rr ≪ 4⊕Rr ≫ 5) +Rr)⊕ ((i− 1) · δ +K[((i− 1) · δ ≪ 11)&3])) r = 2i− 1, 1 ≤ i ≤ 32,

Lr + (((Rr ≪ 4⊕Rr ≫ 5) +Rr)⊕ (i · δ +K[(i · δ ≪ 11)&3])) r = 2i, 1 ≤ i ≤ 32.

These round functions of TEA and XTEA are illustrated in Figure 2.

4.2 Notations

To demonstrate zero correlation linear approximations for TEA and XTEA, we will need the
following notations (the least significant bit of a word has number 0):

– ei,∼ is a 32-bit word that has zeros in bits (i+ 1) to 31, one in bit i and undefined values in
bits 0 to (i− 1),
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Fig. 2. Round function for TEA(left) and XTEA(right)

– ei∼j is a 32-bit word that has zeros in bits (i+ 1) to 31 and bits 0 to (j − 1), a one in bit i
and undefined values in bits j to (i− 1) for j < i,

– ēi,∼ is a 32-bit word that has zeros in bits (i+ 1) to 31, undefined values in bits 0 to i,
– ? is an undefined value,
– Xi∼j is bits from j to i of the value X, j < i, and
– Xi is the value of bit i of X.

4.3 Linear approximation of modular addition

Here, we first demonstrate the properties of linear approximations with non-zero correlation over
the modular addition, which is the only nonlinear part of the TEA and XTEA transformation
(summarized as Property 1). Then we use it to show a condition for linear approximation with
non-zero correlation for one round of TEA and XTEA (stated as Property 2).

For the modular addition of two n-bit inputs x and y, the output z can be computed as:

z = (x+ y) mod 2n.

We denote the mask values for x, y and z as Γx, Γy and Γz, respectively (x, y, z, Γx, Γy, and
Γz ∈ F

n
2 ). The linear approximation for the modular addition is then ΓxT ·x⊕ΓyT ·y = ΓzT · z

and is referred to as
+ : (Γx|Γy) → Γz.

Property 1 (Modular addition). In any linear approximation (Γx|Γy) → Γz of the modular
addition with a non-zero correlation, the most significant non-zero mask bit for Γx, Γy and Γz
is the same.

Property 1 is proven in Appendix B.

4.4 Linear approximation of one TEA/XTEA round

Using Property 1 for modular addition, as all other operations in TEA and XTEA are linear,
we can derive conditions on a special class of approximations with non-zero correlation for the
round function of TEA and XTEA. See Figures 4 and 3 for an illustration.

As in Subsection 4.1, the input and output of round r in TEA and XTEA are (Lr|Rr)
and (Lr+1|Rr+1), respectively. Correspondingly, (Γ

L
r |ΓR

r ) and (ΓL
r+1|ΓR

r+1) are input and output
linear masks of the round. So the linear approximation over the round is

(X)TEA round r : (ΓL
r |ΓR

r ) → (ΓL
r+1|ΓR

r+1)

and has the following



Property 2 (One round). If ΓL
r = ei,∼ and ΓR

r = ej,∼, (j < i), then one needs ΓR
r+1 = ei,∼

and ΓL
r+1 = ei,∼ ⊕ ei+5∼5 for the approximation to have a non-zero correlation. Similarly, for

the decryption round function of TEA, if the input mask and the output mask for round r are
(ΓL

r |ΓR
r ) and (ΓL

r+1|ΓR
r+1), respectively. If ΓR

r = ei,∼ and ΓL
r = ej,∼, (j < i), then we have

ΓL
r+1 = ei,∼ and ΓR

r+1 = ei,∼ ⊕ ei+5∼5.

4.5 Zero correlation approximations for 14 and 15 rounds of TEA/XTEA

With the one-round property of linear approximation in TEA and XTEA derived in the previous
subsection, we can identify zero correlation approximations over 14 and 15 rounds of both TEA
and XTEA.

Proposition 4. Over 15 rounds of TEA and XTEA, any linear approximation with input
mask (ΓR

1 |ΓL
1 ) = (1|0) and output mask (ΓR

15|ΓL
15) = (0|e1,∼) has a correlation of exactly

zero. Moreover, over 14 rounds of TEA and XTEA, any linear approximation with input mask
(ΓR

1 |ΓL
1 ) = (1|0) and output mask (ΓR

14|ΓL
14) = (e1,∼|ē5,∼) has zero correlation.
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Fig. 3. Zero correlation linear approximation for 14-
round TEA and XTEA (grey – undefined bits, black –
bits set to 1)
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Fig. 4. Zero correlation linear approximation for 15-
round TEA and XTEA (grey – undefined bits, black –
bits set to 1)

Proof. First, we follow the linear approximation in the forward direction. From ΓL
1 = 0 and

ΓR
1 = 1, it is obtained that ΓL

2 = 0 and ΓR
2 = 1, then we get ΓL

3 = 1 ⊕ (1 << 5) and ΓR
3 = 1.

From Property 2, ΓL
3 = 1 ⊕ (1 << 5) and ΓR

3 = 1, then we have ΓR
4 = e5,∼ and ΓL

4 =



e5,∼ ⊕ e5+5∼5 ⊕ 1 = e10,∼. Similarly, we get (ΓR
5 |ΓL

5 ) = (e10,∼|e15,∼), (ΓR
6 |ΓL

6 ) = (e15,∼|e20,∼),
(ΓR

7 |ΓL
7 ) = (e20,∼|e25,∼), (ΓR

8 |ΓL
8 ) = (e25,∼|e30,∼) and (ΓR

9 |ΓL
9 ) = (e30,∼|?).

Second, we follow the 7-round linear approximation in the backward direction. From
ΓL
16 = e1,∼ and ΓR

16 = 0, we can derive that (ΓR
15|ΓL

15) = (e1,∼|0), (ΓR
14|ΓL

14) = (e1,∼ ⊕ e6∼5|e1,∼),
(ΓR

13|ΓL
13) = (e11,∼|e6,∼), (ΓR

12|ΓL
12) = (e16,∼|e11,∼), (ΓR

11|ΓL
11) = (e21,∼|e16,∼), (ΓR

10|ΓL
10) =

(e26,∼|e21,∼) and (ΓR
9 |ΓL

9 ) = (e31,∼|e26,∼).
From the forward direction, the most significant bit of ΓR

9 has to be zero, and from the
backward direction, the most significant bit of ΓR

9 has to be one. This yields a contradiction
and shows that there are no characteristics for this linear approximation. By the sufficient
condition of [5] for constructing zero correlation linear approximations, this is enough for the
approximation to have correlation zero. So the linear approximation for 15-round TEA and
XTEA with the input mask (1|0) and the output mask (0|e1,∼) has zero correlation. By restricting
this linear approximation to 14 rounds and adding several undefined bits to the output mask,
one gets all the claims of the proposition. �

There are only 2 zero correlation linear approximations of this form over 15 rounds. We
note however that there are 27 different zero correlation linear approximations over 14 rounds
of both TEA and XTEA. They can be generated by setting the undefined bits (depicted in gray
in Figure 3 and Figure 4) to different values.

5 Zero correlation linear cryptanalysis of round-reduced (X)TEA

5.1 Key recovery for 21 rounds of TEA

For the cryptanalysis of 21-round TEA, we use the 14-round zero correlation approximations of
the type depicted in Figure 3 of Subsection 4.5. The availability of many such approximations
allows us to use the data complexity reduction technique of Section 3.

We place the 14-round zero correlation linear approximations in the middle of the 21-round
TEA. It covers rounds 5 to 18. Following the procedure outlined in Subsection 2.3, up to the
boundaries of the linear approximations, we partially encrypt over the 4 first rounds 1 to 4 and
partially decrypt over the 3 last rounds 19 to 21. The attack is illustrated in Figure 5.

The linear approximations involve 9 state bits: R0
5, R

1∼0
19 , and L5∼0

19 . In the corresponding 9

bits of the input and output masks, only 7 can take on 0 and 1 values: ΓR
19

0
and ΓL

19
5∼0

. For
the evaluation of the linear approximations from a plaintext-ciphertext pair, we guess 54 key
bits K15∼0

0 , K15∼0
1 , K10∼0

2 , and K10∼0
3 . The attack flow is as follows given N known plaintext-

ciphertext pairs.

For each possible guess of the 54-bit subkey κ = (K15∼0
0 |K15∼0

1 |K10∼0
2 |K10∼0

3 ):

1. Allocate a 128-bit counter W and set it to zero. W will contain the χ2 statistic for the subkey
guess κ.

2. Allocate a 64-bit counter V [x] for each of 29 possible values of

x = (R0
5|R1∼0

19 |L5∼0
19 )

and set it to 0. V [x] will contain the number of times the partial state value x occurs for N
texts.

3. For each of N plaintext-ciphertext pairs: partially encrypt 4 rounds and partially decrypt 3
rounds, obtain the 9-bit value for x = (R0

5|R1∼0
19 |L5∼0

19 ) and add one to the counter V [x].
4. For each of 27 zero correlation linear approximations:

(a) Set the 64-bit counter U to zero.



14-Round Zero-Correlation Linear Hull
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Fig. 5. Key recovery for 21 rounds of TEA. For the es-
timation of correlation, grey and black bits need to be
computed and white bits are irrelevant. Uses the zero
correlation approximation of Figure 3.

14-Round Zero -Correlation Linear Hull

F

F

F

K[1][5~0]

K[2][10~0]

K[0][15~0]

Round 28

Round 29

Round 30

CL CR

F
K[3][20~0]

F
K[3][25~0]

Round 31

Round 32

PL PR

F

F

F

F

Round 8

Round 9

Round 10

K[2][0]

K[3][5~0]

K[1][10~0]

K[0][15~0]

F

F

K[0][20~0]

K[0][25~0]

Round 11

Round 12

Round 13

Fig. 6. Key recovery for 25 rounds of XTEA For the es-
timation of correlation, grey and black bits need to be
computed and white bits are irrelevant. Uses the zero
correlation approximation of Figure 3.

(b) For 29 values of x, verify if the linear approximation holds. If so, add V [x] to U .

(c) W = W + (2 · U/N − 1)2.

5. If W < t, then κ is a possible subkey candidate and all cipher keys it is compatible with are
tested exhaustively against a maximum of 3 plaintext-ciphertext pairs.

The correct 54-bit subkey κ is likely to be among the candidates with the χ2 statisticW lower

than the threshold t = σ0 · z1−β0
+ µ0 =

√
2l
N · z1−β0

+ l
N =

√
2·27
N · z1−β0

+ 27

N , see Subsection 3.1
with its Proposition 1 as well as Theorem 1.

In this attack, we set β0 = 2−2.7, β1 = 2−4.49 and get z1−β0
= 1, z1−β1

= 1.7. Note once
again that n = 64 and ℓ = 27. Theorem 1 suggests the data complexity of N = 262.62 known
plaintext-ciphertexts with those parameters. The decision threshold is t = 2−55.56.

The computational complexity is dominated by Steps 3 and 5. The computational complexity
T3 of Step 3 is 254 times 7 half-round encryptions for each of N texts. This gives T3 = 254 ·
262.62 · 7 · 0.5/21 = 2114.03 21-round TEA encryptions.

One in 1/β1 = 24.49 keys is expected to survive the test against zero correlation. The remain-
ing key space is be covered by exhaustive search which is performed in Step 5. The computational
complexity T5 of Step 5 is about T5 = 2126−4.49 = 2121.51 21-round encryptions using the equiv-
alent key property. T5 dominates the total computational complexity.

Summarizing the attack, its computational complexity is about 2121.51, data complexity is
about 262.62 known plaintext-ciphertext pairs, and the memory complexity is negligible. The
success probability is about 0.846.



5.2 Key recovery for 25-round XTEA

Similarly to the attack on 21 rounds of TEA provided in the previous subsection, we use the
14-round zero correlation linear approximation depicted in Figure 3 to attack 25-round XTEA.
Note that the attack covers rounds 8 to 32. It is illustrated in Figure 6. The linear approximations
are placed in rounds 14 to 27. We partially encrypt 6 rounds (8 to 13) and partially decrypt 5
rounds (28 to 32) to evaluate the parity of approximations.

The linear approximations involve 9 bits and in the corresponding 9 bits of the input and
output masks, again only 7 can take on 0 and 1 values: ΓR

28
0
and ΓL

28
5∼0

. For the evaluation
of the linear approximations from a plaintext-ciphertext pair, we guess altogether 74 key bits
K25∼0

0 , K10∼0
1 , K10∼0

2 , and K25∼0
3 . The attack itself is similar to that on 21-round TEA.

For each possible 63-bit value of (K25∼0
0 |K10∼0

1 |K25∼0
3 ):

1. Allocate and set to zero the 32-bit counter V1[x] for each of 230 possible values of

x = (R0
13|R5

13|L0
13|R10∼0

30 |L15∼0
30 ).

2. For each of N plaintext-ciphertext pairs: partially encrypt 5 rounds and partially decrypt 3
rounds, obtain 30-bit x = (R0

13|R5
13|L0

13|R10∼0
30 |L15∼0

30 ), and add one to V1[x].
3. For each possible 11 bits value of K10∼0

2 :
(a) Allocate and set to zero a 128-bit counter W .
(b) Allocate and set to zero a 64-bit counter V2[y] for each of 29 possible values of

y = (R0
14|L5∼0

28 |R1∼0
28 ).

(c) Encrypt one round and decrypt two rounds for 230 values for x to get 9 bits of y and add
V1[x] to V2[y].

(d) For each of 27 zero correlation linear approximations:
i. Set the 64-bit counter U to zero.
ii. For 29 values of y, verify if the linear approximation holds. If so, add V2[y] to the

counter U .
iii. W = W + (2 · U/N − 1)2.

(e) If W < t, then κ is a possible subkey candidate and all cipher keys it is compatible with
are tested exhaustively against a maximum of 3 plaintext-ciphertext pairs.

The correct 74-bit subkey is likely to be among the candidates with the χ2 statistic W lower
than the threshold t. As we again set β0 = 2−2.7 and β1 = 2−4.49, we obtain N = 262.62 and
t = 2−55.56.

The computational complexity is dominated by Step 2 and checking for false positives in
Step 3(e). T2 of Step 2 is constituted by 263N computations of 5 rounds of 25-round XTEA
and by 263N increments in the memory of 230 32-bit counters. Assuming that one increment of
a memory cell costs one XTEA round, we obtain T2 = 263 · 262.62 · (5/25 + 1/25) = 2123.56. In
Step 3(e), the remaining T3(e) = 2128−4.49 = 2123.51 keys can checked exhaustively by the same
number of 25-round XTEA encryptions. Thus, the overall computational complexity is about
T2 + T3(e) = 2123.56 + 2123.51 = 2124.53 25-round XTEA encryptions. The memory complexity is
230 32-bit words. Again, the data complexity is about 262.62 known plaintext-ciphertext pairs,
and the success probability is about 0.846.

5.3 Attacking more rounds with the full codebook

The attacks in the previous subsections use 14-round zero correlation linear approximations to
enable data complexity reduction. As we only identified 2 15-round approximations, we cannot
use this longer property to attack more rounds and still get a non-negligible decrease in the
number of texts required. By taking advantage of the full codebook, we are however able to
perform key recovery for up to 23 rounds of TEA and up to 27 rounds of XTEA, see Appendix D.



6 Conclusions

In this paper, we have demonstrated a technique for data complexity reduction for the promising
recent zero correlation linear cryptanalysis which is based on linear approximations holding
with a probability of exactly 1/2. This attack vector can be seen as the counterpart of the
successful impossible differential cryptanalysis in the domain of linear cryptanalysis. Using ℓ
linear approximations, we are able to reduce the data complexity to O(2n/

√
ℓ), where n is the

block size of the cipher.
As an application, we show 14- and 15-round linear approximations with correlation zero for

round-reduced TEA and XTEA. Based on those, we propose key recovery attacks on 21-round
TEA and 25-round XTEA with data complexity 262.62 as well as on 23-round TEA and 27-
round XTEA by taking advantage of all 264 texts. All four attacks are the best key recoveries for
both TEA and XTEA published to date in the single secret key setting. For these ciphers, our
zero correlation linear attacks outperform their differential counterpart (impossible differential
attacks), among other techniques.

These two contributions make the zero correlation linear cryptanalysis one of the major
cryptanalytic techniques available today for attacking and evaluating symmetric-key ciphers.
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A Proof of Proposition 1 (distinguishing distributions)

Proof. Again, first assume that µ0 < µ1. The error probabilities β0 and β1 can be derived from
the value of threshold t and the CDFs of the two normal distributions:

β0 = 1− Φµ0,σ0
(t),

β1 = Φµ1,σ1
(t),

(7)

where Φµi,σi
is the CDF of the respective normal distribution. (7) can be rewritten as follows

using the CDF of the standard normal distribution:

β0 = 1− Φ0,1

(

t−µ0

σ0

)

,

β1 = Φ0,1

(

t−µ1

σ1

)

.
(8)

By going to quantiles in (8), one obtains

z1−β0
= t−µ0

σ0
,

zβ1
= t−µ1

σ1
.

Expressing and equating t in the two cases yields:

µ0 + σ0z1−β0
= µ1 + σ1zβ1

and, eventually, recalling that zβ1
= −z1−β1

gives the relation

σ0z1−β0
+ σ1z1−β1

µ1 − µ0
= 1. (9)

Considering µ0 > µ1 yields a change of denominator in (9) to µ0−µ1. The claim of the theorem
follows. �

B Proof of Property 1 (modular addition)

Proof. We denote the i-th bit for x, y and z as xi, yi and zi, 0 ≤ i ≤ n − 1, respectively. From
the modular addition, we have

z0 = x0 ⊕ y0, c0 = 0,
z1 = x1 ⊕ y1 ⊕ c1, c1 = f1(x0, y0),
· · · ,
zi = xi ⊕ yi ⊕ ci, ci = fi(x0, x1, . . . , xi−1, y0, y1, . . . , yi−2). · · · ,
zn−1 = xn−1 ⊕ yn−1 ⊕ cn−1, cn−1 = fn−1(x0, x1, . . . , xn−2, y0, y1, . . . , yn−2),

where ci is the carrying bit of the i-th bit and fi is the non-linear carrying function of the i-th
bit. From the above equations, the linear approximations with non-zero bias have the following
form:

z0 = x0 ⊕ y0,
z1 = x1 ⊕ y1[⊕x0 ⊕ y0],
z2 = x2 ⊕ y2[⊕x1 ⊕ y1 ⊕ x0 ⊕ y0],
· · · ,
zi = xi ⊕ yi[⊕xi−1 ⊕ yi−1 ⊕ . . .⊕ x0 ⊕ y0],
· · · ,
zn−1 = xn−1 ⊕ yn−1[⊕xn−2 ⊕ yn−2 ⊕ . . .⊕ x0 ⊕ y0],



where the terms in the square brackets are optional. So any linear approximation with non-zero
bias will be produced from any one or the combination from the above linear relations which
can be denoted as follows,

zi[⊕zi−1 ⊕ · · · ⊕ z0] = xi ⊕ yi[⊕xi−1 ⊕ yi−1 ⊕ . . .⊕ x0 ⊕ y0].

If there is a linear approximation with the following form,

zj ⊕ zi[⊕zi−1 ⊕ · · · ⊕ z0] = xi ⊕ yi[⊕xi−1 ⊕ yi−1 ⊕ . . .⊕ x0 ⊕ y0], i < j < n. (10)

We substitute the equation zj = xj ⊕ yj ⊕ cj , cj = fi(x0, x1, . . . , xj−1, y0, y1, . . . , yj−1) into
Equation 10, we get

xj ⊕ yj ⊕ fi(x0, x1, . . . , xj−1, y0, y1, . . . , yj−1)
⊕zi[⊕zi−1 ⊕ · · · ⊕ z0] = xi ⊕ yi[⊕xi−1 ⊕ yi−1 ⊕ . . .⊕ x0 ⊕ y0], i < j < n.

In the above equation, x[j], x[j − 1], . . . x[i + 1], y[j], y[j − 1], . . . y[i + 1] are not related with
zi, zi−1, . . . , z0, so they are independent random variables. The involved independent random
variables will make the linear approximation Equation (10)be random, so the bias for Equation
(10)will be zero. Similarly, the linear approximation with the following forms will also have zero
bias,

zi[⊕zi−1 ⊕ · · · ⊕ z0] = x[j]⊕ xi ⊕ yi[⊕xi−1 ⊕ yi−1 ⊕ . . .⊕ x0 ⊕ y0], i < j < n.
zi[⊕zi−1 ⊕ · · · ⊕ z0] = y[j]⊕ xi ⊕ yi[⊕xi−1 ⊕ yi−1 ⊕ . . .⊕ x0 ⊕ y0], i < j < n.

(11)

This means that the most non-zero significant bits for Γx, Γy and Γz must be same, otherwise,
the linear approximation will have zero bias. ⊓⊔
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Fig. 7. Linear approximation of one TEA round
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Fig. 8. Linear approximation of one XTEA round

C Proof of Property 2 (one round)

Proof. The linear approximation for the encryption round function of TEA and XTEA have
been shown in Fig.7 and Fig. 8, we use the notations A,B,C,D,E, F,G,H, I, J,K,L,M to
denote the intermediate variables and the notation ΓX to denote the respective mask value
for X ∈ {A,B,C,D,E, F,G,H, I, J,K,L,M}. Next, we will only give the proof for the linear
approximation of TEA. The proof for XTEA is similar as that for TEA and we will not describe
it due to the limited space.

From Theorem 1, C = A + B, MA = ei,∼, so we have ΓB = ei,∼ and ΓC = ei,∼. Then
from Lemma 1 in [5] and C = D ⊕ E ⊕ F , we can get ΓD = ΓE = ΓF = ΓC = ei,∼. From



Theorem 1, D = G + K[0] and ΓD = ei,∼, so ΓG = ei,∼; E = H + δ and ΓE = ei,∼, so
ΓH = ei,∼; F = I + K[1] and ΓF = ei,∼, so ΓI = ei,∼. As G = J ≪ 4 and I = L ≫ 5,
then ΓJ = ΓG ≫ 4 = ei−4,∼ and ΓL = ΓI ≪ 5 = ei+5∼5. From Lemma 2 in [5], we have
ΓK = ΓG ⊕ ΓH ⊕ ΓI = ΓH ⊕ ΓJ ⊕ ΓL = ei,∼ ⊕ ei−4,∼ ⊕ ei+5∼5 = ei,∼ ⊕ ei+5∼5. As j < i,
ΓM = ΓK ⊕ ΓR

n = ei,∼ ⊕ ei+5∼5 ⊕ ej,∼ = ei,∼ ⊕ ei+5∼5.
The proof for the linear approximation of the decryption round function can be proved in

the same way. ⊓⊔
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Fig. 9. Key recovery for 23 rounds of TEA For the es-
timation of correlation, grey and black bits need to be
computed and white bits are irrelevant. Uses the zero
correlation approximation of Figure 4.
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Round 27

K[0][0]

K[2][5~0]

K[1][10~0]

K[1][15~0]

F

F

F

F

K[1][1~0]

K[3][6~0]

K[1][11~0]

K[0][16~0]

Round 46

Round 47

Round 48

Round 49

CL CR

F

F

K[1][20~0]

K[0][25~0]

FK[0][21~0]

FK[1][26~0]

Round 28

Round 29

Round 30

Round 50

Round 51

Fig. 10. Key recovery for 27 rounds of XTEA. For the
estimation of correlation, grey and black bits need to be
computed and white bits are irrelevant. Uses the zero
correlation approximation of Figure 4.

D Key Recovery for More Rounds of (X)TEA with the Full Codebook

D.1 Key Recovery for 23 Rounds of TEA

We use the 15-round zero correlation linear approximations of Figure 4 to attack 23-round TEA,
see Figure 9 for an illustration.

Now we use the basic zero correlation linear cryptanalysis with the full code book. To compute
the parity of the approximation, we need to guess 58 bits: (K16∼0

0 |K16∼0
1 |K11∼0

2 |K11∼0
3 ). For

each guess, we partially encrypt 4 rounds and decrypt 4 rounds for the whole code book to get
R0

5|L1
20 and verify if the equation holds. The computational complexity is dominated by those



computations: 258+64 · (1 + 0.5 · 3 + 0.5 · 4)/23 ≃ 2119.64. Memory complexity is negligible. Data
complexity is 264. Success probability is 1.

D.2 Key Recovery for 27 Rounds of XTEA

We use the same 15-round zero correlation linear approximation to attack 27-round XTEA, see
Figure 10 for the attack. Again, using the full codebook, we rely on the basic zero correlation
linear cryptanalysis procedure of [5].

The attack is proceeded as follows:
For each possible 59 bits value of (K25∼0

0 |K26∼0
1 |K5∼0

2 ):

– Allocate and set to zero the 64-bit counter V [x] for each of 222 possible values of

x = (R5
30|R0

30||L0
30|R6∼0

48 |L11∼0
48 ).

– Partially encrypt 5 rounds from round 25 and partially decrypt 4 rounds from round 51 for
the whole code book, get 22-bit (R5

30|R0
30||L0

30|R6∼0
48 |L11∼0

48 ) and add one to V [x].
– For each possible 7 bits value of K6∼0

3 :
• Partially encrypt 1 round from round 30 and decrypt 2 rounds from 47 for 222 possible
values for x to get 2 bits of (R0

31|L1
46) and verify if the linear approximation holds.

• If the counter equals to zero, it means that the guessed value for key bits is right with
high probability.

The computational complexity of the attack is dominated by the partial encryption and
decryption: 259 · 264 · (2 + 0.5 · 3 + 2 + 0.5 · 2)/27 = 2120.71 27-round XTEA encryptions. The
memory complexity is 223 32-bit words. Data complexity is 264. Success probability is 1.
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Abstract. Differential cryptanalysis is a classic cryptanalytic method for block ciphers, hash func-
tions and stream ciphers. Many extensions and refinements of differential cryptanalysis have been
developed. In this paper, we focus on the use of so-called structures in differential attacks, i.e. the
use of multiple input and one output difference. We give a general model and complexity analysis
for structure attacks and show how to choose the set of differentials to minimize the time and data
complexities. Being a subclass of multiple differential attacks in general, structure attacks can also
be analyzed in the model of Blondeau et al. from FSE 2011. In this very general model, a restrictive
condition on the set of input differences is required for the complexity analysis. We demonstrate
that in our dedicated model for structure attacks, this condition can be relaxed, which allows us
to consider a wider range of differentials. Finally, we point out an inconsistency in the FSE 2011
attack on 18 rounds of the block cipher PRESENT and use our model for structure attacks to attack
18-round PRESENT and improve the previous structure attacks on 7-round and 8-round Serpent.
To the best of our knowledge, those attacks are the best known differential attacks on these two
block ciphers.

Keywords: Structure Attack, Block Cipher, Differential, PRESENT, Serpent

1 Introduction

Differential cryptanalysis [2] is a classic cryptanalytic method that has been successfully applied
to block ciphers, hash functions and stream ciphers. The key step for a differential attack is to
identify a differential characteristic with high probability as a distinguisher, then use it to recover
(part of) the key. Lai et al. propose the notion of differential which encompasses the collection
of all possible differential characteristics [13] for one fixed input and output difference. A lower
bound for the probability of a differential (and thus, an upper bound for the complexity of the
attack) can be obtained by combining the probabilities of a number of differential characteristics
belonging to the differential. Therefore, differentials give a better estimation of the actual attack
complexity than characteristics, since the distinguisher can exploit any characteristic belonging
to the differential. In order to further improve differential attacks, multiple differentials with a
single output difference but multiple input differences can be used. This can reduce the data
complexity provided that the set of input differences for the differentials can be combined in
a so-called structure. Therefore, we call this type of differential attacks structure attacks. The
structure technique in differential cryptanalysis was originally introduced in a more restrictive
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way as quartets to attack DES [2], and multiple differential characteristics with multiple input
differences and a single output difference have been used to attack DES. In addition, Biham et
al. use the structure technique to attack reduced-round versions of the Serpent block cipher [3].

At FSE 2011, Blondeau et al. proposed multiple differential cryptanalysis with multiple input
differences and multiple output differences [4] and gave an explicit formula to compute the success
probability of multiple differential cryptanalysis. Traditionally, a normal approximation to the
binomial distribution was used to evaluate the success probability of a differential attack [18,
19]. The approach of [4] provides a more accurate estimation of the success probability. Since
structure attacks are a special case of multiple differential cryptanalysis, those results also apply
to our structure attacks.

However, in order to ensure that one pair of ciphertexts can be only counted once, the
model of [4] requires a certain condition to be met (see Definition 1), which severely restricts
the set of input difference values that can be used in an attack. In this paper, we demonstrate
that this condition on the set of the input difference values is so strong that many valuable
differentials may be excluded. We show that in the structure technique, this condition can be
relaxed without counting ciphertexts more than once. This enables us to choose our differentials
more freely, leading to improved attack complexities. Moreover, in our model, the analysis of
the data and time complexities and the success rate is carried out independently of the general
framework of [4], and most importantly does not rely on condition (4) to be fulfilled. This is an
important difference to the setting of [4], in which the filtering step also deals with the restriction
of condition (4) (although this is not made explicit), but where this condition is still required
for the analysis of the data complexity and success rate of the attack.

We stress that this condition and the general model of [4] are still necessary for the analysis
of the general case where one has multiple input and multiple output differences. What we
propose in this paper, is a tailored model for structure attacks, which are an important and
often particularly efficient subclass of multiple differential cryptanalysis.

Furthermore, the multiple differential attack on 18-round PRESENT [4] uses 561 differen-
tials with 17 input differences and 33 output differences [5]. It turns out that the sum of the
probabilities of those 561 differentials is not correct in [4]. When calculated correctly, however,
the obtained probability is lower than the random probability, implying that this set of 561
differentials cannot be used in an attack. Even if we modify the attack of [4] to use only the
best possible subset of those differentials, the resulting probability will be so close to the ran-
dom probability that this attack on PRESENT will have much lower success probability than
described in [4]. Finally, we compare our attack to the corrected version [6] of the attack of [4].

In order to evaluate the resistance of a block cipher to differential cryptanalysis, it is crucial
to take into account the effect of combining multiple differentials. However, it is often not clear
a priori which choice of differentials can actually lead to an improvement. Compared to classic
differential cryptanalysis with one differential, a structure attack can obviously reduce the data
complexity. In order to reduce the overall time complexity, however, the differentials have to be
chosen carefully.

In this paper, we first present a general model for structure attacks, providing guidance
on how to choose the differentials to minimize the time complexity. Secondly, we demonstrate
structure attacks for 18-round PRESENT-80 with a data complexity of 264 chosen plaintexts
and time complexity of 276 18-round encryptions. We find that the properties of differentials
in PRESENT cause structure attacks to be more efficient than the multiple differential crypt-
analysis proposed in [4]. Thirdly, we improve the differential cryptanalytic result for the block
cipher Serpent. In [3], Biham et al. describe a differential attack for 7-round Serpent with a data
complexity of 284 chosen plaintexts and a time complexity of 285 memory accesses. Biham et al.
also give a differential attack on 8-round Serpent-256 with 2213 memory accesses and 284 cho-
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sen plaintexts. In our attack for 7-round Serpent, the data complexity is reduced to 271 chosen
plaintexts and the time complexity is 274.99 encryptions. The attack can be further extended
to 8-round Serpent-256. The time complexity is then increased to 2203.81 encryptions, with the
data complexity remaining at 271 chosen plaintexts.

For PRESENT-80, the best known attack is the linear hull cryptanalysis of 26-round
PRESENT [8]. For Serpent-128, the best known cryptanalytic result is the differential-linear
cryptanalysis on 12 rounds [12]. Although our attacks do not improve on those results for
PRESENT and Serpent, to the best of our knowledge, they are the best differential attack-
s for PRESENT and Serpent. Moreover, our proposed attack model can be used to improve
differential cryptanalytic results on other block ciphers as well.

This paper is organized as follows. Section 2 briefly describes the method for computing
the success probability with multiple differentials. Section 3 introduces the structure attack
model and the probability distribution of the key under multiple differentials. In Sect. 4, we
demonstrate the attack for 18-round PRESENT. In Sect. 5, the improved attacks on 7-round
and 8-round Serpent are presented. Section 6 concludes the paper.

2 Brief Description of Blondeau et al.’s Multiple Differential Cryptanalysis

In [4], Blondeau et al. propose multiple differential cryptanalysis using multiple differentials with
different input differences and different output differences and give a precise analytical model to
compute the success probability. In [18], Selçuk uses a Gaussian approximation of the binomial
distribution to derive a formula for the success probability for differential cryptanalysis. Since
then, his formula has been used in many papers on differential cryptanalysis. Blondeau et al.
demonstrate that Selçuk’s method cannot be applied to multiple differential cryptanalysis and
express the distribution of key counters instead in terms of a hybrid distribution including the
Kullback-Leibler divergence and a Poisson distribution [4]. Blondeau et al. obtain the following
formula for the success probability PS :

PS ≈ 1−G∗[G−1(1− l−1
2nk−2)− 1], (1)

where nk is the number of key candidates, l is the size of the list to keep, G is defined by
G−1(y) = min{x|G(x) ≥ y}. The functions G and G∗ are defined as follows:

G∗(τ)
def
= G(τ, p∗) and G(τ)

def
= G(τ, p),

where p∗ =
∑

i,j p
(i,j)
∗

|∆0| and p = |∆|
2m|∆0| . p

(i,j)
∗ is the probability for the differential with the i-

th input difference value and the j-th output difference value, m is the block size, |∆0| is the
number of input difference values and |∆| is the number of differentials. G(τ, p∗) and G(τ, p) can
be calculated with the following equations:

G(τ, q)
def
=


G−(τ, q) if τ < q − 3 ·

√
q/Ns,

1−G+(τ, q) if τ > q + 3 ·
√
q/Ns,

GP(τ, q) otherwise,

(2)

where GP(τ, q) is the cumulative distribution function of the Poisson distribution with parameter
qNs, and Ns is the number of samples. G−(τ, q) and G+(τ, q) are defined as follows:

G−(τ, q)
def
= e−NsD(τ‖q) · [ q

√
1−τ

(q−τ)
√
2πτNs

+ 1√
8πτNs

],

G+(τ, q)
def
= e−NsD(τ‖q) · [ (1−q)

√
τ

(τ−q)
√

2πNs(1−τ)
+ 1√

8πτNs
],

(3)
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where D(τ‖q) is the Kullback-Leibler divergence and is defined by:

D(τ‖q) def
= τ ln

(
τ

q

)
+ (1− τ) ln

(
1− τ
1− q

)
.

On the assumptions for this analysis. In order to guarantee that each pair is counted only
once, Blondeau et al. give Definition 1 as a necessary condition for the set of the input differences
∆0.

Definition 1. The set of input differences ∆0 is admissible if there exists a set χ of N/2 plain-
texts that fulfils the condition:

∀δ(i)0 ∈ ∆0, ∀x ∈ χ, x⊕ δ(i)0 /∈ χ, (4)

where N is the number of chosen plaintexts. However, this condition is so strong that many
differentials will be excluded. For example, independent of the algorithm under consideration,
the set of input differences ∆0 = {1x, 2x, 3x} is never admissible in any substitution-permutation
network (SPN) because of this condition, since the overlapping bits of 3x = 1x ⊕ 2x will always
result in double-counting.

By contrast, in the structure technique, we can use a hash table to exclude the duplicate pair
arising from the violation of Definition 1. In fact, making use of hash tables, structure attacks
can use more differentials while still ensuring that each pair is counted only once. Since we only
have one possible output difference, this also enables the use of the complexity analysis of [4]
for sets of plaintexts not satisfying Def. 1: This condition is only necessary to avoid counting

both x and x ⊕ δ(i)0 for any δ
(i)
0 ∈ ∆0, i.e. guarantee Ns = N |∆0|/2. This is satisfied in our

approach, since each hash table will produce N/2 plaintext pairs with one input difference from
N plaintexts, in total therefore Ns = |∆0|N/2 plaintext pairs with |∆0| input diffference values.
For structure attacks, the complexity analysis of [4] is therefore applicable independent of Def. 1.

This has additionally been verified by experiments on SmallPresent with block length of
24 bits, 12 rounds, and a set of 11 differentials with input differences violating Definition 1 and
a single output difference.

On previous attacks on 18-round PRESENT. There are two previously published differ-
ential attacks on 18-round PRESENT [4, 6]. In this section, we point out two inconsistencies in
both attacks, and demonstrate that our attack compares favourably to them.

In [4], a multiple differential attack for 18-round PRESENT is presented. They identify
561 differentials5 including 17 input differences and 33 output differences using a branch-and-

bound algorithm. In [4], the probabilities p∗ and p are calculated as p∗ =
∑

i,j p
(i,j)
∗

|∆0| = 2−58.50

and p = |∆|
2m|∆0| = 2−64 · 33 = 2−58.96. However, the value of p∗ is not correct; it should be

p∗ = 2−60.39, which is less than the random probability for 33 output differences p = 2−58.96. A
possible remedy for this is to only choose some subset of the 561 differentials. We found that the
best case is to choose four differentials with one input difference value 1001x and the following
four output difference values:

{04040404x||00000000x, 00000404x||00000000x, 04000404x||00000000x, 00040404x||00000000x}.

For this case, the success probability will take the maximum 68.08% for nk = 42, l = 241 and
N = 264. In this way, the attack for 18-round PRESENT-80 presented in [4] will have time

5 These differentials have been obtained through private communication with Blondeau et al.
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complexity 279 and data complexity 264 with a success probability of only 68.08%. The memory
requirements are 242 bytes for counters.

In [6], another multiple differential attack on 18-round PRESENT is presented. It can be
seen from Table 4 of [6], that |∆0| = 17 (and not 16 as assumed in the paper). This results
in p∗ = 2−62.6765 (instead of 2−62.59) and p = 2−63.56 (instead of p=263.47). Based on these
values, we compare this attack to our attack from Sect. 4 for different values of the number ` of
remaining key candidates (see Table 1). One can see that for the same data and time complexities,

Table 1. Comparison of our attacks on PRESENT with the multiple differential cryptanalysis of [6].

Attack of [6] Attack of Sect. 4

` PS ` PS N time complexity

238 65.27% 236 85.94% 264 276

239 79.68% 237 92.30% 264 277

241 94.62% 239 98.36% 264 279

the structure attack performs consistently better than multiple differential cryptanalysis with
multiple input differences and multiple output differences. This implies that PRESENT is not
a good example to show the efficiency of multiple differential cryptanalysis with different input
differences and different output differences.

3 Structure Attack

3.1 Principle of the attack

The structure attack is a form of differential cryptanalysis which uses multiple input differ-
ences and a single output difference. Structure attacks are a special case of multiple differential
cryptanalysis, but their form allows for a dedicated attack procedure, which we describe in this
section.

A structure attack is performed in three phases:

1. Data Collection Phase: Collect a large number of ciphertext pairs with the differences
produced from the output difference of the differentials and the corresponding plaintext
differences belong to the set of the input differences.

2. Data Analysis Phase: Derive the list of the best candidates for some key bits from the
collected ciphertext pairs.

3. Key Search Phase: Search the list of candidates and all the corresponding master keys
(i.e., the unexpanded key from which the round subkeys are derived).

The idea of the structure attack is to use more differentials with multiple input differences
and a single output difference to reduce the data complexity. However, the set of the input
differences must be controlled in order to reduce the time complexity. This is done by organizing
the plaintext in so-called structures:

Definition 2. Let {∆1
0, . . . ,∆

t
0} be a set of t input differences. A collection of plaintexts of the

form ⋃
x

{x⊕∆
∣∣ ∆ ∈ span{∆1

0, . . . ,∆
t
0}}, (5)

with span denoting the linear span operator, is called a structure.
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In this way, we can construct structures to produce the expected number of right pairs with
lower data complexity compared with a single differential. Now we will give a model to choose
the differentials to reduce the complexity. For clarity of exposition, we describe the model for
the case of a substitution-permutation network (SPN); however, the concept can analogously be
applied to other block cipher constructions, most importantly Feistel ciphers.

If we attack an R-round block cipher with |∆0| r-round differentials with a single output
difference and multiple input differences, we denote these differentials as follows:

∆i
0

r→ ∆r, P robability = pi, (1 ≤ i ≤ |∆0|),

where ∆i
0 and ∆r are the i-th input difference and the output difference, respectively. The

following notations are related with the attack:

– m: the block size of the block cipher.

– k: the key size of the block cipher.

– |∆0|: the number of differentials.

– pi: the probability of the differential with input difference ∆i
0.

– Nst: the number of structures is 2Nst .

– Np: the number of plaintexts bits involved in the active S-boxes in the first round for all
differentials.

– Nc: the number of ciphertexts bits involved in the non-active S-boxes in the last round
deriving from ∆r.

– β: the filtering probability for the ciphertext pairs.

– pf : the filtering probability for the ciphertext pairs according to active S-boxes, pf = β ·2NC .

– l: the size of the candidate list.

– nk: the number of guessed subkey bits in the last R− r rounds.

In the attack, 2Nst structures are constructed. In each structure, all the input bits to non-
active S-boxes in the first round are fixed to some random value, while Np input bits of all
active S-boxes take all 2Np possible values. There are 2Nst · 2Np−1 = 2Nst+Np−1 pairs for each

differential. We expect that about 2Nst+Np−1 ·
∑|∆0|

i=1 pi pairs produce the output difference ∆r.
These pairs are right pairs.

The attack is described as follows.

1. For each structure:

(a) Insert all the ciphertexts into a hash table indexed by Nc bits of the non-active S-boxes
in the last round.

(b) For each entry with the same Nc bits value, check whether the input difference is any one
of the total |∆0| possible input differences. If a pair satisfies one input difference, then
go to the next step.

(c) For the pairs in each entry, check whether the output differences of active S-boxes in the
last round can be caused by the input differences according to the differential distribution
table. If the pair passes the test, then go to the next step.

(d) Guess nk bits subkeys to decrypt the ciphertext pairs to round r and check whether the
obtained output difference at round r is equal to ∆r. If so, add one to the corresponding
counter.

2. Choose the list of the l best key candidates from the counters.

3. Search the list of candidates and all the corresponding master key.
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Obviously the time complexity in step 2 is negligible, so we denote Ta, Tb, Tc, Td and T3 as
the time complexity in step (a), (b), (c), (d) and 3, respectively, which are listed in following:

Ta : 2Nst+Np memory accesses;
Tb : 2Nst+2Np−Nc memory accesses;
Tc : |∆0| · 2Nst+Np−Nc memory accesses;
Td : |∆0| · 2Nst+Np−Nc · pf · 2nk partial decryptions;
T3 : l · 2k−nk .

This assumes that there are nk independent subkey bits from the key schedule. In general, Td
can be approximated by |∆0| · 2Nst+Np−Nc = Tc. Since |∆0| < 2Np , we have Tc < Tb. Then the
whole time complexity can be expressed as follows:

Ta + Tb + Tc + Td + T3 '


Ta + T3 if Np < Nc,

Tb + T3 if Np > Nc,

2Ta + T3 = 2Tb + T3 if Np = Nc.

If the time complexity in the key searching process T3 is much smaller than the time complexity
of the data collection process and the data analysis process, we will take Np = Nc to minimise
the whole time complexity as the minimum value 2Ta. Otherwise, we can try to take a larger
value for Np to increase the sum of the probabilities for differentials to further reduce the data
complexity.

It is worth noting that in the structure attack, any pair of plaintexts with the given input
difference is only counted once. In this way, the number of input differences can be increased
compared with the condition in Definition 1, improving the efficiency of the attacks. This is
especially applicable in an attack scenario where the probability of many differentials are close
to 2−m, implying a low success rate PS . Therefore, a large value for l has to be chosen, which
causes the complexity T3 of step 3 to increase. In this case, increasing the number of input
differences can help improving the attack, whereas increasing the number of output differences
does not have this effect in the case of multiple differential cryptanalysis.

In the case of reduced-round PRESENT, we have the above-mentioned scenario (many dif-
ferentials with probability close to 2−64), so that when choosing our set of differentials, we only
include a limited number of high-probability differentials to maintain a good success probability
PS . For reduced-round Serpent, the probabilities of the differentials are much larger than 2−128

(the inverse of the block size), so that we can choose more differentials here without affecting
the success probability. In order to minimize the time complexity, we choose Np = Nc according
to our model.

3.2 Ratio of Weak Keys for Multiple Differentials

In general, the differential probability is related to the value of the key. As we use multiple
differentials in the structure attack, we need to consider the ratio of keys which can produce the
expected number of right pairs. We call those keys weak keys since the attacks are only expected
to work for those.

A cipher is called key-alternating if it consists of an alternating sequence of unkeyed rounds
and simple bitwise key additions. Note that most block cipher proposals, including PRESENT
and Serpent, are key-alternating ciphers. The fixed-key cardinality of a differential N [K](a, b) is
the number of pairs with input difference a and output difference b where the key K is fixed to
a specific value. In [11, 10], Daemen and Rijmen give the following theorem.
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Theorem 1. Assuming that the set of pairs following a characteristic for a given key can be
modeled by a sampling process, the fixed-key cardinality of a differential in a key-alternating
cipher is a stochastic variable with the following distribution:

Pr(N [K](a, b) = i) ≈ Poisson
(
i, 2m−1EDP (a, b)

)
,

where m is the block size, EDP (a, b) denotes the expected differential probability of the differential
(a, b), and the distribution function measures the probability over all possible values of the key
and all possible choices of the key schedule.

For multiple differentials with multiple input differences and a single output difference, we
have pj = EDP (aj , b), 1 ≤ j ≤ |∆0|. We denote the fixed-key cardinality of multiple differentials
(aj , b) with a single output difference b by N [K]

{
(aj , b)

}
j
. Based on Theorem 1, we can now

derive Theorem 2.

Theorem 2. Under the assumptions of Theorem 1, in a key-alternating cipher, the fixed-key
cardinality of multiple differentials is a stochastic variable with the following distribution:

Pr
(
N [K]

{
(aj , b)

}
j

= i
)
≈ Poisson

i, 2m−1∑
j

EDP (aj , b)

 ,

where the distribution function measures the probability over all possible values of the key and
all possible choices of the key schedule.

Proof. The cardinality of multiple differentials equals the sum of the cardinalities of each differ-
ential (aj , b) for the iterative cipher, so we have

N [K]
{

(aj , b)
}
j

=
∑
j

N [K](aj , b).

From Theorem 1, the cardinality for each differential (aj , b) has Poisson distribution. Making the
standard assumption that the cardinalities of the differentials are independent random variables,
the sum still is Poisson distributed with as λ-parameter the sum of the λ-parameters of the terms:

λ =
∑
j

2m−1EDP (aj , b).

From Theorem 2, in the structure attack based on the differentials

∆i
0

r→ ∆r, P robability = pi, (1 ≤ i ≤ |∆0|),

the ratio of the weak keys rw that can produce more than or equal to µ right pairs can be
computed as follows:

rw = 1−
µ−1∑
x=0

Poisson

x, 2m−1 |∆0|∑
j=1

pi

 .

Note that when evaluating the ratio of weak keys, we have a different setting than when
dealing with the distribution of the counters in a (multiple) differential attack. While approxi-
mating the distribution of the counters with either normal or Poisson distributions was shown
to be problematic for accurately estimating the tails [19, 4], the distribution of the weak keys
instead depends on the cardinality of the multiple differentials. In this setting, using the Pois-
son distribution as in Theorem 2 also yields a good approximation for the tails. This was also
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experimentally verified with small-scale variants of the block cipher PRESENT [14], with block
lengths ranging from 8 to 24 bits.

Additionally, the accuracy of the weak key ratio rw based on Theorem 2 has been verified by
experiments on SmallPresent with a block length of 24 bits, 12 rounds and an master key with
8 bit entropy. 7 differentials with 7 different input and a single output difference were used. The
λ-parameter of the Poisson distribution was 223 ·

(
5 · 2−23 + 2 · 2−22

)
= 23.17. The distribution

of the ratio of weak keys for different values of µ is listed in Table 2. The experimental results
very closely follow the theoretical estimate.

Table 2. Theoretical and experimental weak key ratio for SmallPresent-24.

µ 2 4 6 8 16

theoretical rw 0.9988 0.9788 0.8843 0.6762 0.0220
experimental rw 1 0.98 0.89 0.68 0.02

4 Attack on 18-Round PRESENT

The block cipher PRESENT is designed as a very lightweight cipher. It has a 31-round SPN
structure in which the S-box layer has 16 parallel 4-bit S-boxes and the diffusion layer is a bit
permutation [7]. The block size is 64 bits and the key size can be 80 bits or 128 bits. One round
of PRESENT is illustrated in Fig. 1.

S
15

S
14

S
13

S
12 11

S S
10

S S S S S S S S S S
89 7 6 5 4 3 2 1 0

K i

G=0

B=3 B=0

N=0
G=3

Fig. 1. One round of the PRESENT block cipher.

PRESENT has been extensively analyzed. Wang presents a differential attack on 16-round
PRESENT [20]. Collard et al. give a statistical saturation attack for 24-round PRESENT [9].
There are three papers about attacks based on linear hulls for PRESENT [8, 17, 16], leading to
linear attacks for up to 26 rounds. Since the S-box of PRESENT admits linear approximations
with single-bit linear masks, the attacker can exploit linear hulls containing many single-bit
linear trails over an arbitrary number of rounds. However, for differential attacks, we have to
use paths in which two active S-boxes appear per round. Hence, a linear attack will typically
be more efficient than differential attacks. As explained in Sect. 2, Blondeau et al. use multiple
differentials to attack 18 rounds of the PRESENT block cipher. However, as outlined in Sec-
t. 2, this attack does not work as described. By analyzing the properties of the differentials of
PRESENT, we have found that the structure attack for PRESENT is more efficient than the
multiple differential attack.

In order to identify a differential with high probability, we must collect more differential
paths with high probability for a differential. The differential paths with two active S-boxes
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in every round have a much bigger contribution to the differential, so we will focus on dif-
ferential paths with only two active S-boxes in each round. Using those differential paths, a
high-probability differential can be identified. Then we can choose more differentials to improve
the attack according to the formulas for the overall time complexity described in Sect. 3, .

4.1 Searching Differential Paths for PRESENT

We now give a method to search all differential characteristics with two active S-boxes in each
round which have higher probability compared with other differential paths.

First, we introduce some notation. The block size of PRESENT is 64 bits and we can divide
16 nibbles into four groups, in each of which there are four nibbles. We define G as the index
of a group, so the four least significant nibbles belong to the group G = 0 and the four most
significant nibbles belong to the group G = 3. We denote the index of a nibble as N , and in
each group the least significant nibble is N = 0 and the most significant nibble is the nibble
with N = 3. In each nibble, we denote B as the B-th bit, the least significant bit is B = 0 and
the most significant bit is B = 3. In this way, the position of any bit can be denoted by a triple
(G,N,B), as also illustrated in Fig. 1. The permutation layer P is computed as follows,

P (16 ·G+ 4 ·N +B) = 16 ·B + 4 ·G+N, 0 ≤ G,N,B ≤ 3.

After the permutation layer P , the bit (G,N,B) will be transferred to the bit (B,G,N). Here
we also give another triple (G,N, V ) where G and N are the group index and nibble index,
respectively, while V is the difference of the nibble. We will use the following notation:

– (Gr,k, Nr,k, Br,k): The position of the k-th (k = 1, 2, 3, 4) output bit for S-box in round r.
– (Gr,k, Nr,k, Vr,k): The output difference value of the k-th (k = 1, 2) active S-box for nibble

(Gr,k, Nr,k) in round r.

We focus on finding differential characteristics with two active S-boxes in each round. The
foundation for this search is formulated in Theorem 3. Next an efficient searching algorithm for
the differential characteristics with two active S-boxes per round will be presented.

Theorem 3. For the PRESENT block cipher, differential characteristics with only two active
S-boxes per round must have the following pattern:

1. If two active S-boxes are in the same group in round r, their output difference will be equal
and must have two non-zero bits to ensure that only two active S-boxes appear in the (r+2)-nd
round, and two active S-boxes in round r + 1 will be in the different groups;

2. If two active S-boxes are in different groups in round r, their output difference will be equal
and must have only one non-zero bit to ensure that only two active S-boxes appear in the
(r + 1)-st round, and two active S-boxes in round r + 1 will be in the same group.

For the proof of Theorem 3, see Appendix A. With Theorem 3, we give the searching algo-
rithm for the differential paths in Fig. 3 in the appendix.

Using Algorithm in Fig. 3, we search for 16-round differential paths (characteristics) with
two active S-boxes in each round having a probability greater than 2−92. In total, we find
139 differentials with probability greater than 2−64, among which 91 differentials have out-
put difference ∆16 = 00000500x||00000500x and 18 differentials have output difference ∆16 =
00000900x||00000900x. We list them in Table 5 and Table 6, respectively. The differentials have
been ordered according to their probabilities in these two tables. In both Table 5 and Table 6,
the first column i contains the number of the differential, ∆i

0 is the input difference and pi is the
probability for each differential. At the same time, we list the remaining 30 differentials with dif-
ferent output difference values in Table 7. Moreover, we present the number of differential paths
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with different probability for Table 5 in Table 8 and Table 9. In Table 8, the first column denotes
the index number in the first column of Table 5. For example, the differentials with number 19
and 20 consist of differential trails with the same probabilities. Columns 2, 3, . . . , 12 denote the
number of differential paths with probability 2−71, 2−73, . . . , 2−91, respectively. In Table 9, the
first column denotes the index number in the first column of Table 5. Column 2, 3, . . . , 13 denote
the number of differential paths with probability 2−70, 2−72, . . . , 2−92, respectively. There is no
differential path with probability greater than 2−70 or less than 2−92 for the 91 differentials.

4.2 Key Recovery Attack on 18-Round PRESENT-80

In this section, we show how to use the 16-round differentials listed in Table 5 to attack 18-
round PRESENT-80. The first step is to choose the set of differentials. From the output difference
00000500x||00000500x at round 16, we can derive that the number of recovered subkey bits in
round 17 and round 18 is 8 + 32 = 40. Those 40 subkey bits are independent according to the
key schedule. In this attack, we will use the whole codebook and set the size of the candidates of
subkey counters l to 236. In our structure attack, we will use Blondeau et al.’s method (see Sect. 2)
to compute the success rate. With Equation (1), we have nk = 40, l = 236 and N = 264. We
gradually increase the number of differentials with higher probability from Table 5 to compute
the success probability for every case. As a result, we found that the success rate will increases
as |∆0| = i increases if 1 ≤ i ≤ 36. The success probability is 85.95% as |∆0| = 36. If we add the
i-th (37 ≤ i ≤ 91) differential to the set, the success probability will be reduced. This implies
that the i-th (37 ≤ i ≤ 91) differential has no contribution to reduce the data complexity since
its probability is too low. Therefore, in our attack, we will only use the first 36 differentials in
Table 5.

If we use multiple differentials cryptanalysis for PRESENT following Blondeau et al., we
can choose more output difference values. We can add the 18 differentials in Table 6 to the set
of 36 differentials. The input difference values for the 18 differentials belong to the set of the
input difference values for the 36 differentials, so we have |∆0| = 36 and |∆16| = 2. Then we get
p∗ = 2−62.74 and p = 2−63. As τ (p < τ < p∗) increases, G(τ, p) will decrease. Even if we take
τ = p∗, G(τ, p) is still larger than (1− l−1

2nk−2), so the attack will not work for l = 236. Therefore,
our structure attack works better for PRESENT than the multiple differential cryptanalysis
presented in [4].

Moreover, we have identified the differential trails with two active S-boxes per round but
more than two active S-boxes in the last round. As a result, those differentials have no advantage
compared with the differentials in Table 5. Therefore, these differentials do not contribute to
improving multiple differential cryptanalysis for PRESENT.

We will use the structure attack for 18-round PRESENT-80 with the first 36 differentials
with p∗ = 2−63.14 and p = 2−64. For the 36 input differences, there are 10 active S-boxes in the
first round which are nibbles 0, 1, 2, 3, 4, 8, 12, 13, 14 and 15, so the S-boxes for the nibbles 5,
6, 7, 9, 10 and 11 are all non-active.

We construct 224 structures of 240 chosen plaintexts each. In each structure, all the inputs
to the 6 non-active S-boxes in the first round take a fixed random value, while 40 bits of input
to 10 active S-boxes take 240 possible values. In all structures, there are 224 · 239 = 263 pairs for
each possible differential. The sum of the probabilities for all 36 differentials is 2−57.97, so the
number of right pairs is 263 · 2−57.97 = 25.03.

According to the output difference of 16-round differentials, there are two active S-boxes in
round 17 in nibble 2 and 10 whose input difference is 5 and the possible output differences will
be 1, 4, 9, 10, 11, 12 or 13. After the bit permutation, 8 output bits from the two active S-boxes
in round 17 will be one input bit to 8 different S-boxes in round 18 respectively. As the number
of non-zero bits among the 8 output bits is at most 6, the maximum number of active S-boxes
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for round 18 is 6 and the minimum number of active S-boxes for round 18 is 2. We denote the
number of active S-boxes in round 18 as Na (2 ≤ Na ≤ 6), the output difference for the j-th

S-box in round i as Yi,j , the filter probability with Na active S-boxes in round 18 as p
(a)
f . We

present the filter probability for different values of Na in Table 3. The filter probability for the
ciphertext pairs β according to active S-boxes can be computed with the sum of column 3 in
Table 3, and we get β = 2−12.55.

Table 3. Filter probability for the structure attack on 18-round PRESENT.

Na (Y17,2, Y17,10) p
(a)
f

2 {(1, 1), (1, 4), (4, 1), (4, 4)} 2−24 · ( 7
16

)2 · 4 = 2−24.83

3 {(1, 9), (1, 10), (1, 12), (4, 9),
(4, 10), (4, 12), (9, 1), (9, 4), 2−20 · ( 7

16
)3 · 12 = 2−19.99

(10, 1), (10, 4), (12, 1), (12, 4))}
4 {(9, 9), (9, 10), (9, 12), (10, 9),

(10, 10), (10, 12), (12, 9), (12, 10), 2−16 · ( 7
16

)4 · 17 = 2−16.68

(12, 12), (1, 11), (1, 13), (4, 11),
(4, 13), (11, 1), (11, 4), (13, 1), (13, 4)}

5 {(9, 11), (9, 13), (10, 11), (10, 13),
(12, 11), (12, 13), (11, 9), (11, 10), 2−12 · ( 7

16
)5 · 12 = 2−14.38

(11, 12), (13, 9), (13, 10), (13, 12)}
6 {(11, 11), (11, 13), (13, 11), (13, 13)} 2−8 · ( 7

16
)6 · 4 = 2−13.16

We now describe in detail the attack procedure of Sect. 3 for 18-round PRESENT-80. We

have |∆0| = 36,
∑|∆0|

i=1 pi = 2−57.97, Nst = 24, Np = 40, Nc = 32, β = 2−12.55, pf = 2−44.55,
nk = 40 and l = 236.

We denote Ta, Tb, Tc, Td and T3 as the time complexity in step (a), (b), (c) (d) and 3,
respectively, which are as follows:

Ta : 264 memory accesses;
Tb : 272 memory accesses;
Tc : 36 · 232 memory accesses;
Td : 36 · 231 · 2−12.55 · 240 · (12 + 1

8) · 2 = 265.20 1-round encryptions.
T3 : 236 · 240 = 276 18-round encryptions.

Therefore, the total time complexity will be 276 18-round encryptions. The data complexity
is 264 chosen plaintexts and the memory requirements are 240 128-bit cells for the hash table,
which can be reused for the 240 counters. The success probability is 85.95%.

The ratio of weak key satisfying the sum of the probabilities of the 36 differentials is computed
as follows:

rw = 1−
µ−1∑
x=0

Poisson

x, 2n−1 Nd∑
j=1

pi

 = 1−
25.03−1∑
x=0

Poisson
(
x, 263 · 2−57.97

)
= 0.57.

This means that the number of weak keys for which our attack can succeed is 280 · 0.57 = 279.19

for PRESENT-80. A comparison with the attack of [6] can be found in Table 1.

5 Attack on Reduced-Round Serpent

Serpent was one of the five AES candidates in the final round; it is an SPN block cipher with
32 rounds [1]. Fig. 2 depicts Serpent reduced to 8 rounds, from round 4 to 11.
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Fig. 2. The block cipher Serpent reduced to 8 rounds.

In the previous differential cryptanalysis of Serpent in [3], Biham et al. used the structure
attack for Serpent. They identify a differential characteristic for 1

2 + 5 rounds staring from the
linear transformation with fewer active S-boxes (13 active S-boxes) in the first half round, then
extend it backwards to 6 rounds. Moreover, there is only one differential characteristic in each
differential due to the strong avalanche characteristics of Serpent. Biham et al. claim that 214

differential characteristics with probability 2−93 have been found. However, it can be shown that
there are only 213 differential characteristics with probability 2−93. The proof has been omitted
due to space constraints.

For the differential characteristics, the output difference of S-boxes in the first round is
{0906b010x||00000080x||13000226x||06040030x}. As the first round uses S4 S-boxes, the partial
differential distribution table for S4 is listed in Table 4. We will use all the possible non-zero
input differences according to the output differences for the S-boxes in the first round. So we

have |∆0| = 235.32 and
∑|∆0|

i=1 pi = 2−65 which is equal to the probability of the differential
characteristic from round 2 to round 6.

Table 4. Partial differential distribution table for S4

out \in 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

1x 0 0 0 2 0 2 0 0 0 2 0 4 2 2 2 0
2x 0 0 0 2 0 0 0 2 0 4 2 0 0 4 2 0
3x 0 0 2 0 4 2 2 2 2 0 0 0 0 0 2 0
4x 0 0 0 2 0 0 4 2 0 2 0 0 0 2 0 4
6x 0 0 4 0 0 0 0 0 0 2 2 0 0 2 2 4
8x 0 0 0 2 0 2 2 2 0 0 2 0 2 0 2 2
9x 0 0 2 2 0 2 2 0 2 2 0 0 0 2 2 0
Bx 0 2 0 2 4 0 0 0 2 0 2 4 0 0 0 0

We now apply the structure attack described in Sect. 3. We construct 219 structures of 252

chosen plaintexts each. In each structure, all the inputs to non-active S-boxes in the first round
are fixed to some random value, while the 52 bits of input to all the active S-boxes take all the
252 possible values. There are 219 · 251 = 270 pairs for each differential characteristic. We expect
that about 270 · 2−65 = 25 pairs produce the output difference ∆6. In order to reduce the time
complexity and ensure a higher success probability, 52 bits subkey are guessed after the data
collection process. After retrieving 52 bits of the subkey, we can use the right pairs to recover
the remaining 24 bits of the subkey.

The success probability PS can be computed with Equation (1). Here N = 271, |∆0| = 235.32,
p∗ = 2−65 · 2−35.32 · 252 = 2−48.32, Ns = 270 · 235.32 · 2−52 = 253.32, p = 2−52, nk = 52, l = 2,
β = 2−26.22, hence we get PS = 89.87%.

The time complexity is 227.10 · 252 · 13/32 = 277.81 one-round encryptions which is equivalent
to 274.99 7-round encryptions, the data complexity is 271 chosen plaintexts and the memory
requirements are 252 hash cells of 256 bits and 252 32-bit counters storing 25 pairs each, hence
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using about 257 256-bit words. This attack consequently applies to Serpent with all key sizes of
128,192 and 256 bits.

The attack can be further extended to 8-round Serpent-256. By exhaustively searching the
128-bit subkey in the last round to decrypt to round 7, the above attack for 7 rounds can be
applied. The time complexity is 2203.81 8-round encryptions, the data complexity is 271 chosen
plaintexts and the memory requirements are the same as for the 7-round attack. This attack
therefore applies only to Serpent with a 256-bit key.

In comparison, the previous differential attack for 7-round Serpent described in [3] has a
time complexity of 285 memory accesses and a data complexity of 284 chosen plaintexts. For the
previous differential attack on 8-round Serpent, the time complexity is 2213 memory accesses
and the data complexity is 284 chosen plaintexts. This implies that our attacks require much less
chosen plaintexts. Under the assumption that in this case, a seven-round encryption is roughly
equivalent to 243/2 · 7/32 = 24.7 memory accesses [15], our attacks also slightly reduce the time
complexity.

It is possible to further reduce the data requirements at the expense of the time complexity.
We have identified another set of differentials for 5.5 rounds which have 16 instead of 13 active
S-boxes in the first round (the sequence of active S-Boxes is 16–10–6–2–1–5, and there are 241.49

input differences). The combined probability of these differentials is 2−62.85, leading to a total
time complexity greater than the previously described attack.

The ratio of weak keys satisfying the probability of the multiple differentials is computed as
follows:

rw = 1−
µ−1∑
x=0

Poisson

x, 2n−1 Nd∑
j=1

pi

 = 1−
25−1∑
x=0

Poisson
(
x, 270 · 2−65

)
= 0.52.

This means that this attack is expected to work with about half of all possible keys, inde-
pendent of the key size.

6 Conclusion

Modern block ciphers are designed to withstand differential cryptanalysis, as it is one of the
most important cryptanalytic methods. Usually, the resistance to this attack is evaluated based
on bounding the probabilities of differential characteristics; sometimes this is extended to the
case of differentials. However, bounding the probability of a single differential path or a single
differential is not sufficient to demonstrate resistance to differential cryptanalysis. The case of
multiple differentials has to be considered as well. In this paper, we give a general model for
the structure attack, providing guidance on how to choose the set of differentials to minimize
the time complexity. As concrete applications of our model, we present structure attacks on
18-round PRESENT and improve the previous differential cryptanalytic results for the Serpent
block cipher. To the best of our knowledge, those attacks are the best known differential attacks
on these two block ciphers.

Comparing our model for structure attacks against the general model for multiple differential
cryptanalysis proposed in [4], we conclude that the limitation for the set of input differences
imposed by the model of [4] excludes many valuable differentials. We show that in structure
attacks, a very important – and often particularly efficient – subclass of multiple differential
attacks, this restriction can be relaxed. In our model presented in Sect. 3, the analysis of an
attack can be carried out without this assumption.

The relevance of the limitation imposed by the condition of Definition 1 is additionally
supported by our concrete application of the structure attack to PRESENT, which is more

14



efficient than the multiple differential cryptanalysis with different output differences described
in [4] and [6] where this condition was necessary. By removing this limitation, we have identified
new sets of differentials that improve on the previous analysis.

It remains an interesting open question to find a block cipher other than PRESENT for which
multiple differential cryptanalysis with multiple output differences produces superior results to
the structure attack.

Furthermore, our attack model can be used as a guidance to improve differential attacks for
other algorithms. Applying it to other block ciphers than PRESENT or Serpent will be subject
of future work.
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A Proof of Theorem 3

Proof. The output differences for the two active S-boxes are (Gr,1, Nr,1, Vr,1) and (Gr,2, Nr,2, Vr,2).
First, we will prove the case for two active S-boxes in the same group in round r. We have
Gr,1 = Gr,2 and Nr,1 6= Nr,2.

1. Vr,1 ∈ {1, 2, 4, 8}: If Vr,2 ∈ {1, 2, 4, 8}, we denote their two non-zero bits as

{(Gr,1, Nr,1, Br,1), (Gr,1, Nr,2, Br,2)}.

We have

{(Gr,1, Nr,1, Br,1), (Gr,1, Nr,2, Br,2)} P→ {(Br,1, Gr,1, Nr,1), (Br,2, Gr,1, Nr,2)} S→
{(Br,1, Gr,1, Nr+1,1), (Br,1, Gr,1, Nr+1,2), (Br,2, Gr,1, Nr+1,3), (Br,2, Gr,1, Nr+1,4)}
P→ {(Nr+1,1, Br,1, Gr,1), (Nr+1,2, Br,1, Gr,1), (Nr+1,3, Br,2, Gr,1), (Nr+1,4, Br,2, Gr,1, )}.

As there are two active S-boxes in round r+1, we have Br,1 6= Br,2. Because bitNr+1,1 and bit
Nr+1,2 are from the same S-box, we haveNr+1,1 6= Nr+1,2. Similarly, we haveNr+1,3 6= Nr+1,4.
There will be four active S-boxes in the (r+2)-nd round. If Vr,2 ∈ {3, 5, 6, 9, 10, 12}, we denote
the three non-zero bits as

{(Gr,1, Nr,1, Br,1), (Gr,1, Nr,2, Br,2), (Gr,1, Nr,2, Br,3)}.

We have

{(Gr,1, Nr,1, Br,1), (Gr,1, Nr,2, Br,2), (Gr,1, Nr,2, Br,3)}
P→ {(Br,1, Gr,1, Nr,1), (Br,2, Gr,1, Nr,2), (Br,3, Gr,1, Nr,2)|Br,1 = Br,2 6= Br,3}
S→ {(Br,1, Gr,1, Nr+1,1), (Br,3, Gr,1, Nr+1,2), (Br,3, Gr,1, Nr+1,3)|Nr+1,2 6= Nr+1,3}
P→ {(Nr+1,1, Br,1, Gr,1), (Nr+1,2, Br,3, Gr,1), (Nr+1,3, Br,3, Gr,1)}.

There will be three active S-boxes in round r + 2.
2. Vr,1 ∈ {7, 11, 13, 14, 15} or Vr,2 ∈ {7, 11, 13, 14, 15}: There will be at least three active S-boxes

in round r + 1.
3. Vr,1, Vr,2 ∈ {3, 5, 6, 9, 10, 12}: We denote the four non-zero bits as
{(Gr,1, Nr,1, Br,1), (Gr,1, Nr,1, Br,2), (Gr,1, Nr,2, Br,3), (Gr,1, Nr,2, Br,4)}.
We have

{(Gr,1, Nr,1, Br,1), (Gr,1, Nr,1, Br,2), (Gr,1, Nr,2, Br,3), (Gr,1, Nr,2, Br,4)}
P→ {(Br,1, Gr,1, Nr,1, )(Br,2, Gr,1, Nr,1), (Br,3, Gr,1, Nr,2), (Br,4, Gr,1, Nr,2)}.

Only if Br,1 = Br,3 and Br,2 = Br,4, there will be 2 active S-boxes in round r+ 1, so we have
Vr,1 = Vr,2. For Br,1 6= Br,2, the two active S-boxes in round r+ 1 will be in different groups.

Next, we will prove the case for two active S-boxes in different groups in round r. We have
Gr,1 6= Gr,2.

1. Vr,1 ∈ {7, 11, 13, 14, 15} or Vr,2 ∈ {7, 11, 13, 14, 15}: There will be at least three active S-boxes
in round r + 1.

2. Vr,1 ∈ {3, 5, 6, 9, 10, 12}: There are at least three non-zero bits, namely
(Gr,1, Nr,1, Br,1), (Gr,1, Nr,1, Br,2) and (Gr,2, Nr,2, Br,3).
We have

{(Gr,1, Nr,1, Br,1), (Gr,1, Nr,1, Br,2), (Gr,2, Nr,2, Br,3)}
P→ {(Br,1, Gr,1, Nr,1), (Br,2, Gr,1, Nr,1), (Br,3, Gr,2, Nr,2)}.

For Br,1 6= Br,2 and Gr,1 6= Gr,2, there are three active S-boxes in round r + 1.
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3. Vr,1 ∈ {1, 2, 4, 8}: From the above proof, we have Vr,2 ∈ {1, 2, 4, 8}. There are two non-zero
bits {(Gr,1, Nr,1, Br,1), (Gr,2, Nr,2, Br,2)}. We have

{(Gr,1, Nr,1, Br,1), (Gr,2, Nr,2, Br,2)}
P→ {(Br,1, Gr,1, Nr,1), (Br,2, Gr,2, Nr,2)}

S→ {(Br,1, Gr,1, Nr+1,1), (Br,1, Gr,1, Nr+1,2), (Br,2, Gr,2, Nr+1,3), (Br,2, Gr,2, Nr+1,4)}
P→ {(Nr+1,1, Br,1, Gr,1), (Nr+1,2, Br,1, Gr,1), (Nr+1,3, Br,2, Gr,2), (Nr+1,4, Br,2, Gr,2)}.

In order to ensure that there are two active S-boxes in round r + 2, Nr+1,1 = Nr+1,3,
Nr+1,2 = Nr+1,4 and Br,1 = Br,2. So we have Vr,1 = Vr,2 and the two active S-boxes in round
r + 1 are in the same group.

ut
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Table 5. Differentials for 16-round PRESENT with output difference 00000500x||00000500x

i ∆i
0 logpi2 i ∆i

0 logpi2
1 000f0000x||0000000fx -62.13 47 000f0000x||00000f00x -63.79

2 00070000x||00000007x -62.57 48 0f000000x||0000000fx -63.79

3 0f000000x||00000f00x -62.79 49 0f000000x||00000d00x -63.79

4 000f0000x||00000007x -62.84 50 0f000000x||00000b00x -63.79

5 00070000x||0000000fx -62.84 51 0f000000x||00000300x -63.79

6 000d0000x||0000000dx -62.88 52 0f000000x||00000500x -63.79

7 00f00000x||000000f0x -62.95 53 03000000x||00000f00x -63.79

8 00090000x||00000009x -63.10 54 05000000x||00000f00x -63.79

9 000f0000x||00000003x -63.13 55 0d000000x||00000f00x -63.79

10 000f0000x||00000005x -63.13 56 0b000000x||00000f00x -63.79

11 000f0000x||0000000bx -63.13 57 00070000x||00000003x -63.84

12 000f0000x||0000000dx -63.13 58 00070000x||00000005x -63.84

13 00030000x||0000000fx -63.13 59 00030000x||00000007x -63.84

14 00050000x||0000000fx -63.13 60 00050000x||00000007x -63.84

15 000b0000x||0000000fx -63.13 61 f0000000x||00000007x -63.84

16 000d0000x||0000000fx -63.13 62 70000000x||0000000fx -63.84

17 f0000000x||0000000fx -63.13 63 000f0000x||00007000x -63.84

18 000f0000x||0000f000x -63.13 64 00070000x||0000f000x -63.84

19 000d0000x||00000007x -63.19 65 0d000000x||00000700x -63.85

20 00070000x||0000000dx -63.19 66 07000000x||00000d00x -63.85

21 0f000000x||000000f0x -63.21 67 00000f00x||00000f00x -63.87

22 00f00000x||00000f00x -63.21 68 00000000x||0f000f00x -63.87

23 00000000x||000f000fx -63.21 69 d0000000x||0000000dx -63.88

24 0000000fx||0000000fx -63.21 70 000d0000x||0000d000x -63.88

25 07000000x||00000700x -63.23 71 00000000x||000f0007x -63.91

26 00700000x||00000070x -63.39 72 00000000x||0007000fx -63.91

27 000b0000x||0000000bx -63.44 73 0000000fx||00000007x -63.91

28 000f0000x||00000009x -63.50 74 00000007x||0000000fx -63.91

29 00090000x||0000000fx -63.50 75 00900000x||00000090x -63.92

30 0f000000x||00000700x -63.50 76 0f000000x||00000070x -63.92

31 07000000x||00000f00x -63.50 77 07000000x||000000f0x -63.92

32 000b0000x||00000007x -63.52 78 00f00000x||00000700x -63.92

33 00070000x||0000000bx -63.52 79 00700000x||00000f00x -63.92

34 0d000000x||00000d00x -63.54 80 00f00000x||00000030x -63.95

35 70000000x||00000007x -63.57 81 00f00000x||00000050x -63.95

36 00070000x||00007000x -63.57 82 00f00000x||000000b0x -63.95

37 000d0000x||00000009x -63.58 83 00f00000x||000000d0x -63.95

38 00090000x||0000000dx -63.58 84 00300000x||000000f0x -63.95

39 00000000x||00070007x -63.64 85 00500000x||000000f0x -63.95

40 00000007x||00000007x -63.64 86 00b00000x||000000f0x -63.95

41 07000000x||00000070x -63.65 87 00d00000x||000000f0x -63.95

42 00700000x||00000700x -63.65 88 0d000000x||000000d0x -63.95

43 00700000x||000000f0x -63.66 89 00d00000x||00000d00x -63.95

44 00f00000x||00000070x -63.66 90 00000000x||000d000dx -63.95

45 00d00000x||000000d0x -63.70 91 0000000dx||0000000dx -63.95

46 09000000x||00000900x -63.76
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Table 6. Differentials for 16-round PRESENT with output difference 00000900x||00000900x

i ∆i
0 logpi2 i ∆i

0 logpi2
1 000f0000x||0000000fx -62.98 10 000f0000x||00000005x -63.98

2 00070000x||00000007x -63.42 11 000f0000x||0000000bx -63.98

3 0f000000x||00000f00x -63.68 12 000f0000x||0000000dx -63.98

4 000f0000x||00000007x -63.69 13 00030000x||0000000fx -63.98

5 00070000x||0000000fx -63.69 14 00050000x||0000000fx -63.98

6 000d0000x||0000000dx -63.72 15 000b0000x||0000000fx -63.98

7 00f00000x||000000f0x -63.92 16 000d0000x||0000000fx -63.98

8 00090000x||00000009x -63.94 17 f0000000x||0000000fx -63.98

9 000f0000x||00000003x -63.98 18 000f0000x||0000f000x -63.98

Table 7. Other differentials for 16-round PRESENT

i ∆i
0 ∆16 logpi2

1 00000000x||00001001x 00000404x||00000000x -62.96
2 00001001x||00000000x 00000404x||00000000x -63.62
3 00000000x||00004004x 00000404x||00000000x -63.66
4 00000000x||10010000x 00000404x||00000000x -63.78
5 00000000x||0000c004x 00000404x||00000000x -63.87
6 00000000x||0000400cx 00000404x||00000000x -63.87
7 00000000x||0000c00cx 00000404x||00000000x -63.87
8 00000000x||00002002x 00000404x||00000000x -63.88
9 00000000x||00001008x 00000404x||00000000x -63.96
10 00000000x||0000100ex 00000404x||00000000x -63.96
11 00000000x||00008001x 00000404x||00000000x -63.96
12 00000000x||0000e001x 00000404x||00000000x -63.96

1 000f0000x||0000000fx 05000000x||00000500x -63.00
2 00070000x||00000007x 05000000x||00000500x -63.43
3 0f000000x||00000f00x 05000000x||00000500x -63.66
4 000f0000x||00000007x 05000000x||00000500x -63.69
5 00070000x||0000000fx 05000000x||00000500x -63.69
6 00f00000x||000000f0x 05000000x||00000500x -63.82
7 000d0000x||0000000dx 05000000x||00000500x -63.80

1 000f0000x||0000000fx 00000000x||05000500x -63.33
2 00070000x||00000007x 00000000x||05000500x -63.75
3 0f000000x||00000f00x 00000000x||05000500x -63.99

1 000f0000x||0000000fx 00000300x||00000300x -63.29
2 00070000x||00000007x 00000000x||05000500x -63.73

1 000f0000x||0000000fx 00000005x||00000005x -63.51
2 00070000x||00000007x 00000005x||00000005x -63.95

1 00000000x||00001001x 00004004x||00000000x -63.81

1 000f0000x||0000000fx 00005000x||00005000x -63.67

1 000f0000x||0000000fx 00000050x||00000050x -63.67

1 000f0000x||0000000fx 09000000x||00000900x -63.84

Table 8. Number of differential paths with different probability for differentials in Table 5 (first part)

i 2−71 2−73 2−75 2−77 2−79 2−81 2−83 2−85 2−87 2−89 2−91

9,10,11,12,13,14,15,16,17,18 12 160 986 3744 9654 17440 21988 18536 9280 1920 0

19,20 12 157 952 3567 9092 16264 20348 17068 8520 1760 0

32,33 9 123 769 2913 7350 12692 14780 10980 4600 800 0

35,36 9 117 707 2669 7056 13858 20936 24568 21248 11520 2560

37,38 6 89 628 2795 8562 18504 27976 28004 16200 3680 0

47,48 8 104 628 2348 5976 10676 13340 11160 5568 1152 0

49,50,51,52,53,54,55,56 4 64 486 2336 7838 19064 33976 43600 38368 20736 4608

57,58,59,60,61,62,63,64 9 114 655 2258 5092 7600 7180 3800 800 0 0

65,66 4 63 472 2243 7448 17942 31704 40376 35344 19040 4224

69,70 3 55 457 2295 7744 18318 30608 35268 26256 11040 1920

80,81,82,83,84,85,86,87 4 60 438 2066 6886 16766 30064 38908 34584 18880 4224
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Table 9. Number of differential paths with different probability for differentials in Table 5 (second part)

i 2−70 2−72 2−74 2−76 2−78 2−80 2−82 2−84 2−86 2−88 2−90 2−92

1 12 160 986 3744 9654 17440 21988 18536 9280 1920 0 0

2 9 117 707 2669 7056 13858 20936 24568 21248 11520 2560 0

3 4 64 486 2336 7838 19064 33976 43600 38368 20736 4608 0

4,5 9 114 655 2258 5092 7600 7180 3800 800 0 0 0

6 3 55 457 2295 7744 18318 30608 35256 26256 11040 1920 0

7 4 60 438 2066 6886 16766 30064 38908 34584 18880 4224 0

8 3 49 383 1897 6526 16098 28564 35504 28928 13440 2560 0

21,22 4 56 382 1708 5490 13088 23300 30260 27208 15168 3456 0

23,24 0 48 472 2112 5724 10404 13104 11336 6400 1920 0 0

25 3 47 351 1673 5650 14212 27472 41472 48928 43520 25600 6144

26 3 44 316 1480 4971 12516 24286 36824 43656 39168 23296 5632

27 0 21 274 1641 6002 14746 25040 29168 22336 10080 1920 0

28,29,30,31 3 46 331 1486 4562 9840 14808 14736 8480 1920 0 0

34 1 21 205 1243 5222 15940 35960 59616 70464 55488 24960 4608

39,40 0 36 342 1496 4090 8128 12572 14936 12928 7680 2560 0

41,42 3 41 275 1223 3976 9836 18950 28680 34008 30720 18688 4608

43,44 3 43 297 1309 4000 8664 13168 13268 7720 1760 0 0

45 1 20 188 1112 4609 14004 31658 52832 63048 50160 22752 4224

46 1 19 175 1037 4364 13596 31832 55600 70336 60416 30208 6144

67,68 0 16 200 1184 4420 11276 20280 26080 23392 13824 4608 0

71,72,73,74 0 36 330 1330 3072 4480 4280 2600 800 0 0 0

75 1 18 160 928 3857 11954 28014 49196 62800 54528 27520 5632

76,77,78,79 3 40 257 1070 3152 6706 10188 10412 6200 1440 0 0

88,89 1 19 169 949 3768 11100 24650 40920 49128 39696 18336 3456

90,91 0 12 178 1160 4430 10944 18260 20952 16416 8160 1920 0
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(s0, s1): the nibble positions for the two active S-boxes.
(v0, v1): the difference values for the two active S-boxes.
cnt[i][j]: the entity with input difference i and output difference j in differential distri-
bution table of S-box.
xor: a list of structures and each structure is a triple.
xor[i][0] : the information of the first active S-box in round i+ 1.
xor[i][1] : the information of the second active S-box in round i+ 1.
xor[i][j].sbox: the nibble position of the active S-box.
xor[i][j].in: the input difference of the active S-box.
xor[i][j].out: the output difference of the active S-box.
Procedure(s0,s1,v0,v1):

struct {
sbox
in
out

}xor[ROUND][2] = 0

if s0
4

= s1
4

: #(same group)
for xor[0][0].out ∈ (3, 5, 6, 9, 10, 12):
xor[0][1].out = xor[0][0].out
if cnt[v0][xor[0][0].out]! = 0 and cnt[v1][xor[0][1].out]! = 0:

(xor[1][0].sbox, xor[1][1].sbox, xor[1][0].in, xor[1][1].in) =
P (s0, s1, xor[0][0].out, xor[0][1].out)
for xor[1][0].out ∈ (1, 2, 4, 8):

if cnt[xor[1][0].in][xor[1][0].out]! = 0:
xor[1][1].out = xor[1][0].out
(xor[2][0].sbox, xor[2][1].sbox, xor[2][0].in, xor[2][1].in) =
P (xor[1][0].sbox, xor[1][1].sbox, xor[1][0].out, xor[1][1].out)
...
Compute probability and display differential path.

else #(different groups)
for xor[0][0].out ∈ (1, 2, 4, 8):
xor[0][1].out = xor[0][0].out
if cnt[v0][xor[0][0].out]! = 0 and cnt[v1][xor[0][1].out]! = 0:

(xor[1][0].sbox, xor[1][1].sbox, xor[1][0].in, xor[1][1].in) =
P (s0, s1, xor[0][0].out, xor[0][1].out)
for xor[1][0].out ∈ (3, 5, 6, 9, 10, 12):

if cnt[xor[1][0].in][xor[1][0].out]! = 0:
xor[1][1].out = xor[1][0].out
(xor[2][0].sbox, xor[2][1].sbox, xor[2][0].in, xor[2][1].in) =
P (xor[1][0].sbox, xor[1][1].sbox, xor[1][0].out, xor[1][1].out)
...
Compute probability and display differential path.

Fig. 3. Search algorithm for the differential paths of PRESENT with two active S-boxes per round.
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Abstract. In 1994 Langford and Hellman introduced a combination of differential and linear crypt-
analysis under two default independence assumptions, known as differential-linear cryptanalysis,
which is based on the use of a differential-linear distinguisher constructed by concatenating a linear
approximation with a (truncated) differential with probability 1. In 2002, by using an additional
assumption, Biham, Dunkelman and Keller gave an enhanced version that can be applicable to the
case when a differential with a probability of smaller than 1 is used to construct a differential-linear
distinguisher. In this paper, we present a new methodology for differential-linear cryptanalysis under
the original two assumptions implicitly used by Langford and Hellman, without using the additional
assumption of Biham et al. The new methodology is more reasonable and more general than Biham
et al.’s methodology, and apart from this advantage it can lead to some better differential-linear
cryptanalytic results than Biham et al.’s and Langford and Hellman’s methodologies. As examples,
we apply it to attack 10 rounds of the CTC2 block cipher with a 255-bit block size and key, 13
rounds of the DES block cipher, and 12 rounds of the Serpent block cipher. The new methodology
can be used to cryptanalyse other block ciphers, and block cipher designers should pay attention
to this new methodology when designing a block cipher.

Key words: Block cipher, CTC2, DES, Serpent, Differential cryptanalysis, Linear cryptanaly-
sis, Differential-linear cryptanalysis.

1 Introduction

Differential cryptanalysis was introduced in 1990 by Biham and Shamir [10]. Linear cryptanalysis
was introduced in 1992 by Matsui and Yamagishi [36]. A differential cryptanalysis attack is based
on the use of one or more so-called differentials, and a linear cryptanalysis attack is based on
the use of one or more so-called linear approximations. Both the cryptanalytic methods were
used to attack the full Data Encryption Standard (DES) [37] algorithm faster than exhaustive
key search [12,34].

In 1994 Langford and Hellman [31] introduced a combination of differential and linear crypt-
analysis under two default independence assumptions, known as differential-linear cryptanaly-
sis, and they applied it to break 8-round DES. Such an attack is constructed on a so-called
differential-linear distinguisher; a differential-linear distinguisher treats a block cipher as a cas-
cade of two sub-ciphers, and it uses a linear approximation for a sub-cipher and, for the other
sub-cipher it uses a differential (or a truncated differential [27]) with a one probability that
does not affect the bit(s) concerned by the input mask of the linear approximation. In 2002, by
using an additional assumption Biham, Dunkelman and Keller [6] introduced an enhanced ver-
sion of differential-linear cryptanalysis, which is applicable to the case when a differential with
a smaller probability is used to construct a differential-linear distinguisher; and they applied

? An earlier version of this work appeared in 2010 as part of Cryptology ePrint Archive Report 2010/025 [33],
which was done when the author was with Eindhoven University of Technology (The Netherlands) under the
support of the Dutch Sentinels project PINPASJC (No. TIF.6687).



Table 1. Our and previous main cryptanalytic results on CTC2, DES and Serpent

Cipher Attack Technique Rounds Data Time Success Rate Source

CTC2 Algebraic 6 4CP 2253Enc. not specified [14]

(255-bitDifferential-linear 8† 237CP 237Enc. 61.8% [19]
version) 10 2142CP 2207Enc. 99.9% Sect. 5.4

DES Differential full 247.2CP 237Enc. not specified [12]

Linear full 243KP 247Enc. 85% [34]

Davis’s attack [17] full 250KP 250Enc. 51% [3]

Differential-linear 8 768CP 240Enc. 95% [31]

9 215.75CP 238Enc. 88.8% [18]

10 229.66CP 244Enc. 97% Sect. 4.2

13 252.1CP 254.2Enc. 99% Sect. 4.2

SerpentDifferential 8 284CP 2206.7Enc.not specified [4]

Amplified boomerang [24] 9 2110CP 2252Enc. not specified [24]

Boomerang [40] 10 2126.3ACPC2165Enc. not specified [7]

Rectangle 10 2126.3CP 2165Enc. not specified [7]

Linear 11 2118KP 2178Enc. not specified [13]

Differential-linear 12 2123.5CP 2249.4Enc. 84% [20]

2124.5CP 2244.9Enc. 98.8% Sect. 6.3

†: There is a flaw; see Section 5.2 for detail.

the enhanced version to break 9-round DES. Differential-linear cryptanalysis has been used to
yield the best currently published cryptanalytic results for a number of state-of-the-art block
ciphers [6, 8, 19,20].

In this paper, we present a new methodology for differential-linear cryptanalysis under the
two default assumptions implicitly used by Langford and Hellman, without using the additional
assumption due to Biham et al. The new methodology is more reasonable and more general
than Biham et al.’s methodology, and it can lead to some better differential-linear cryptanalytic
results than Biham et al.’s and Langford and Hellman’s methodologies. As examples, we apply
the new methodology to mount differential-linear attacks on 10 rounds of the CTC2 [14] block
cipher with a 255-bit block size and key, 13 rounds of DES, and 12 rounds of the Serpent [1]
block cipher. In terms of the numbers of attacked rounds: The 10-round CTC2 attack is the
first published cryptanalytic attack on the version of CTC2; the 13-round DES attack is much
better than any previously published differential-linear cryptanalytic results for DES, though
it is inferior to the best previously published cryptanalytic results for DES; and the 12-round
Serpent attack matches the best previously published cryptanalytic result for Serpent, that was
obtained under Biham et al.’s methodology. Table 1 summarises both our and previous main
cryptanalytic results on CTC2, DES and Serpent, where CP, KP and ACPC refer respectively
to the required numbers of chosen plaintexts, known plaintexts and adaptively chosen plaintexts
and ciphertexts, and Enc. refers to the required number of encryption operations of the relevant
version of CTC2, DES and Serpent.

The remainder of the paper is organised as follows. In the next section we give the notation
used throughout the paper and briefly describe differential and linear cryptanalysis. In Section 3
we give the new methodology for differential-linear cryptanalysis. In Sections 4–6 we present
our cryptanalytic results on DES, CTC2 and Serpent, respectively. We discuss a few possible
extensions to our methodology in Section 7. Section 8 concludes this paper.

2 Preliminaries

In this section we describe the notation, differential and linear cryptanalysis.



2.1 Notation

In the following descriptions, we assume that a number without a prefix is in decimal notation,
and a number with prefix 0x is in hexadecimal notation, unless otherwise stated. The bits of
a value are numbered from right to left, the leftmost bit is the most significant bit, and the
rightmost bit is the least significant bit, except in the case of DES, where we use the same
numbering notation as in FIPS-46 [37]. We use the following notation.

⊕ bitwise logical exclusive OR (XOR) of two bit strings of the same length
� dot product of two bit strings of the same length
|| string concatenation
� left shift of a bit string
≪ left rotation of a bit string
◦ functional composition. When composing functions X and Y, X ◦Y denotes the

function obtained by first applying X and then applying Y
ej a 255-bit value with zeros everywhere except for bit position j, (0 ≤ j ≤ 254)
ei0,···,ij the 255-bit value equal to ei0 ⊕ · · · ⊕ eij , (0 ≤ i0, · · · , ij ≤ 254)
E an n-bit block cipher when used with a specific user key

2.2 Differential Cryptanalysis

Differential cryptanalysis [10] takes advantage of how a specific difference in a pair of inputs of
a cipher can affect a difference in the pair of outputs of the cipher, where the pair of outputs
are obtained by encrypting the pair of inputs using the same key. The notion of difference can
be defined in several ways; the most widely discussed is with respect to the XOR operation.
The difference between the inputs is called the input difference, and the difference between the
outputs of a function is called the output difference. The combination of the input difference
and the output difference is called a differential. The probability of a differential is defined as
follows.

Definition 1 (from [32]). If α and β are n-bit blocks, then the probability of the differential
(α, β) for E, written ∆α→ ∆β, is defined to be

PrE(∆α→ ∆β) = Pr
P∈{0,1}n

(E(P )⊕ E(P ⊕ α) = β).

The following result follows trivially from Definition 1:

Proposition 1 (from [32]). If α and β are n-bit blocks, then

PrE(∆α→ ∆β) =
|{x|E(x)⊕ E(x⊕ α) = β, x ∈ {0, 1}n}|

2n
.

For a random function, the expected probability of a differential for any pair (α, β) is 2−n.
Therefore, if PrE(∆α→ ∆β) is larger than 2−n, we can use the differential to distinguish E from
a random function, given a sufficient number of chosen plaintext pairs.

Sometimes, we simply write ∆α
E→ ∆β to denote the differential ∆α → ∆β for E in this

paper.

2.3 Linear Cryptanalysis

Linear cryptanalysis [34, 36] exploits correlations between a particular linear function of the
input blocks and a second linear function of the output blocks. The combination of the two



linear functions is called a linear approximation. The most widely used linear function involves
computing the bitwise dot product operation of the block with a specific binary vector (the
specific value combined with the input blocks may be different from the value applied to the
output blocks). The value combined with the input blocks is called the input mask, and the value
applied to the output blocks is called the output mask. The probability of a linear approximation
is defined as follows.

Definition 2 (from [32]). If α and β are n-bit blocks, then the probability of the linear ap-
proximation (α, β) for E, written Γα→ Γβ, is defined to be

PrE(Γα→ Γβ) = Pr
P∈{0,1}n

(P � α = E(P )� β).

We refer to below the dot product P � α as the input parity, and the dot product E(P )� β
as the output parity. The following result follows trivially from Definition 2:

Proposition 2 (from [32]). If α and β are n-bit blocks, then

PrE(Γα→ Γβ) =
|{x|x� α = E(x)� β, x ∈ {0, 1}n}|

2n
.

For a random function, the expected probability of a linear approximation for any pair (α, β)
is 1

2 . The bias of a linear approximation Γα→ Γβ, denoted by ε, is defined to be ε = |PrE(Γα→
Γβ)− 1

2 |. Thus, if the bias ε is sufficiently large, we can use the linear approximation to distinguish
E from a random function, given a sufficient number of matching plaintext-ciphertext pairs.

2.4 General Assumptions Used in Practice

Propositions 1 and 2 give the accurate probability values of a differential and a linear approx-
imation from a theoretical point of view. However, it is usually hard to apply them to a block
cipher with a large block size, for example, n = 64 or 128 which is currently being widely used in
reality, and even harder when the differential or linear approximation operates on many rounds
of the cipher. In practice, for a Markov block cipher [29], a multi-round differential (or linear
approximation) is usually obtained by concatenating a few one-round differential characteristics
(respectively, linear approximations), and the probability of the multi-round differential (or lin-
ear approximation) is regarded as the product (respectively, the piling-up function [34]) of the
probabilities of the one-round differential characteristics (respectively, linear approximations)
under the following Assumption 1.

Assumption 1 The involved round functions behave independently.

We note that one may argue the correctness of Assumption 1 and may use a different as-
sumption, for example, many people would like to use the assumption that the round keys are
independent and uniformly distributed; however, it is not accurate, either, for generally the
round keys are actually dependent, being generated from a global user key under the key sched-
ule algorithm of the cipher. Anyway, all such assumptions require us to treat the involved rounds
as independent. As mentioned in [22], this is “most often not exactly the case, but as often it is
a good approximation”.

Differential and linear cryptanalyses generally treat a basic unit of input (i.e. a chosen-
plaintext pair for differential cryptanalysis; a known-plaintext for linear cryptanalysis) as a
random variable, and assume that given a set of inputs of the basic unit, the inputs that satisfy
the required property can be approximated by an independent distribution, as followed in [11,34].



3 Differential-Linear Cryptanalysis: Previous Work and Our Methodology

In this section we first review previous work on differential-linear cryptanalysis, and then give
our new methodology, followed by a few implications. First observe that for simplicity we assume
that the probability for a linear approximation with bias ε is 1

2+ε in all the following descriptions;
but the same results can be obtained when the probability is 1

2 − ε.

3.1 Previous Work

Langford and Hellman’s Methodology. In 1994 Langford and Hellman [31] introduced
differential-linear cryptanalysis as a combination of differential and linear cryptanalysis, which is
based on the use of a differential-linear distinguisher. To define a differential-linear distinguisher,
they treated E as a cascade of two sub-ciphers E0 and E1, where E = E0 ◦ E1. A differential-
linear distinguisher is then defined to be the combination of a (truncated) differential and a linear
approximation (∆α→ ∆β, Γγ → Γδ), where Γγ → Γδ is a linear approximation with bias ε for
E1, and ∆α→ ∆β is a (truncated) differential with probability 1 for E0 which has a zero output
difference in the bit positions concerned by the input mask of the linear approximation (thus
β� γ = 0 holds). Let P be a plaintext chosen uniformly at random from {0, 1}n. Thus, we have
E0(P )� γ = E0(P ⊕α)� γ with probability 1. The differential-linear distinguisher is concerned
with the event δ�E(P ) = δ�E(P⊕α); and under Assumption 1 and the following Assumption 2
it has a probability of Pr(δ�E(P ) = δ�E(P ⊕α)) = (12 +ε)×(12 +ε)+(12−ε)×(12−ε) = 1

2 +2ε2.

Assumption 2 The two inputs E0(P ) and E0(P ⊕α) of the linear approximation for E1 behave
as independent inputs with respect to the linear approximation.

Note that E(P ) = E1(E0(P )) and E(P ⊕ α) = E1(E0(P ⊕ α)) in the above descriptions. As-
sumption 2 is somewhat like assuming an independent distribution for plaintext pairs generated
from a particular structure of data with certain property in differential cryptanalysis.

By contrast, for a random function, the expected probability of a differential-linear distin-
guisher is 1

2 . Therefore, if the bias |Pr(δ �E(P ) = δ �E(P ⊕ α))− 1
2 | = 2ε2 is sufficiently large,

we can distinguish E from a random function.

Biham et al.’s Methodology. A differential-linear distinguisher plays a fundamental role in
a differential-linear cryptanalysis attack. In 2002 Biham, Dunkelman and Keller [6] presented an
enhanced version to make a differential-linear distinguisher cover more rounds of a block cipher,
so that an attacker can potentially break more rounds of the cipher. Biham et al.’s enhanced
version includes the case when the (truncated) differential ∆α→ ∆β has a smaller probability
than 1, p say, with β meeting the condition β�γ = 0.1 A slightly revised version was given in [18].
They applied Langford and Hellman’s analysis described above when E0(P ) ⊕ E0(P ⊕ α) = β,
and used the following Assumption 3 for the cases where E0(P )⊕ E0(P ⊕ α) 6= β:2

Assumption 3 The output parities δ�E(P ) and δ�E(P ⊕α) have a uniform and independent
distribution in {0, 1} for the cases where E0(P )⊕ E0(P ⊕ α) 6= β.

1 A more general condition is β � γ = c, where c ∈ {0, 1} is a constant. Without loss of generality, we consider
the case with c = 0 throughout this paper.

2 We note that Biham et al. used a different assumption when reviewing the enhanced version in a few other
papers, [9] say, where they assumed that E0(P ) � γ = E0(P ⊕ α) � γ holds with half a chance for the cases
where E0(P ) ⊕ E0(P ⊕ α) 6= β, yielding the same probability value 1

2
+ 2pε2 as Assumption 3. We treat this

assumption as Assumption 3, though they are different.



Finally, under Assumptions 1, 2 and 3, Biham et al. got Pr(δ � E(P ) = δ � E(P ⊕ α)) =
p× (12 + 2ε2) + (1− p)× 1

2 = 1
2 + 2pε2.

As a result, they concluded that if the bias 2pε2 is sufficiently large, the distinguisher can be
used as the basis of a differential-linear attack to distinguish E from a random function. Roughly,
the attack has a data complexity of about O(p−2ε−4).

Note. We learnt from the comments of an anonymous reviewer that the same methodology
appeared earlier in Langford’s PhD thesis [30], (which seems to be not publicly accessible).
For simplicity, in this paper we use the phrase “Biham et al.’s methodology” to express this
methodology, but hope the reader to keep in mind that Langford proposed the same methodology
a few years earlier.

3.2 Our Methodology

In summary, the differential-linear distinguishers described above are concerned with the correla-
tion between a pair of output parities, where the pair of output parities are obtained by applying
a linear function (e.g. bitwise dot product with δ) to the outputs of a pair of input blocks with
difference α (under the same key). The combination of the input difference and the linear func-
tion is called a differential-linear distinguisher. More formally, we define the probability of the
differential-linear distinguisher as follows.

Definition 3. If α and δ are n-bit blocks, then the probability of the differential-linear distin-
guisher (α, δ) for E, written ∆α→ Γδ, is defined to be

PrE(∆α→ Γδ) = Pr
P∈{0,1}n

(E(P )� δ = E(P ⊕ α)� δ).

The following result follows trivially from Definition 3:

Proposition 3. If α and δ are n-bit blocks, then

PrE(∆α→ Γδ) =
|{x|E(x)� δ = E(x⊕ α)� δ, x ∈ {0, 1}n}|

2n
.

For a random function, the expected probability of a differential-linear distinguisher for any
combination (α, δ) is 1

2 . Similarly, the bias of the differential-linear distinguisher ∆α → Γδ is
defined to be |PrE(∆α→ Γδ)−1

2 |. Thus, if the bias is sufficiently large, we can use the differential-
linear distinguisher to distinguish E from a random function, given a sufficient number of chosen
plaintext pairs.

In practice, it is usually infeasible to compute the accurate probability of a differential-linear
distinguisher ∆α → Γδ by Proposition 3, and we have to make use of some assumptions to
approximate it, like Biham et al.’s methodology described in Section 3.1. However, Biham et
al.’s methodology uses the three assumptions as hypotheses and works only when Assumption 3
holds; otherwise it may give probability values that are highly inaccurate in some situations;
for example, let’s intuitively consider the naive situation where the differential ∆α → ∆β has
probability 1

2 and meets β � γ = 0, and all the other possible differentials {∆α → ∆β̂} meet

β̂ � γ = 1. Such an example can be easily built for a practical block cipher, DES say. The
differential ∆α → ∆β contributes 1

2 [(12 + ε) × (12 + ε) + (12 − ε) × (12 − ε)] = 1
4 + ε2 to the

probability of the distinguisher, and the other differentials {∆α → ∆β̂} contribute 1
2 [(12 + ε)×

(12 − ε) + (12 − ε)× (12 + ε)] = 1
4 − ε

2, which also cause a bias, but in a negative way, canceling the
bias due to ∆α→ ∆β. So the real bias of the distinguisher is 0, that is, the distinguisher has no
cryptanalytic significance. But if we applied Biham et al.’s methodology in this situation, the



distinguisher would have a bias of 2 × 1
2 × ε

2 = ε2, and thus the distinguisher would be useful
(if ε2 is large enough); but nevertheless it is useless in fact. Notice that this case is not truly a
counterexample to Biham et al.’s methodology, for it is clear that Assumption 3 does not hold
for it, but it suggests that we should be cautious about using Assumption 3 and actually, we
should be careful with using any assumption, and it is preferable to use as few assumptions as
possible.

Biham, Dunkelman and Keller used a heuristic way to approximate the probability of a
differential-linear distinguisher. We make an analysis for the probability of a differential-linear
distinguisher from a mathematical point, and obtain a new methodology under only Assump-
tions 1 and 2. Our result is given as Theorem 1, followed by a proof.

Theorem 1. An n-bit block cipher E is represented as a cascade of two sub-ciphers E0 and E1,
where E = E0 ◦E1. If α (6= 0) is an input difference for E0, Γγ → Γδ is a linear approximation
with bias ε for E1, and the sum of the probabilities for the differentials {∆α→ ∆β|PrE0(∆α→
∆β) > 0, γ � β = 0, β ∈ {0, 1}n} is p̂ (=

∑
γ�β=0 PrE0(∆α→ ∆β)), then under Assumptions 1

and 2 the probability of the differential-linear distinguisher ∆α→ Γδ is

Pr
P∈{0,1}n

(E(P )� δ = E(P ⊕ α)� δ) =
1

2
+ 2(2p̂− 1)ε2.

Proof. Given the input difference α for E0, there are one or more possible output differences
{β|PrE0(∆ α → ∆β) > 0, β ∈ {0, 1}n}; these output differences can be classified into two sets:
one is {β|γ�β = 0,PrE0(∆α→ ∆β) > 0, β ∈ {0, 1}n}, and the other is {β|γ�β = 1,PrE0(∆α→
∆β) > 0, β ∈ {0, 1}n}.

Let P be a plaintext chosen uniformly at random from {0, 1}n. Then, under Assumptions 1
and 2 we have

Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )⊕ E0(P ⊕ α) = β, γ � β = 0)

= Pr(E0(P )� γ = E(P )� δ,E0(P ⊕ α)� γ = E(P ⊕ α)� δ|
E0(P )⊕ E0(P ⊕ α) = β, γ � β = 0) +

Pr(E0(P )� γ 6= E(P )� δ,E0(P ⊕ α)� γ 6= E(P ⊕ α)� δ|
E0(P )⊕ E0(P ⊕ α) = β, γ � β = 0)

= (
1

2
+ ε)× (

1

2
+ ε) + [1− (

1

2
+ ε)]× [1− (

1

2
+ ε)]

=
1

2
+ 2ε2,

and

Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )⊕ E0(P ⊕ α) = β, γ � β = 1)

= Pr(E0(P )� γ = E(P )� δ,E0(P ⊕ α)� γ 6= E(P ⊕ α)� δ|
E0(P )⊕ E0(P ⊕ α) = β, γ � β = 1) +

Pr(E0(P )� γ 6= E(P )� δ,E0(P ⊕ α)� γ = E(P ⊕ α)� δ|
E0(P )⊕ E0(P ⊕ α) = β, γ � β = 1)

= (
1

2
+ ε)× [1− (

1

2
+ ε)] + [1− (

1

2
+ ε)]× (

1

2
+ ε)

=
1

2
− 2ε2.

Next, under Assumptions 1 and 2 we can compute the probability of the differential-linear
distinguisher as follows.

Pr(E(P )� δ = E(P ⊕ α)� δ)



=
∑

β∈{0,1}n,Y ∈{0,1}

Pr(E(P )� δ = E(P ⊕ α)� δ,E0(P )� γ ⊕ E0(P ⊕ α)� γ = Y,

E0(P )⊕ E0(P ⊕ α) = β)

=
∑

β∈{0,1}n,Y ∈{0,1}

Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )� γ ⊕ E0(P ⊕ α)� γ = Y,

E0(P )⊕ E0(P ⊕ α) = β)×
Pr(E0(P )� γ ⊕ E0(P ⊕ α)� γ = Y,E0(P )⊕ E0(P ⊕ α) = β)

=
∑

β∈{0,1}n
Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )� γ ⊕ E0(P ⊕ α)� γ = 0,

E0(P )⊕ E0(P ⊕ α) = β)× Pr(E0(P )� γ ⊕ E0(P ⊕ α)� γ = 0,

E0(P )⊕ E0(P ⊕ α) = β) +∑
β∈{0,1}n

Pr(E(P )� δ = E(P ⊕ α)� δ|E0(P )� γ ⊕ E0(P ⊕ α)� γ = 1,

E0(P )⊕ E0(P ⊕ α) = β)× Pr(E0(P )� γ ⊕ E0(P ⊕ α)� γ = 1,

E0(P )⊕ E0(P ⊕ α) = β) (1)

= (
1

2
+ 2ε2)×

∑
β∈{0,1}n,γ�β=0

Pr(E0(P )⊕ E0(P ⊕ α) = β) +

(
1

2
− 2ε2)×

∑
β∈{0,1}n,γ�β=1

Pr(E0(P )⊕ E0(P ⊕ α) = β)

=
1

2
+ 2(2p̂− 1)ε2. �

Consequently, the bias of the differential-linear distinguisher ∆α→ Γδ is

| Pr
P∈{0,1}n

(E(P )� δ = E(P ⊕ α)� δ)− 1

2
| = 2|2p̂− 1|ε2.

3.3 Implications

Biham et al.’s methodology requires Assumptions 1, 2 and 3, while our methodology requires
only Assumptions 1 and 2. Thus, our methodology is more reasonable than Biham et al.’s
methodology.

Biham et al.’s methodology holds only when Assumption 3 holds, and under the situation
we have p̂ = p + (1 − p)12 = 1

2 + p
2 , meaning that the probability value obtained using Biham

et al.’s methodology equals that obtained using our methodology. Thus, when Biham et al.’s
methodology holds, our methodology always holds. However, our methodology holds under some
situations where Biham et al.’s methodology does not hold, for example, it works for the naive
situation discussed in Section 3.2 where p̂ = p = 1

2 . Therefore, our methodology is more gen-
eral than Biham et al.’s methodology. (When Langford and Hellman’s methodology holds, our
methodology always holds as well.)

Our methodology still requires Assumptions 1 and 2. Assumption 1 is extensively used in
and is commonly regarded as necessary for differential and linear cryptanalysis in practice. As-
sumption 2 seems irremovable to get such a simple and practical probability formula; otherwise,
the formula could not be so simple, but a more accurate version can be easily obtained from
our above reasonings, for instance, from Eq. (1), though it is complicated and appears to be
hardly applicable in practice. The assumptions mean that, in some cases, the probability of a
differential-linear distinguisher may be overestimated or underestimated, and so is the success



probability of the attack; however, computer experiments [8,20,28,31,34,35] have shown that the
assumptions work well in practice for some block ciphers. Anyway, it seems reasonable to take
the worst case assumption from the point of the user of a cipher. We suggest that if possible an
attacker should check the validity of these assumptions when applying them to a specific cipher.

Our result shows that using only one (truncated) differential satisfying β � γ = 0 is not
sufficient in most situations, and it is likely to be not sufficient in the general situation; we
should use all the differentials satisfying β� γ = 0 instead. This makes the distinguisher harder
and even impossible to construct in practice, due to a large number of possible output differences.
Anyway, we should use at least those differentials with a significant contribution to reduce the
deviation if we are able to do so. Biham et al.’s methodology suggests that if the bias of the linear
approximation keeps constant, the larger p is, the bigger is the bias of the distinguisher. Now,
we know that may be not true in the general situation: A differential with a bigger probability
will not necessarily result in a distinguisher with a bigger bias.

When constructing a differential-linear distinguisher, in Biham et al.’s methodology the
attacker first chooses a (truncated) differential that meets the condition (as followed in [6,8,19,
20], in practice the output difference of the differential has zeros in the bit positions concerned by
the input mask of the linear approximation), then calculates the probability of the differential,
and finally takes this probability as the value of p. Our new methodology suggests a different
format, that is, computing p̂. Once the linear approximation and the input difference of the
differentials are chosen, that how many rounds can be constructed for a distinguisher depends
to some extent on the computational power available for the attacker.

Our new methodology can lead to some better differential-linear cryptanalytic results than
Biham et al.’s and Langford and Hellman’s methodologies, as to be demonstrated by its appli-
cations to the block ciphers DES, CTC2 and Serpent in the following sections. Before further
proceeding, observe that DES is a Markov cipher under the XOR difference notion [29], and sim-
ilarly we can learn that both CTC2 and Serpent are Markov ciphers under the XOR difference
notion.

At last, to be conservative, we would like to suggest that one should pay attention to all these
methodologies, for a real situation is usually hard to predict, and it may make the Assumption 3
for Biham et al.’s methodology hold.

4 Application to the DES Block Cipher

The DES block cipher is well known to both academia and industry, which has a 64-bit block
size, a 56-bit user key, and a total of 16 rounds. We refer the reader to [37] for the specifications
of DES.

In 1994, under the two default Assumptions 1 and 2 Langford and Hellman [31] used their
methodology to obtain a 6-round differential-linear distinguisher of DES, and finally applied
it to break 8-round DES; the attack recovers 16 key bits with a time complexity of 214.6 8-
round DES encryptions, so it would take 240 encryptions to recover the remaining 40 key bits
with an exhaustive search, meaning that a total of approximately 240 8-round DES encryptions
are required to recover the whole 56 key bits (Note that there might exist an efficient way to
obtain the remaining key bits). In 2002, under Assumptions 1, 2 and 3, Biham, Dunkelman
and Keller [6] described a 7-round differential-linear distinguisher of DES using their enhanced
methodology, and finally gave differential-linear attacks on 8 and 9-round DES; and an improved
version of the 9-round attack appeared in pages 108–111 of [18]. Their attack recovers 18 key
bits with a time complexity of 229.17 9-round DES encryptions, the remaining 38 key bits would
take 238 encryptions to recover with a key exhaustion, and thus it has a total of approximately
238 9-round DES encryptions to recover the whole 56 key bits.



Nevertheless, we find that our new methodology enables us to construct 7 and 8-round
differential-linear distinguishers of DES based on the same 3-round linear approximation as
used in the previous differential-linear cryptanalysis of DES [6, 31]; the 8-round distinguisher
can allow us to break 10-round DES. More importantly, we are able to construct a 11-round
differential-linear distinguisher of DES, and finally use it as the basis of a differential-linear
attack on 13-round DES. Below we describe the 11-round differential-linear distinguisher and
our attack on 13-round DES. We write the subkey used in the Sl S-box of Round m as Km,l,
where 1 ≤ m ≤ 16, 1 ≤ l ≤ 8.

4.1 A 11-Round Differential-Linear Distinguisher with Bias 2−24.05

The 11-round differential-linear distinguisher is made up of a 6-round linear approximation
Γγ → Γδ with bias 1.95×2−9 ≈ 2−8.04 and all the 5-round differentials {∆α→ ∆β} with ∆α =
0x4000000000000000. The 6-round linear approximation Γγ → Γδ is 0x0000000001040080 →
0x2104008000008000, (which is the best 6-round linear approximation given in [34]). Let’s com-
pute the probability of the 11-round differential-linear distinguisher using our new methodology.

We first consider the 5-round differentials {∆α → ∆β}. There is a one probability in the
first round, meaning that the first round is bypassed by the differential characteristic with
probability 1. After the E expansion operation of the second round, 0x4 in ∆α becomes 0x8,
which enters the S1 S-box of the second round and generates 11 differences after the S-box:
{ω|ω = 0x3, 0x5, 0x6, 0x7, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF}; the probabilities for these out-
put differences are given in the second column of Table 2. We represent ω as a concatenation of
four one-bit variables a||b||c||d, where a, b, c, d ∈ {0, 1}. Thus, the right half of the third round
has the input difference 00000000a0000000b00000c0000000d0 in binary notation, and this input
difference can make at most 6 S-boxes of the third round active: S2,S3, S4, S5,S6, S8.

In the third round, the S2 S-box has an input difference 00000a in binary notation, the S3

S-box has an input difference 0a0000 in binary notation, the S4 S-box has an input difference
00000b in binary notation, the S5 S-box has an input difference 0b0000 in binary notation, the
S6 S-box has an input difference 000c00 in binary notation, and the S8 S-box has an input
difference 000d00 in binary notation. We denote respectively by x0, x1, x2 the most significant
bit, the second most significant bit and the second least significant bit of the output difference of
the S2 S-box, by x3||x4||x5||x6 the output difference of the S3 S-box, by x7, x8, x9 the second most
significant bit, the second least significant bit and the least significant bit of the output difference
of the S4 S-box, by x10||x11||x12||x13 the output difference of the S5 S-box, by x14, x15, x16 the
most significant bit, the second most significant bit and the second least significant bit of the
output difference of the S6 S-box, and by x17, x18, x19 the most significant bit, the second least
significant bit and the least significant bit of the output difference of the S8 S-box.

In the fourth round, the S1 S-box has the input difference 0||x9||(x2 ⊕ 1)||x13|| x14||x17, and
we denote by y0 the second most significant bit of its output difference; the S2 S-box has the
input difference x14||x17||x6||0||x10||0, and we denote by y1 the least significant bit of its out-
put difference; the S3 S-box has the input difference x10||0||x8||x16||0||x0, and we denote by y2
the second most significant bit of its output difference; the S4 S-box has the input difference
0||x0||x11||x18||x4||0, and we denote by y3 the second most significant bit of its output difference;
the S6 S-box has the input difference x7||x19||0||0||x3||x12, and we denote by y4 the least signif-
icant bit of its output difference; the S8 S-box has the input difference x1||x15||x5||0||0||x9, and
we denote by y5 the least significant bit of its output difference. Thus we have that the input
difference of the S5 S-box of the fifth round is y2||(y0 ⊕ b)||y1||y4||y3||y5.

A simple analysis reveals that the three bits concerned by the input mask Γγ depend on:
(1) x10, x11 and x12; and (2) The three most significant bits of the output difference of the S5

S-box of the fifth round; and we denote the XOR of the three bits by z.



Table 2. Probabilities for the eleven output differences in {ω}

ω PrS1
(∆0x8→ ∆ω) Pr(∆βω � Γγ = 0|∆0x8→ ∆ω)

0x3 12
64

0.49779944866895676

0x5 8
64

0.49595199525356293

0x6 8
64

0.50433863041689619

0x7 4
64

0.50256029706542904

0x9 6
64

0.50855094581311278

0xA 2
64

0.50591027818154544

0xB 8
64

0.50239421910760029

0xC 8
64

0.49929085310759547

0xD 2
64

0.49968796220765910

0xE 2
64

0.50061782109781916

0xF 4
64

0.50005227406592345

For each difference ω, we denote by βω the output difference(s) of the 5-round DES. Now,
by the differential distribution tables of the S-boxes (see [11]) we can compute the probability
that the XOR of the concerned three bits of βω (i.e., x10 ⊕ x11 ⊕ x12 ⊕ z) is zero by performing
a computer program over all the possible (truncated) differential characteristics. These prob-
abilities are given in the third column of Table 2. The largest number of possible differential
characteristics happens when ω = 0xF , which is 7× 10× 4× 10× 6× 7× 26 × 2 ≈ 223.9; and it
takes a few seconds to check on a personal computer.

Finally, by Theorem 1 we have that the probability of the 11-round distinguisher ∆α→ Γδ
is 1

2 + 2 × [2 ×
∑

ω PrS1
(∆0x8 → ∆ω) × Pr(∆βω � Γγ = 0|∆0x8 → ∆ω) − 1] × (2−8.04)2 ≈

1
2 + 2 × 2−8.97 × (2−8.04)2 ≈ 1

2 + 2−24.05. Therefore, the 11-round distinguisher has a bias of
2−24.05.

4.2 Differential-Linear Attack on 13-Round DES

The 11-round distinguisher ∆α → Γδ can be used to break 13-round DES. We assume the
attacked rounds are the first thirteen rounds from Rounds 1 to 13. A simple analysis on the key
schedule of DES reveals that K1,1 and K13,1 overlap in 2 bits (i.e. bits 17 and 34 of the user
key), and thus given K1,1 we know 2 bits of K13,1. The attack procedure is as follows.

1. Choose 247.1 structures Si, (i = 1, 2, · · · , 247.1), where a structure is defined to be a set of 24

plaintexts Pi,j with bits (9,17,23, 31) of the left half taking all the possible values, bit (2) of
the right half fixed to 0 and the other 59 bits fixed, (j = 1, 2, · · · , 24). In a chosen-plaintext
attack scenario, obtain all the ciphertexts for the 24 plaintexts in each of the 247.1 structures;
we denote by Ci,j the ciphertext for plaintext Pi,j .

2. Choose 247.1 structures Ŝi, (i = 1, · · · , 247.1), where a structure Ŝi is obtained by setting 1 to
bit (2) of the right half of all the plaintexts Pi,j in Si. In a chosen-plaintext attack scenario,

obtain all the ciphertexts for the 24 plaintexts in each Ŝi.
3. Guess a value for K1,1, and do as follows.

(a) Initialize 220 counters to zero, which correspond to the 220 possible pairs consisting of
the possible values for a couple of the 10 ciphertext bits: bit (17) of the left half and bits
(1,2,3,4,5,8,14,25,32) of the right half.

(b) Partially encrypt every (remaining) plaintext Pi,j with the guessed K1,1 to get its inter-
mediate value immediately after Round 1; we denote it by εi,j .

(c) Partially decrypt εi,j ⊕ 0x4000000000000000 with the guessed K1,1 to get its plaintext,

and find the plaintext in Ŝi; we denote it by P̂i,j , and denote by Ĉi,j the corresponding

ciphertext for P̂i,j . Store (Ci,j , Ĉi,j) in a table.



(d) For every ciphertext pair (Ci,j , Ĉi,j), add 1 to the counter corresponding to the pair of

the 10 ciphertext bits specified by (Ci,j , Ĉi,j).

(e) Guess a value for the unknown 4 bits of K13,1, and do as follows.

i. For each of the 220 pairs of the concerned 10 ciphertext bits, partially decrypt it with
the guessed K13,1 to get the pair of the 5 bits concerned by the output mask Γδ, and
compute the XOR of the pair of the 5 bits (concerned by the output mask).

ii. Count the number of the ciphertext pairs (Ci,j , Ĉi,j) such that the XOR of the pair
of the 5 bits concerned by Γδ is zero, and compute its deviation from 250.1.

iii. If the guess for (K1,1,K13,1) is the first guess for (K1,1,K13,1), then record the guess
and the deviation computed in Step 3(e)(ii); otherwise, record the guess and its de-
viation only when the deviation is larger than that of the previously recorded guess,
and remove the guess with the smaller deviation.

4. For the (K1,1,K13,1) recorded in Step 3(e)(iii), exhaustively search for the remaining 46 key
bits with two known plaintext/ciphertext pairs. If a 56-bit key is suggested, output it as the
user key of the 13-round DES.

The attack requires 252.1 chosen plaintexts. The required memory for the attack is dominated
by the storage of the plaintexts and ciphertexts, which is 252.1 × 16 = 256.1 bytes. Steps 1 and
2 have a time complexity of 252.1 13-round DES encryptions. Steps 3(b) and 3(c) have a time
complexity of 2 × 251.1 × 26 × 1

8×13 ≈ 251.4 13-round DES encryptions. Step 3(d) has a time

complexity of 251.1 × 26 = 257.1 memory accesses. Roughly, an extremely conservative estimate
is: 13 memory accesses equal a 13-round DES encryption in terms of time, assuming that the 13-
round DES is implemented with 8 parallel S-box lookups per round and one round is equivalent
to one memory access. So the time complexity of Step 3(d) is equivalent to 257.1

13 ≈ 253.4 13-round
DES encryptions. The time complexity of Step 3(e) is dominated by the time complexity of Step
3(e)(i), which is 2× 26 × 24 × 220 × 1

8×13 ≈ 224.3 13-round DES encryptions. Step 4 has a time

complexity of 246 13-round DES encryptions. Therefore, the attack has a total time complexity
of approximately 254.2 13-round DES encryptions, faster than exhaustive key search. There are
251.1 plaintext pairs (Pi,j , P̂i,j) for a guess of (K1,1,K13,1), and thus following Theorem 2 of [39],
we can know that the attack has a success probability of about 99%.

This shows that our new methodology enables us to break more rounds of DES than Bi-
ham et al.’s or Langford and Hellman’s methodology. Since our attack works under only two
assumptions, it is more reasonable than Biham et al.’s attack.

Note. Using the new methodology we can obtain a few differential-linear distinguishers operat-
ing on a smaller number of rounds, for example, a 7-round distinguisher (∆α = 0x4000000000000
000, Γ δ = 0x2104008000008000) with bias 2−7.94 and an 8-round distinguisher (∆α = 0x4000000
000000000, Γ δ = 0x2104008000008000) with bias 2−12.83, both using the same 3-round linear
approximation as used in Biham et al.’s and Langford and Hellman’s differential-linear crypt-
analysis of DES. These distinguishers can allow us to break DES with a smaller number of
rounds at a smaller complexity, for example, the 8-round distinguisher can similarly be used to
break 10-round DES with a data complexity of 229.66 chosen plaintexts and a time complexity
of 244 10-round DES encryptions at a success rate of about 99%.

5 Application to the CTC2 Block Cipher

The CTC2 [14] cipher was designed to show the strength of algebraic cryptanalysis [15] on
block ciphers by the proposer of algebraic cryptanalysis, who described an algebraic attack on 6
rounds of the version of CTC2 that uses a 255-bit block size and a 255-bit key. Using Biham et



al.’s methodology, in 2009 Dunkelman and Keller [19] described 6 and 7-round differential-linear
distinguishers for the version of CTC2, and finally presented differential-linear attacks on 7 and
8 rounds of CTC2 (with a 255-bit block size and key). The 8-round attack is known as the best
previously published cryptanalytic result on the version of CTC2 in terms of the numbers of
attacked rounds.

In this section, first we describe a flaw in the previous differential-linear cryptanalysis of
CTC2. Then, under the new methodology we present a 8.5-round differential-linear distinguisher
with bias 2−68 for the CTC2 with a 255-bit block size and key, and finally give a differential-
linear attack on 10-round CTC2 (with a 255-bit block size and a key). We first briefly describe
the CTC2 cipher.

5.1 The CTC2 Block Cipher

The CTC2 [14] block cipher has a variable block size, a variable length key and a variable
number of rounds. There are many combinations for the block size, key size and round number.
As in [19], we only consider the version of CTC2 that uses a 255-bit block size and a 255-bit
key. CTC2 uses the following two elementary operations to construct its round function.

– S is a non-linear substitution operation constructed by applying the same 3× 3-bit bijective
S-box 85 times in parallel to an input.

– D is a linear diffusion operation, which takes a 255-bit block Y = (Y254, · · · , Y1, Y0) as input,
and outputs a 255-bit block Z = (Z254, · · · , Z1, Z0), computed as defined below.{

Z151 = Y2 ⊕ Y139 ⊕ Y21
Z(i×202+2) mod 255 = Yi ⊕ Y(i+137) mod 255 i = 0, 1, 3, 4, · · · , 254

CTC2 takes as input a 255-bit plaintext block P , and its encryption procedure for Nr rounds
is, where Z0, Xi, Yi, Zi, XNr , YNr , ZNr are 255-bit variables, and K0,Ki,KNr are round keys
generated from a user key K as Kj = K≪ j in our notation, (0 ≤ j ≤ Nr).

1. Z0 = P .
2. For i = 1 to Nr − 1:

– Xi = Zi−1 ⊕Ki−1,
– Yi = S(Xi),
– Zi = D(Yi).

3. XNr = ZNr−1 ⊕KNr−1, YNr = S(Xi), ZNr = D(YNr).
4. Ciphertext = ZNr ⊕KNr .

To keep in accordance with [14], the ith iteration of Step 2 in the above description is referred
to as Round i, (1 ≤ i ≤ Nr − 1), and the transformations in Steps 3 and 4 are referred to as
Round Nr. We number the 85 S-boxes in a round from 0 to 84 from right to left.

5.2 A Flaw in Previous Differential-Linear Cryptanalysis of CTC2

Observe that Dunkelman and Keller used the 0.5-round differential e30,151
D→ e2 with probability

1 in their differential-linear attacks presented in [19]. However, we find that this differential is
not correct: For the D operation, given the input difference e30,151, we cannot get the output
difference e2; and the correct output difference should be e25,63,159,197. On the other hand, for
the D operation, given the output difference e2, the input difference has over fifty non-zero bits,
much more than the number two in e30,151. As a consequence, the differential-linear cryptanalytic
results are flawed.

Note that Dunkelman and Keller also described differential attacks on 5, 6 and 7-round

CTC2 in [19], and this 0.5-round differential e30,151
D→ e2 with probability 1 was also used and

played a very important role in the differential results, thus they are flawed, too. It seems very
hard to correct those differential and differential-linear cryptanalytic results.



5.3 A 8.5-Round Differential-Linear Distinguisher with Bias 2−68

The 8.5-round differential-linear distinguisher with bias 2−68 is made up of a 5.5-round linear
expression Γγ → Γδ with bias 2−33 and all the 3-round differentials {∆α→ ∆β} with ∆α = e0.
The 5.5-round linear expression Γγ → Γδ is e5,33,49,54,101,112,131,138,155,168,188,193,217,247,251 →
e32,151. Using the new methodology we can compute that the 8.5-round distinguisher ∆α → δ
has a bias of 2−68, in a manner similar to that for the above 11-round DES distinguisher.

5.4 Differential-Linear Attack on 10-Round CTC2 with a 255-Bit Block Size and
Key

The above 8.5-round distinguisher can be used as the basis for a differential-linear attack break-
ing the version of CTC2 that has a 255-bit block size, a 255-bit key and a total of 10 rounds.

We assume the attacked rounds are the first ten rounds from Rounds 1 to 10; and we use the
distinguisher from Rounds 2 until before the D operation of Round 10. We can learn that the
input difference α propagates to 16 bit positions after the inverse of the D operation of Round
1: Bits 17, 21, 40, 59, 78, 97, 116, 135, 139, 154, 158, 177, 196, 215, 234 and 253. The 16 active
bits correspond to 16 S-boxes of Round 0: S-boxes 5, 7, 13, 19, 26, 32, 38, 45, 46, 51, 52, 59, 65,
71, 78 and 84; let Θ be the set of the 16 S-boxes, and KΘ be the 48 bits of K0 corresponding
to the 16 S-boxes in Θ. Another observation is that we do not need to guess the subkey bits
from K10, because the output mask Γδ of the 8.5-round distinguisher concerns the intermediate
value immediately after the S operation of Round 10, and for a pair of ciphertexts (C, Ĉ) the
value of δ�D−1(C)⊕ δ�D−1(Ĉ) equals to δ�D−1(C ⊕ Ĉ), which is independent of K10. The
attack procedure is as follows.

1. Choose 294 structures Si, (i = 0, 1, · · · , 294 − 1), where a structure is defined to be a set of
248 plaintexts Pi,j with the 48 bits for the S-boxes in Θ taking all the possible values and
the other 207 bits fixed, (j = 0, 1, · · · , 248 − 1). In a chosen-plaintext attack scenario, obtain
all the ciphertexts for the 248 plaintexts in each of the 294 structures; we denote by Ci,j the
ciphertext for plaintext Pi,j .

2. Initialize 248 counters to zero, which correspond to all the possible values for KΘ.
3. For every structure Si, guess a value for KΘ, and do as follows.

(a) Partially encrypt every (remaining) plaintext Pi,j with the guessed KΘ to get its inter-
mediate value immediately after the S operation of Round 1; we denote it by εi,j .

(b) Take bitwise complements to bits (17, 21, 40, 59, 78, 97, 116, 135, 139, 154, 158, 177, 196,
215, 234, 253) of εi,j , and keep the other bits of εi,j invariant; we denote the resulting
value by ε̂i,j .

(c) Partially decrypt ε̂i,j with the guessed KΘ to get its plaintext, and find the plaintext in

Si; we denote it by P̂i,j , and denote by Ĉi,j the corresponding ciphertext for P̂i,j .

(d) For (Ci,j , Ĉi,j), compute the XOR of bits 32 and 151 of D−1(Ci,j ⊕ Ĉi,j). If the XOR is
zero, add 1 to the counter corresponding to the guessed KΘ.

4. For the KΘ with the highest deviation from 2140, exhaustively search for the remaining 207
key bits with a known plaintext/ciphertext pair. If a 255-bit key is suggested, output it as
the user key of CTC2.

The attack requires 2142 chosen plaintexts. Note that we start to collect another structure of
plaintexts only after testing a structure of plaintexts, so that we can reuse the memory for storing
the structure of plaintexts, hence the required memory of the attack is dominated by the storage
of the 248 counters and a structure of 248 plaintext-ciphertext pairs, which is 248× 48

8 +2×248×
255
8 ≈ 254.2 bytes of memory. The time complexity of Step 3 is dominated by the time complexity

of Steps 3(a), 3(c) and 3(d), which is approximately 2×2141×248× 16
85×10 +2141×248× 1

10 ≈ 2186.2



10-round CTC2 encryptions. Step 4 has a time complexity of 2207 10-round CTC2 encryptions.
Therefore, the attack has a total time complexity of 2207 10-round CTC2 encryptions to find
the 255-bit key. There are 2141 plaintext pairs (Pi,j , P̂i,j) for a guess of KΘ. Following Theorem
2 of [39], we can learn that the probability that the correct guess for KΘ is recorded in Step 2(f)
is about 99.9%. Thus, the attack has a success probability of about 99.9%.

6 Application to the Serpent Block Cipher

The Serpent [1] block cipher is one of the five Advanced Encryption Standard (AES) finalists,
second to the Rijndael [16] cipher that was selected as the AES [38]. Serpent was designed
in a rather conservative way, and it was included in the GNU project [21] for possible use in
cryptographic applications in reality such as SNMP (Simple Network Management Protocol),
LDAP (Lightweight Directory Access Protocol) and X.509 certificates.

In 2003, Biham et al. [8] described a 9-round differential-linear distinguisher of Serpent,
and finally gave a differential-linear attack on 11-round Serpent with a 256-bit key. In 2008
Dunkelman et al. [20] presented an improved 9-round differential-linear distinguisher of Serpent,
and finally used it as the basis for a differential-linear attack on 12-round Serpent with a 256-bit
key. All these attacks are based on Biham et al.’s methodology. In terms of the numbers of
attacked rounds, the 12-round attack is known as the best previously published cryptanalytic
result on Serpent.

In this section, we present a 9-round differential-linear distinguisher with bias 2−59.41 under
our new methodology, which can be used to break 12-round Serpent (with a 256-bit key) slightly
faster than Dunkelman et al.’s attack at a higher success rate. We first briefly describe the Serpent
block cipher.

6.1 The Serpent Block Cipher

The Serpent [1] block cipher has a 128-bit block size, a variable length key of up to 256 bits, and a
total of 32 rounds; a shorter key can be used by appending one “1” bit to the most significant bit
end, followed by as many “0” bits as required. Serpent uses the following elementary operations:

– IP/FP is the initial/final permutation; see [1] for their specifications.

– Si is a non-linear substitution operation constructed by applying the same 4×4-bit bijective
Si mod 8 S-box 32 times in parallel to an input, (0 ≤ i ≤ 31). Refer to [1] for specifications of
the S-boxes S0,S1, · · · , S7.

– L is a linear diffusion operation, which takes as input a 128-bit block of four 32-bit words
X = (X3, X2, X1, X0), and outputs a 128-bit block of four 32-bit words Y = (Y3, Y2, Y1, Y0),
computed as follows.

– X0 = X0≪ 13,

– X2 = X2≪ 3,

– X1 = X0 ⊕X1 ⊕X2,

– X3 = X3 ⊕X2 ⊕ (X0 � 3),

– X1 = X1≪ 1,

– X3 = X3≪ 7,

– X0 = X0 ⊕X1 ⊕X3,

– X2 = X2 ⊕X3 ⊕ (X1 � 7),

– X0 = X0≪ 5,

– X2 = X2≪ 22,

– Y = (X3, X2, X1, X0).



Serpent takes as input a 128-bit plaintext block P , and its encryption procedure is, where
B̂0, B̂1, · · · , B̂32 are 128-bit variables, and K0,K1, · · · ,K32 are round keys.

1. B̂0 = IP(P ).

2. For i = 0 to 30:

– B̂i+1 = L(Si(B̂i ⊕Ki)).

3. B̂32 = S31(B̂31 ⊕K31)⊕K32.

4. Ciphertext = FP(B̂32).

The ith iteration of Step 2 in the above description is referred to below as Round i, (0 ≤ i ≤
30), and the transformation in Steps 3 and 4 is referred to below as Round 31; this is in accordance
with [1]. We number the 32 S-boxes of a round from 0 to 31 from right to left. For simplicity,
we describe a state S in a Serpent encryption operation as four 32-bit words (s3, s2, s1, s0), and
write it as (s3,31||s2,31||s1,31||s0,31)|| · · · ||(s3,1|| s2,1||s1,1||s0,1)||(s3,0||s2,0||s1,0||s0,0), where sj,l is
the l-th bit of sj , (0 ≤ j ≤ 3, 0 ≤ l ≤ 31). We write Ki,m for the 4-bit subkey of Ki that
corresponds to S-box m of Round i, (0 ≤ m ≤ 31). As the IP and FP operations are simply
linear diffusion transformations, we omit them in our analysis.

6.2 A 9-Round Differential-Linear Distinguisher with Bias 2−59.41

The 9-round differential-linear distinguisher is made up of a 6-round linear approximation Γγ →
Γδ with bias 2−27 for Rounds 5 to 10 and all the 3-round differentials {∆α→ ∆β} for Rounds
2 to 4 with ∆α = 0x000000A0000000000000000000000000. The 6-round linear approximation
Γγ→Γδ is 0x00400000000000000000000000000002→0x000B0000B000030000B0200E00000010.
Finally, we can similarly use the new methodology to compute that the 9-round differential-linear
distinguisher ∆α→ Γδ has a bias of 2−59.41.

6.3 Differential-Linear Attack on 12-Round Serpent

The 9-round differential-linear distinguisher enables us to construct a differential-linear attack
on 12-round Serpent (with a 256-bit key). We attack Rounds 0 to 11, and use the distinguisher
from Rounds 2 to 10. The input difference α becomes 0x000000A2040008000000000000000000
after being applied the L−1 operation of Round 1, and the 5 active bits correspond to S-boxes
18, 22, 24 and 25 of Round 1. It makes 27 active S-boxes of Round 0: S-boxes 0, 2, 3, 4, 5, 6, 7,
9, 11, 12, 13, 15, 16, · · ·, 29 and 31; let Θ be the set of the 27 S-boxes, and KΘ be the 108 bits of
K0 corresponding to the 27 S-boxes in Θ. The 16 bits concerned by the output mask correspond
to S-boxes 1, 8, 11, 13, 18, 23 and 28 of Round 11. The attack procedure is as follows, where
the values of parameters λ and φ will be specified in the subsequent analysis.

1. Choose λ structures Si, (i = 0, 1, · · · , λ− 1), where a structure is defined to be a set of 2108

plaintexts Pi,j with the 108 bits for the 27 S-boxes in Θ taking all the possible values and
the other 20 bits fixed, (j = 0, 1, · · · , 2108 − 1). In a chosen-plaintext attack scenario, obtain
all the ciphertexts for the 2108 plaintexts in each of the λ structures; we denote by Ci,j the
ciphertext for plaintext Pi,j .

2. Guess a value for (KΘ,K1,18,K1,22,K1,24,K1,25), and do as follows.

(a) Initialize 256 counters to zero, which correspond to the 256 possible pairs of the 28 ci-
phertext bits corresponding to S-boxes 1, 8, 11, 13, 18, 23 and 28 of Round 11.

(b) Partially encrypt every (remaining) plaintext Pi,j with the guessed (KΘ,K1,18,K1,22,
K1,24,K1,25) to get its intermediate value immediately after the S operation of Round 1;
we denote it by εi,j .



(c) Compute εi,j⊕0x000000A2040008000000000000000000, and we denote the resulting value
by ε̂i,j .

(d) Partially decrypt ε̂i,j with the guessed (KΘ,K1,18,K1,22,K1,24,K1,25) to get its plaintext,

and find the plaintext in Si; we denote it by P̂i,j , and denote by Ĉi,j the corresponding

ciphertext for P̂i,j .

(e) For every ciphertext pair (Ci,j , Ĉi,j), add 1 to the counter corresponding to the pair of

the 28 ciphertext bits specified by (Ci,j , Ĉi,j).
(f) Guess a value for (K12,1,K12,8,K12,11,K12,13,K12,18,K12,23,K12,28), and do as follows.

i. For each of the 256 pairs of the concerned 28 ciphertext bits, partially decrypt it with
the guessed (K12,1,K12,8, · · · ,K12,28) to get the pair of the 16 bits concerned by the
output mask, and compute the XOR of the pair of the 16 bits (concerned by the
output mask).

ii. Count the number of the ciphertext pairs (Ci,j , Ĉi,j) such that the XOR of the pair
of the 16 bits concerned by the output mask is zero, and compute its deviation from
λ · 2107.

iii. If the guessed (KΘ,K1,18,K1,22,K1,24,K1,25,K12,1,K12,8, · · · ,K12,28) belong to the
first φ guesses for (KΘ,K1,18,K1,22,K1,24,K1,25,K12,1, K12,8, · · · ,K12,28), then record
the guess and the deviation computed in Step 2(f)(ii); otherwise, record the guess
and its deviation only when the deviation is larger than the smallest deviation of the
previously recorded φ guesses, and remove the guess with the smallest deviation from
the φ guesses.

3. For every recorded (KΘ,K1,18,K1,22,K1,24,K1,25) in Step 2(f)(iii), exhaustively search for
the remaining 132 key bits with two known plaintext-ciphertext pairs. If a 256-bit key is
suggested, output it as the user key of the 12-round Serpent.

The attack requires λ × 2108 chosen plaintexts. The required memory for the attack is
dominated by the storage of the plaintexts and ciphertexts, which is λ × 2108 × 32 = λ ×
2113 bytes. The time complexity of Step 2 is dominated by the time complexity of Steps
2(b), 2(d) and 2(f)(i), which is λ × 2 × 2107 × 2124 × 27+4

32×12 + 2 × 2124 × 228 × 256 × 7
32×12 ≈

λ × 2228.37 12-round Serpent encryptions. Step 3 has a time complexity of at most φ × 2132

12-round Serpent encryptions. There are λ × 2107 plaintext pairs (Pi,j , P̂i,j) for a guess of
(KΘ,K1,18,K1,22,K1,24,K1,25,K12,1,K12,8,· · · ,K12,28). Following Theorem 2 of [39], we have that
the probability that the correct guess of (KΘ,K1,18,K1,22, K1,24,K1,25,K12,1, K12,8, · · · ,K12,28)
is recorded in Step 2(f)(iii) is about 96.6% when we set λ = 218.8 and φ = 1, and is about
98.8% when we set λ = 216.5 and φ = 2104. Thus, when λ = 216.5 and φ = 2104, with a success
probability of about 98.8% the attack requires 2124.5 chosen plaintexts, and has a total time
complexity of approximately 2244.9 12-round Serpent encryptions.

Note. For the purpose of then AES submission requirements, the Serpent designers also con-
sidered the cases of 128 and 192-bit keys, and we denote these versions by Serpent-128/192,
respectively. There are some published cryptanalytic results on Serpent-128/192, and we are par-
ticularly interested in those differential-linear cryptanalytic results: Biham et al.’s and Dunkel-
man et al.’s differential-linear attacks on 10-round Serpent-128 and 11-round Serpent-192 given
in [8, 20]. All these attacks are based on Biham et al.’s methodology. A detailed analysis shows
that our 9-round differential-linear distinguisher with bias 2−59.41 can also be used to break 10-
round Serpent-128 and 11-round Serpent-192; and more results can be obtained, in particular,
we can break 10-round Serpent-128 with a data complexity of 2123.4 chosen plaintexts and a
time complexity of 2123.4 10-round Serpent encryptions at a success rate of 99.2%, and break
11-round Serpent-192 with a data complexity of 2125.5 chosen plaintexts and a time complexity
of 2148.1 11-round Serpent encryptions at a success rate of 99%.



7 Possible Extensions of Our Methodology

In this section we briefly discuss several possible extensions of our methodology, although par-
ticulars should be noticed.

The first possible extension is to consider the case when using two different values for the
output mask δ in Definition 3, say δ1, δ2; that is, we might consider the event E(P ) � δ1 =
E(P ⊕ α)� δ2 for a randomly chosen P ∈ {0, 1}n. The resulting differential-linear distinguisher
would have a bias of 2(2p̂ − 1)ε1ε2 for some ε1 and ε2 denoting the respective bias of the two
linear approximations. From a theoretical point of view, there seems no need to use two different
output masks, for we can always choose the output mask with a bigger bias, and a key-recovery
attack based on a differential-linear distinguisher with two different output masks requires us to
guess no less key bits than that based on a differential-linear distinguisher with one output mask;
however, the case with two different output masks may depend on Assumption 2 to a lesser degree
than the above discussed case with one output mask, for the two linear approximations can be
independent somewhat, instead of two identical linear approximations used in the case with one
output mask, and thus it may potentially be particularly helpful when making a practicable
attack in reality.

The second possible extension is to consider the case when applying our methodology in
a related-key [2, 26] attack scenario. The notion of the related-key differential-linear analysis
appeared in [23], and later Kim [25] described an enhanced version based on Biham et al.’s
enhanced methodology. Likewise, we can get a more reasonable and general version based on
our new methodology.

Other possible extensions are to obtain new methodologies for the high-order differential-
linear attack, the differential-bilinear attack and the differential-bilinear-boomerang attack,
which were proposed in [9], in a way similar to the above new methodology for differential-
linear cryptanalysis. At present, however, these attack techniques appear to be hard to apply to
obtain good cryptanalytic results in practice.

8 Conclusions

In this paper we have given a new methodology for differential-linear cryptanalysis under only
the two assumptions implicitly used in the very first published paper on this technique. The
new methodology is more reasonable and more general than Biham et al.’s methodology, and it
can lead to some better differential-linear cryptanalytic results for some block ciphers than the
previously known methodologies.

Using the new methodology, we have presented differential-linear attacks on 10-round CTC2
with a 255-bit block size and key, 13-round DES, and 12-round Serpent. In terms of the num-
bers of attacked rounds, the 10-round CTC2 attack is the first published cryptanalytic attack
on the version of CTC2; the 13-round DES attack is much better than any previously published
differential-linear cryptanalytic results for DES, though it is inferior to the best previously
published cryptanalytic results for DES; and the 12-round Serpent attack matches the best
previously published cryptanalytic result for Serpent (that was obtained using Biham et al.’s
methodology). In addition, an important merit for these new differential-linear cryptanalytic
results is that they are obtained under only two assumptions and thus are more reasonable
than those obtained using Biham et al.’s methodology. Like most cryptanalytic results on block
ciphers, most of these attacks are far less than practical at present, but they provide a compre-
hensive understanding of the security of the block ciphers.

The new methodology can be potentially used to cryptanalyse other block ciphers, and block
cipher designers should pay attention to this new methodology when designing ciphers.



The new methodology still requires Assumptions 1 and 2. As a direction for future research
on differential-linear cryptanalysis, it would be interesting to investigate how to further reduce
the number of assumptions used, making a more reasonable and more general methodology that
could be used in practice.
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Abstract. Camellia is one of the widely used block ciphers, which has been selected as an in-
ternational standard by ISO/IEC. In this paper, by studying the properties of the key-dependent
transformations FL/FL−1, we improve the previous results on impossible differential cryptanalysis
of reduced-round Camellia and gain some new observations. First, we introduce some new 7-round
impossible differentials of Camellia for weak keys. These weak keys that work for the impossible
differential take 3/4 of the whole key space, therefore, we further get rid of the weak-key assump-
tion and leverage the attacks on reduced-round Camellia to all keys by utilizing a method that is
called the multiplied method. Second, we build a set of differentials which contains at least one
8-round impossible differential of Camellia with two FL/FL−1 layers. Following this new result,
we show that the key-dependent transformations inserted in Camellia cannot resist impossible dif-
ferential cryptanalysis effectively. Based on these 8-round impossible differential, we present a new
cryptanalytic strategy to mount impossible differential attacks on reduced-round Camellia.

Key words: Block Cipher, Camellia, Impossible Differential Cryptanalysis

1 Introduction

The block cipher Camellia was proposed by NTT and Mitsubishi in 2000 [1]. It was selected as
an e-government recommended cipher by CRYPTREC in 2002 [4] and the NESSIE block cipher
portfolio in 2003 [19]. In 2005, it was adopted as the international standard by ISO/IEC [6].
Camellia is a 128-bit block cipher. It supports variable key sizes and the number of the rounds
depends on the key size, i.e., 18 rounds for a 128-bit key size and 24 rounds for 192/256-bit key
sizes. For simplicity, they can be usually denoted as Camellia-128, Camellia-192 and Camellia-
256, respectively. Camellia adopts the basic Feistel structure with some key-dependent functions
FL/FL−1 inserted every six rounds, where these key-dependent transformations must be linear
and reversible for any fixed key. The goals for such a design are to provide non-regularity across
rounds and to thwart further unknown attacks.
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Natural Science Foundation of China (Grant No. 61133013 and No. 60931160442), and Tsinghua University
Initiative Scientific Research Program (2009THZ01002).
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Up to now, many cryptanalytic methods were used to evaluate the security of reduced-round
Camellia such as linear cryptanalysis, differential cryptanalysis, higher order differential attack,
truncated differential attack, collision attack, square attack and impossible differential attack.
Among them, most attacks focused on the security of simplified versions of Camellia, which
did not take the FL/FL−1 and whitening layers into account [9–11, 15–18, 20–23], and only a
few involved in the study of the original Camellia. For instance, Hatano et al. gave an higher
order differential attack on the last 11 rounds of Camellia-256 [5], Chen et al. constructed a
6-round impossible differential with FL/FL−1 layer to attack 10-round Camellia-192 and 11-
round Camellia-256 [3], Liu et al. attacked 11-round Camellia-192 and 12-round Camellia-256
by constructing a 7-round impossible differential [14]. Li et al. presented impossible differen-
tial attacks on 10-round Camellia-192 and 11-round Camellia-256 with a 7-round impossible
differential including two FL/FL−1 layers [12].

Impossible differential cryptanalysis was independently introduced by Biham [2] and Knud-
sen [7], which is one of the most popular cryptanalytic tool. In order to mount an attack, the
adversary tries to seek for an input difference that can never result in an output difference. The
differential which connects the input and output difference is impossible and called an impossible
differential. When the adversary wants to launch an impossible differential attack on a block
cipher, she adds rounds before and/or after the impossible differential, and collect enough pairs
with required plaintext and ciphertext differences. Then she concludes that the guessed subkey
bits in added rounds must be wrong, if there is a pair meets the input and output values of the
impossible differential under these subkey bits. In this way, she discards as many wrong keys as
possible and exhaustively searches the rest of the keys.

In this paper, we reevaluate the security of reduced-round Camellia with FL/FL−1 and
whitening layers against impossible differential cryptanalysis from two aspects. On the one hand,
we first construct some new 7-round impossible differentials of Camellia for weak keys, which
work for 75% of the keys. Based on them, we mount an impossible differential attack on Camellia
in the weak-key setting. Then we further propose a multiplied method to extend our attacks for
the whole key space. The basic idea is that if the correct key belongs to the set of weak keys,
then it will never satisfy the impossible differential. While if the correct key is not a weak key,
we get 2-bit conditions about the key. Specifically, for the whole key space, we present an attack
on 10-round Camellia-128 with about 2113.8 chosen plaintexts and 2120 10-round encryptions,
11-round Camellia-192 with about 2114.64 chosen plaintexts and 2184 11-round encryptions as
well as 12-round Camellia-256 with about 2116.17 chosen plaintexts or chosen ciphertexts and
2240 12-round encryptions, respectively. Meanwhile, we can also extend the attacks to 12-round
Camellia-192 and 14-round Camellia-256 with two FL/FL−1 layers. On the other hand, by
studying some properties of key-dependent functions FL/FL−1, we build a set of differentials
which contains at least one 8-round impossible differential of Camellia with two FL/FL−1

layers. The length of these impossible differentials with two FL/FL−1 layers is the same as the
length of the longest known impossible differential of Camellia without FL/FL−1 layers given
by Wu and Zhang [23]. Consequently, we show that the key-dependent transformations inserted
in Camellia cannot resist impossible differential cryptanalysis effectively. On the basis of this
differential set, we propose a new cryptanalytic strategy to attack 11-round Camellia-128 with
2122 chosen plaintexts and 2122 11-round encryptions, 12-round Camellia-192 with 2123 chosen
plaintexts and 2187.2 12-round encryptions as well as 13-round Camellia-256 with 2123 chosen
plaintexts and 2251.1 13-round encryptions (not from the first round but with the whitening
layers), respectively. In table 1, we summarize our results along with the former known ones on
reduced-round Camellia.

The remainder of this paper is organized as follows. Section 2 gives some notations and a brief
introduction of Camellia. Section 3 first presents 7-round impossible differentials of Camellia



Table 1. Summary of the attacks on Reduced-Round Camellia

Key Size Rounds Attack Type Data Time(Enc) Memory (Bytes) Source

Camellia-128 9† Square 248CP 2122 253 [10]
10† Impossible DC 2118CP 2118 293 [17]
10† Impossible DC 2118.5CP 2123.5 2127 [12]

10(Weak Key) Impossible DC 2111.8CP 2111.8 284.8 Section 3.2
10 Impossible DC 2113.8CP 2120 284.8 Section 3.2
11 Impossible DC 2122CP 2122 2102 Section 4.4

Camellia-192 10 Impossible DC 2121CP 2175.3 2155.2 [3]
10 Impossible DC 2118.7CP 2130.4 2135 [12]
11† Impossible DC 2118CP 2163.1 2141 [17]

11(Weak Key) Impossible DC 2112.64CP 2146.54 2141.64 Section 3.3
11 Impossible DC 2114.64CP 2184 2141.64 Section 3.3
12 Impossible DC 2123CP 2187.2 2160 Section 4.3
12† Impossible DC 2120.1CP 2184 2124.1 Section 3.5

Camellia-256 last 11 rounds High Order DC 293CP 2255.6 298 [5]
11 Impossible DC 2121CP 2206.8 2166 [3]
11 Impossible DC 2119.6CP 2194.5 2135 [12]

12(Weak Key) Impossible DC 2121.12CP 2202.55 2142.12 Section 3.4
12 Impossible DC 2116.17CP/CC 2240 2150.17 Section 3.4
13 Impossible DC 2123CP 2251.1 2208 Section 4.2
14† Impossible DC 2120CC 2250.5 2125 Section 3.5

DC: Differential Cryptanalysis; CP/CC: Chosen Plaintexts/Chosen Ciphertexts;
Enc: Encryptions; †: The attack doesn’t include the whitening layers.

for weak keys. Based on them, impossible differential attacks on 10-round Camellia-128, 11-
round Camellia-192 and 12-round Camellia-256 are elaborated. Section 4 first constructs a set
of differentials which contains at least one 8-round impossible differential of Camellia with two
FL/FL−1 layers, and then proposes impossible differential attacks on 11-round Camellia-128, 12-
round Camellia-192 and 13-round Camellia-256, respectively. Section 5 summarizes this paper.

2 Preliminaries

2.1 Some Notations

– P,C: the plaintext and the ciphertext;
– Li−1, Ri−1: the left half and the right half of the i-th round input;
– ∆Li−1,∆Ri−1: the left half and the right half of the input difference in the i-th round;
– X | Y : the concatenation of X and Y ;
– kw1|kw2, kw3|kw4: the pre-whitening key and the post-whitening key;
– ki: the subkey used in the i-th round;
– kli(1 ≤ i ≤ 6): 64-bit keys used in the FL/FL−1 layers;
– Sr,∆Sr: the output and the output difference of the S-boxes in the r-th round;
– X ≪ j: left rotation of X by j bits;
– XL(n

2
),XR(n

2
): the left half and the right half of a n-bit word X;

– Xi,X{i,j}, X{i∼j}: the i-th byte, the i-th and j-th bytes and the i-th to the j-th bytes of X;

– Xi,X(i,j),X(i∼j): the i-th bit, the i-th and j-th bits and the i-th to j-th bits of X;
– ⊕,∩,∪: bitwise exclusive-OR (XOR), AND, and OR operations, respectively;
– 0(i), 1(i): consecutive i bits are zero or one.

2.2 Overview of Camellia

Camellia [1] is a 128-bit block cipher. Two keyed functions FL/FL−1 are inserted every 6
rounds. Camellia uses variable key sizes and the number of rounds depends on the key size, i.e.,



18 rounds for a 128-bit key size and 24 rounds for 192/256-bit key sizes. The round function of
Camellia uses a SPN structure. Among it, the linear transformation P and its inverse function
P−1 are defined as follows.

P : ({0, 1}8)8 → ({0, 1}8)8, y1 | y2 | y3 | y4 | y5 | y6 | y7 | y8 → z1 | z2 | z3 | z4 | z5 | z6 | z7 | z8;

z1 = y1 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8; y1 = z2 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8;

z2 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8; y2 = z1 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8;

z3 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8; y3 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8;

z4 = y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7; y4 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z7;

z5 = y1 ⊕ y2 ⊕ y6 ⊕ y7 ⊕ y8; y5 = z1 ⊕ z2 ⊕ z5 ⊕ z7 ⊕ z8;

z6 = y2 ⊕ y3 ⊕ y5 ⊕ y7 ⊕ y8; y6 = z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8;

z7 = y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y8; y7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7;

z8 = y1 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7; y8 = z1 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8;

The key-dependent function FL : {0, 1}64×{0, 1}64 maps (XL | XR, klL | klR) 7→ YL | YR, where
YR = ((XL ∩ klL) ≪ 1)⊕XR, YL = (YR ∪ klR)⊕XL.

Key Schedule of Camellia The key schedule algorithm of Camellia applies a 6-round Feistel
structure to generate two 128-bit intermediate variables KA and KB. These two variables KA

and KB can be calculated by two 128-bit variables KL and KR defined by the main key K. For
Camellia-128, the 128-bit key K is used as KL and KR is 0. For Camellia-192, the left 128-bit
of the key K is used as KL, and the concatenation of the right 64-bit of the key K and the
complement of the right 64-bit of the key K is used as KR. For Camellia-256, the main key K
is separated into two 128-bit variables KL and KR, i.e., K = KL | KR.

3 7-Round Impossible Differentials of Camellia for Weak Keys and Their

Applications 1

In this section, we first construct some 7-round impossible differentials of Camellia in weak-key
setting. Based on them, we present impossible differential attacks on 10-round Camellia-128,
11-round Camellia-192 and 12-round Camellia-256 which start from the first round. In addition,
we can also extend the attack to 12-round Camellia-192 and 14-round Camellia-256 with two
FL/FL−1 layers.

3.1 7-Round Impossible Differentials of Camellia for Weak Keys

This section introduces 7-round impossible differentials of Camellia in weak-key setting, which
is based on the following propositions.

Lemma 1 ([8]). Let X, X ′, K be l-bit values, and ∆X = X ⊕X ′, then the differential prop-
erties of AND and OR operations are:
(X ∩K)⊕ (X ′ ∩K) = (X ⊕X ′) ∩K = ∆X ∩K,
(X ∪K)⊕ (X ′ ∪K) = (X ⊕K ⊕ (X ∩K))⊕ (X ′ ⊕K ⊕ (X ′ ∩K)) = ∆X ⊕ (∆X ∩K).

Lemma 2 ([3]). Let ∆X and ∆Y be the input and output differences of FL. Then

∆YR = ((∆XL ∩ klL) ≪ 1)⊕∆XR, ∆YL = ∆XL ⊕∆YR ⊕ (∆YR ∩ klR);

∆XL = ∆YL ⊕∆YR ⊕ (∆YR ∩ klR), ∆XR = ((∆XL ∩ klL) ≪ 1)⊕∆YR.

1 By Leibo Li, Xiaoyun Wang and Jiazhe Chen. See [13] for more details.



Proposition 1. If the output difference of FL function is ∆Y = (0|0|0|0|d|0|0|0), where d 6= 0
and d(1) = 0, then the input difference of FL function should satisfy ∆X{2,3,4,6,7,8} = 0.

Proposition 2. If the output difference of FL−1 function is ∆X = (0|e|e|e|0|e|e|e), and the

subkeys of FL−1 function satisfy that KL
(9)
L is 0 or KL

(8)
R is 1, then the first byte of input

difference ∆Y should be zero, where e is a non-zero byte.
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Fig. 1. A 7-Round Impossible Differential for Weak Keys

Proposition 3. Given a 7-round Camellia encryption and a FL/FL−1 layer inserted between
the fifth and sixth round. If the input difference of the first round is (0|0|0|0|0|0|0|0, a|0|0|0|c|0|0|0),

and the subkeys of FL−1 function satisfy KL
(9)
L = 0 or KL

(8)
R = 1, then the output difference

(0|0|0|0|d|0|0|0, 0|0|0|0|0|0|0|0) with d(1) = 0 is impossible, where a and d are non-zero bytes, c
is an arbitrary value (see Fig. 1).

Proof. First, we analyze the forward direction. It is trivial that (∆L1,∆R1) = (a|0|0|0|c|0|0|0, 0|
0|0|0|0|0|0|0), then it propagates to (∆L2,∆R2) = (a1|a2|a3|a4|a5|a6|a7|a8, a|0|0|0|c|0|0|0) after
the second round, where a1 and a5 are non-zero values, ai (i = 2, 3, 4, 6, 7, 8) are unknown
values. Getting through the key addition and substitution layers of the third round, the output
difference of S-box layer in the third round is ∆S3 = (b1|b2|b3|b4|b5|b6|b7|b8), where b1 and b5 are
non-zero values. Then we have (∆L3,∆R3) = (f1|f2|f3|f4|f5|f6|f7|f8, a1|a2|a3|a4|a5|a6|a7|a8),
and (∆L4,∆R4) = (h1|h2|h3|h4|h5|h6|h7|h8, f1|f2|f3|f4 |f5|f6|f7|f8), where fi, hi are unknown
values.

Second, we consider the backward direction. The output difference of the seventh round is
(∆L7,∆R7) = (0|0|0|0|d|0|0|0, 0|0|0|0|0|0|0|0), then the output difference of the sixth round is
(∆L6,∆R6) = (0|0|0|0|0|0|0|0, 0|0|0|0|d|0|0|0), and the output difference of FL/FL−1 layer is
(0|0|0|0|d|0|0|0, 0|e|e|e|0|e|e|e). According to the condition d(1) = 0 and Proposition 1, we obtain

that the input difference of FL function is (N1|0|0|0|N5|0|0|0). Since KL
(9)
L = 0 or KL

(8)
R = 1,



in the light of Proposition 2, the input difference of FL−1 function is (0|M2|M3|M4|M5|M6|M7|
M8), which means ∆L4,1 = h1 = 0. Where N1, N5 and Mi (i = 2, ..., 8) are unknown bytes.

Finally, we focus on the fifth round. The output difference of S-layer in the fifth round is

∆S5 = P−1(f1|f2|f3|f4|f5|f6|f7|f8)⊕ P−1(N1|0|0|0|N5|0|0|0)

= (b1|b2|b3|b4|b5|b6|b7|b8)⊕ P−1(N1 ⊕ a|0|0|0|N5 ⊕ c|0|0|0).

Then ∆S5,1 = b1 6= 0, which contradicts ∆L4,1 = 0. ⊓⊔

We also obtain three other impossible differentials under different weak-key assumptions:

– (0|0|0|0|0|0|0|0, 0|a|0|0|0|c|0|0) 9 (0|0|0|0|0|d|0|0, 0|0|0|0|0|0|0|0) with conditions

KL
(17)
L = 0 or KL

(16)
R = 1, and d(1) = 0,

– (0|0|0|0|0|0|0|0, 0|0|a|0|0|0|c|0) 9 (0|0|0|0|0|0|d|0, 0|0|0|0|0|0|0|0) with conditions

KL
(25)
L = 0 or KL

(24)
R = 1, and d(1) = 0,

– (0|0|0|0|0|0|0|0, 0|0|0|a|0|0|0|c) 9 (0|0|0|0|0|0|0|d, 0|0|0|0|0|0|0|0) with conditions

KL
(1)
L = 0 or KL

(32)
R = 1, and d(1) = 0.

We denote this type of impossible differentials above as 5+2 WKID (weak-key impossible
differentials). Due to the feature of Feistel structure, we also deduce another type of 7-round
impossible differentials with the FL/FL−1 layers inserted between the second and the third
rounds. We call them 2+5 WKID, which are depicted as follows.

– (0|0|0|0|0|0|0|0, 0|0|0|0|d|0|0|0) 9 (a|0|0|0|c|0|0|0, 0|0|0|0|0|0|0|0) with conditions

KL′(9)
L = 0 or KL′(8)

R = 1, and d(1) = 0,

– (0|0|0|0|0|0|0|0, 0|0|0|0|0|d|0|0) 9 (0|a|0|0|0|c|0|0, 0|0|0|0|0|0|0|0) with conditions

KL′(17)
L = 0 or KL′(16)

R = 1, and d(1) = 0,

– (0|0|0|0|0|0|0|0, 0|0|0|0|0|0|d|0) 9 (0|0|a|0|0|0|c|0, 0|0|0|0|0|0|0|0) with conditions

KL′(25)
L = 0 or KL′(24)

R = 1, and d(1) = 0,

– (0|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|d) 9 (0|0|0|a|0|0|0|c, 0|0|0|0|0|0|0|0) with conditions

KL′(1)
L = 0 or KL′(32)

R = 1, and d(1) = 0,

where KL′ represents the subkey used in FL-function.

3.2 Impossible Differential Attack on 10-Round Camellia-128

We first propose an attack that works for 3×2126(= 3
4 ×2128) keys, which is mounted by adding

one round on the top and two rounds on the bottom of the 5+2 WKID (See Fig. 2). The
attack procedure is as follows.

Data Collection.

1. Choose 2n structures of plaintexts, and each structure contains 232 plaintexts

(L0, R0) = (α1|x1|x2|x3|α2|x4|x5|x6, P (β1|y1|y2|y3|β2|y4|y5|y6)),

where xi and yi (i = 1, ..., 6) are fixed values in each structure, while αj , βj (j = 1, 2) takes
all the possible values, and P is the linear transformation.

2. For each structure, ask for the encryption of the plaintexts and get 232 ciphertexts. Store
them in a hash table H indexed by CL,{1,5}, the XOR of CL,2 and CL,3, the XOR of CL,2

and CL,4, the XOR of CL,2 and CL,6, the XOR of CL,2 and CL,7, the XOR of CL,2 and
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Fig. 2. Impossible Differential Attack on 10-Round Camellia-128 for Weak Keys

CL,8. Then by birthday paradox, we get 2n+63 × 2−56 = 2n+7 pairs of ciphertexts with the
differences

(∆CL,∆CR) = (0|f |f |f |0|f |f |f, g1|g2|g3|g4|g5|g6|g7|g8),

and the differences of corresponding plaintext pairs satisfy

(∆L0,∆R0) = (a|0|0|0|c|0|0|0, P (b1 |0|0|0|b2|0|0|0)),

where a, c, f and bi (i = 1, 2) are non-zero bytes, and gi are unknown bytes. For every pair,
compute the value

P−1(∆CR) = P−1(g1|g2|g3|g4|g5|g6|g7|g8) = (g′1|g
′
2|g

′
3|g

′
4|g

′
5|g

′
6|g

′
7|g

′
8).

Keep only the pairs whose ciphertexts satisfy g′1 = 0. The probability of this event is 2−8,
thus the expected number of remaining pairs is 2n+7 × 2−8 = 2n−1.

Key Recovery.

1. For each pair obtained in the data collection phase, guess the 16-bit value K1,{1,5}, partially
encrypt its plaintext (L0,{1,5}, L

′
0,{1,5}) to get the intermediate value (S1,{1,5}, S

′
1,{1,5}) and

the difference ∆S1,{1,5}. Then discard the pairs whose intermediate values do not satisfy
∆S1,1 = b1 and ∆S1,5 = b2. The probability of a pair being kept is 2−16, so the expected
number of remaining pairs is 2n−1 × 2−16 = 2n−17.

2. In this step, the ciphertext of every remaining pair is considered.

(a) Guess the 8-bit value K10,8 for every remaining pair, partially decrypt the ciphertext
(CL,8, C

′
L,8) to get the intermediate value (S10,8, S

′
10,8) and the difference ∆S10,8, and

discard the pairs whose intermediate values do not satisfy ∆S10,8 = g′8. The expected
number of remaining pairs is 2n−17 × 2−8 = 2n−25.

(b) For l = 2, 3, 4, 6, 7, guess the 8-bit value K10,l. For every remaining pair, partially decrypt
the ciphertext (CL,l, C

′
L,l) to get the intermediate value (S10,l, S

′
10,l) and the difference

∆S10,l, and keep only the pairs whose intermediate values satisfy ∆S10,l = g′l ⊕ g′5. Since
for each l, each pair will remain with probability 2−8, the expected number of remaining
pairs is 2n−25 × 25×(−8) = 2n−65.



(c) Guess the 8-bit value K10,1, partially decrypt the ciphertext CL,1 of every remaining pair
to get the intermediate value S10,1, which is also the value of S′

10,1.
(d) Partially decrypt (S10, S

′
10) to get the intermediate values (R9,5, R

′
9,5), and discard the

pairs whose intermediate values do not satisfy ∆R
(1)
9,5 = 0. As the probability of a pair

being discarded is 0.5, the expected number of remaining pairs is 2n−65 × 2−1 = 2n−66.
3. For every remaining pair, guess the 8-bit value K9,5, partially decrypt the output value

(R9,5, R
′
9,5) to get the intermediate value (S9,5, S

′
9,5) and the difference ∆S9,5. If there is a

pair satisfies ∆S9,5 = ∆CL,2, we discard the guessed key and try another one. Otherwise we
exhaustively search for the remaining 48 bits of the key under this guessed key, if the correct
key is obtained, we halt the attack; otherwise, another key guess should be tried.

Complexity. Since the probability of the event ∆S9,5 = ∆CL,2 happens in step 3 of key recov-
ery phase is 2−8, the expected number of remaining guesses for 72-bit target subkeys is about
ǫ = 280 × (1 − 2−8)2

n−66
. If we choose ǫ = 1, then n is 79.8, and the proposed attack requires

2n+32 = 2111.8 chosen plaintexts. The time and memory complexities are dominated by step 2 of
data collection phase, which are about 2111.8 10-round encryptions and 2n−1×4×24 = 284.8 bytes.

Extending the Attack to the Whole Key Space. On the basis of the above impossible
differential attack for weak keys, we construct a multiplied attack on 10-Round Camellia-128.

– Phase 1. Perform an impossible differential attack by using the 5+2 WKID

(0|0|0|0|0|0|0|0, a|0|0|0|c|0|0|0) 9 (0|0|0|0|d|0|0|0, 0|0|0|0|0|0|0|0).

This phase is extremely similar to the weak-key attack that is described above. However,
it is slightly different when the attack is finished. That is, if there is a key kept, then the
key is the correct key, and we halt the procedure of the attack. Otherwise, we conclude that

the correct key does not belong to this set of weak keys, which means that kl
(9)
1 = 1 and

kl
(8)
2 = 0. In this case, we get 2-bit information of the key and perform the next phase.

– Phases 2 to 4. Perform an impossible differential attack by using each 5+2 WKID in the
following:

(0|0|0|0|0|0|0|0, 0|a|0|0|0|c|0|0) 9 (0|0|0|0|0|d|0|0, 0|0|0|0|0|0|0|0),

(0|0|0|0|0|0|0|0, 0|0|a|0|0|0|c|0) 9 (0|0|0|0|0|0|d|0, 0|0|0|0|0|0|0|0),

(0|0|0|0|0|0|0|0, 0|0|0|a|0|0|0|c) 9 (0|0|0|0|0|0|0|d, 0|0|0|0|0|0|0|0).

The procedure is similar to Phase 1, and either recover the correct key or get another 2-bit
information about the key and execute the next phase.

– Phase 5. Announce the intermediate key

K
(95,103,111,119)
A = 0 and K

(6,14,22,30)
A = 1,

then exhaustively search for the remaining 120 bit value of KA and recover the key KL.

The upper bound of the time complexity is 2111.8×4+2120 ≈ 2120. The data complexity is about
2113.8. The memory could be reused in different phase, so the memory requirement is about 284.8

bytes.

3.3 Attack on 11-Round Camellia-192

We add one round on the bottom of 10-round attack and give an attack on 11-round Camellia-
192.



Data Collection. Choose 280.64 structures of plaintexts. Each structure contains 232 plaintexts:

(L0, R0) = (α1|x1|x2|x3|α2|x4|x5|x6, P (β1|y1|y2|y3|β2|y4|y5|y6)),

where xi and yi (i = 1, ..., 6) are fixed values in each structure, while αj and βj (j = 1, 2) take
all the possible values, and P is the linear transformation. Ask for the encryption of the cor-
responding ciphertext for each plaintext, compute P−1(CL) and store the plaintext-ciphertext
pairs (L0, R0, CL, CR) in a hash table indexed by 8-bit value (P−1(CL))1. By birthday para-
dox, we get 2143.64 × 2−8 = 2135.64 pairs whose ciphertext differences satisfy P−1(∆CR) =
(h′1|h

′
2|h

′
3|h

′
4|h

′
5|h

′
6|h

′
7|h

′
8) and P−1(∆CL) = (0|g′2|g

′
3|g

′
4|g

′
5|g

′
6|g

′
7|g

′
8), where h

′
i and g′i are unknown

values.

Key Recovery.

1. For l = 1, 5, guess the 8-bit value of K1,l, partially encrypt their plaintext (L0,l, L
′
0,l) and

discard the pairs whose intermediate value do not satisfy∆S1,l = (P−1(∆R0))l. The expected
number of remaining pairs is 2135.64 × 2−16 = 2119.64.

2. In this step, we consider the ciphertext of each remaining pair.
(a) For l = 1, 2, 3, 4, 6, 7, 8, guess the 8-bit value of K11,l. Partially decrypt the ciphertext

(CL,l, C
′
L,l) and keep only the pairs which satisfy ∆S11,l = h′l. The expected number of

remaining pairs is 2119.64 × 27×(−8) = 263.64.
(b) Guess the 8-bit value K11,5. Partially decrypt the ciphertext (CL,5, C

′
L,5), then compute

the intermediate value (R10, R
′
10), where ∆R10 = (0|f |f |f |0|f |f |f) and f = ∆S11,5 ⊕ h′5.

3. Application of the 10-round attack.
(a) Guess the 8-bit value K10,8, partially decrypt (R10,8, R

′
10,8) and discard the pairs whose

intermediate values do not satisfy ∆S10,8 = g′8. The expected number of remaining pairs
is 263.64 × 2−8 = 255.64.

(b) For l = 2, 3, 4, 6, 7, guess the 8-bit value K10,l. Partially decrypt the intermediate value
(R10,l, R

′
10,l) and keep only the pairs whose intermediate values satisfy ∆S10,l = g′l ⊕ g′5.

The expected number of remaining pairs is 255.64 × 25×(−8) = 215.64.
(c) Guess the 8-bit value K10,1, partially decrypt the intermediate value R10,1 and calculate

the intermediate values (R9,5, R
′
9,5). Discard the pairs whose intermediate values do not

satisfy ∆R
(1)
9,5 = 0. Then the expected number of remaining pairs is 215.64 × 2−1 = 214.64.

(d) Guess the 8-bit value K9,5, partially decrypt the intermediate value (R9,5, R
′
9,5) to get

the difference ∆S9,5. If there is a pair satisfies ∆S9,5 = ∆R10,2, we discard the guessed
key and try another one. Otherwise we exhaustively search for the rest 48 bits of KL and
KR under this key, if the correct key is obtained, we halt the attack; otherwise, another
key should be tried.

Complexity. The data complexity of the attack is 2112.64 chosen plaintexts. The time complexity
is dominated by step 3 (d) which requires about 2144 × (1 + (1 − 2−8) + (1− 2−8)2 + ...+ (1−
2−8)2

13.7−1) × 2 × 1
11 × 1

8 ≈ 2146.54 11-round encryptions. The memory complexity is about
2133.56 × 4× 24 = 2141.64 bytes.

Reduce the Time Complexity to 2138.54. Assume 16-bit value α2 and β2 are fixed in data
collection phase of above attack, then we can collect 2n+31×2−8 = 2n+23 pairs, where n represents
the number of structures. Nevertheless, it is unnecessary for us to guess 8-bit subkey K1,5 in this
case. Then there are totally 136-bit values of subkey to be guessed in the attack, therefore, the
expected number of remaining guesses of target subkey is about ǫ = 2136 × (1− 2−8)2

n−90
after

the attack. If we chose ǫ = 1, n is 104.56. Then the data complexity increases to 2n+16 = 2120.56,
but the time complexity reduces to 2138.54, the memory requirement reduces to 2133.56 bytes.



Extending the Attack to the Whole Key Space. Similar to 10-round attack on Camellia-
128, we mount a multiplied attack on Camellia-192 for the whole key space. The expected time
of the attack is about 4 × 2146.54 + 2192 × (1− 3

4)
4
= 2184. The expected data of the attack is

2114.64. The memory requirement is about 2141.64 bytes.

3.4 The Attack on 12-Round Camellia-256

We add one round on the bottom of 11-round attack, and present a 12-round attack on Camellia-
256. The attack procedure is similar to the 11-round attack. First choose 281.17 structures and
collect 2144.17 plaintext-ciphertext pairs in data collection phase. After guessing the subkey
K1,{1,5}, we guess the 64-bit value K12 and compute the intermediate value (R11, R

′
11), then

apply the 11-round attack to perform the remaining steps. In summary, the proposed attack
requires 281.17+32 = 2113.17 chosen plaintexts. The time complexity is about 2210.55 12-round
encryptions, and the memory requirement is about 2150.17 bytes. Similar to the above subsection,
the time complexity and memory requirement can also reduce to 2202.55 and 2142.12, respectively,
but data complexity increases to 2121.12 in this case.

We also construct another type of impossible differential attack of Camellia-256, which adds
four rounds on the top and one round on the bottom of the 2+5 WKID (see section 3.1). The
attack is performed under the chosen ciphertext attack scenario. Similar to the attack based on
the 5+2 WKID, the data and time complexity are about 2113.17 and 2216.3, respectively.

Extending the Attack to the Whole Key Space. On the basis of two types of impossible
differential attacks for weak keys, we mount a multiplied attack on 12-round Camellia-256 for
the whole key space as below.

– Phases 1 to 8. Preform an impossible differential attack by using of all conditional im-
possible differentials 2+5 WKID list in section 3.1. For each phase, if success, output the
actual key, else perform the next phase.

– Phase 9. Announce 16-bit value of the master key

K
(31,39,47,55,95,103,111,119)
R = 0 and K

(6,14,22,30,70,78,86,94)
R = 1,

then exhaustively search for the remaining 240 bit value of KR, KL and recover the actual
key.

The expected time of the attack is 2216.3 × 8 + 2256 × (14)
8
≈ 2240 encryptions, and the expected

data complexity is about 2116.17.

3.5 The Attacks Including Two FL/FL−1 Layers

If we do not start from the first round, we can take the attacks that include two FL/FL−1

layers into account. We first illustrate some new observations of FL and FL−1 functions, then
present attacks on variants of 14-round Camellia-256 and 12-round Camellia-192.

Proposition 4. If the output difference of FL function is ∆Y = (a|0|0|0|0|0|0|0), then the input

difference should satisfy ∆X = (b1|0|0|0|b5|0|0|b8) with b1 = a, b
(8)
5 = 0 and b

(1∼7)
8 = 0, where a

is a non-zero byte.

Proposition 5. If the output difference of FL−1 function is ∆X = (a|a|a|0|a|0|0|a), and the

input difference ∆Y = (b1|b2|b3|b4|b5|b6|b7|b8), then b
(8)
7 = 0, b

(8)
3 = a(8) and b

(1∼7)
8 = a(1∼7),

where a is a non-zero byte, bi are unknown bytes.



Proposition 6. Suppose the input difference of the i-round of Camellia satisfies (∆Li−1,∆Ri−1)
= (b1|b2|b3|b4|b5|b6|b7|b8, P (c′1|c

′
2|c

′
3|c

′
4|c

′
5|c

′
6|c

′
7|c

′
8)), and the output difference is (∆Li,∆Ri) =

(a1|0|0|0|a5|0|0|a8, b1|b2|b3|b4|b5|b6|b7|b8) with a
(8)
5 = 0 and a

(1∼7)
8 = 0, where b′i, c

′
i are arbitrary

bytes, and a1 is a nonzero byte, then the following results hold.

(1) The intermediate value ∆Si = P−1(∆Li⊕∆Ri−1) = (c′1 ⊕ a8|c
′
2 ⊕ a1⊕ a5⊕ a8|c

′
3⊕ a1⊕ a5⊕

a8|c
′
4 ⊕ a1 ⊕ a5|c

′
5 ⊕ a1 ⊕ a5 ⊕ a8|c

′
6 ⊕ a5 ⊕ a8|c

′
7 ⊕ a5|c

′
8 ⊕ a1 ⊕ a8).

(2) ∆S
(1∼7)
i,1 = c′

(1∼7)
1 , and a

(8)
8 = ∆S

(8)
i,1 ⊕ c′

(8)
1 .

(3) ∆S
(8)
i,7 = c′

(8)
7 , and a

(1∼7)
5 = ∆S

(1∼7)
i,5 ⊕ c′

(1∼7)
7 .

(4) a1 = ∆Si,8 ⊕ c′8 ⊕ a8.

Attack on 14-Round Camellia-256 Our 14-round attack of Camellia-256 works from round
10 to round 23, where the 5+2 WKID is applied from round 14 to round 20.

First of all, we demonstrate the relation of subkeys used in the round 10, 11, 12, 13, 21,

22, 23 and the second FL/FL−1 layer (KL3, KL4) as follows, i.e., K10 = K
(110∼128,1∼45)
L ,

K11 = K
(46∼109)
A , K12 = K

(110∼128,1∼45)
A , K

(1∼8)
13 = K

(61∼68)
R , KL

(1∼9)
3,L = K

(61∼69)
L , KL

(1∼8)
3,R =

K
(93∼100)
L , KL4,L = K

(125∼128,1∼28)
L , KL4,R = K

(29∼60)
L , K

(33∼40)
21 = K

(127,128,1∼6)
A , K22 =

K
(31∼94)
A , K23 = K

(112∼128,1∼47)
L .

With the key relation, we can first launch the impossible differential attack in weak-key
setting, then extend it to an attack for all keys, which is similar to above attacks.

Data Collection. We choose the chosen ciphertext scenario to perform the attack and begin
with choosing one structure of ciphertexts which contains 2120 ciphertexts:

(CL, CR) = (P (y1|β2|β3|β4|β5|β6|β7|β8), α1|α2|α3|α4|α5|α6|α7|α8).

Where y1 is fixed, while αi (i = 1, ..., 8) and βj (j = 2, ...8) take all possible values. Ask for
the decryption to get the corresponding plaintext for each ciphertext, which results in 2239 pairs
which satisfy the difference:

(∆CL,∆CR) = (P (0|g′2|g
′
3|g

′
4|g

′
5|g

′
6|g

′
7|g

′
8), f1|f2|f3|f4|f5|f6|f7|f8).

Key Recovery.

1. Guess 130-bit value (K
(1∼47,110∼128)
L |K

(46∼109)
A ), for every plaintext-ciphertext pair (P,C),

perform the following substeps.

(a) Partially encrypt the plaintext P to get the intermediate value (L11, R11). Since 38 bits

of the subkey used in FL−1 function, which are KL
(1∼19)
4,R = K

(29∼47)
L and KL

(1∼19)
4,L =

K
(125∼128,1∼15)
L , have been guessed, 38-bit intermediate value RFL,{1,2}|R

(1∼3)
FL,3 |RFL,{5,6}|R

(1,2)
FL,7|

R
(8)
FL,8 can be computed, where RFL represents the value after the FL−1 function.

(b) Partially decrypt the ciphertext C to get the intermediate values (L22, R22) and P−1(L22).

Note that now we can compute S22,{3∼8} as the 48-bit value K22,{3∼8} = K
(47∼94)
L is

known.

(c) Store the values (L11, R11) and (L22, R22) into a hash table Γ indexed by the following
143-bit values.

– R22,{1,5}, R22,2 ⊕R22,3, R22,2 ⊕R22,4, R22,2 ⊕R22,6, R22,2 ⊕R22,7, R22,2 ⊕R22,8.
– S22,3 ⊕ P−1(L22)3 ⊕ P−1(L22)5, S22,4 ⊕ P−1(L22)4 ⊕ P−1(L22)5, S22,6 ⊕ P−1(L22)6 ⊕

P−1(L22)5, S22,7 ⊕ P−1(L22)7 ⊕ P−1(L22)5, S22,8 ⊕ P−1(L22)8.



– R
(8)
12,7, RFL,1 ⊕ (R

(1∼7)
12,8 |R

(8)
12,3), RFL,2 ⊕ (R

(1∼7)
12,8 |R

(8)
12,3), R

(1∼3)
FL,3 ⊕R

(1∼3)
12,8 , RFL,6, R

(1,2)
FL,7,

RFL,5 ⊕ (R
(1∼7)
12,8 |R

(8)
12,3), R

(8)
FL,8 ⊕R

(8)
12,3.

Then each two values lie in the same row of Γ form a pair that satisfies the following
conditions.
– The difference ∆R22 = (0|f |f |f |0|f |f |f), where f is a nonzero value.
– The difference P−1(∆L22) = (0|g′2|g

′
3|g

′
4|g

′
5|g

′
6|g

′
7|g

′
8) satisfies g′3 ⊕ g′5 = ∆S22,3, g

′
4 ⊕

g′5 = ∆S22,4, g
′
6 ⊕ g′5 = ∆S22,6, g

′
7 ⊕ g′5 = ∆S22,7, g

′
8 = ∆S22,8.

– Assume the difference∆R12 (equals to∆L11) is represented as (b1|b2|b3|b4|b5|b6|b7|b8),

then it satisfies b
(8)
7 = 0, and the output difference of FL−1 function satisfies∆RFL,1 =

(b
(1∼7)
8 |b

(8)
3 ),∆RFL,2 = (b

(1∼7)
8 |b

(8)
3 ),∆R

(1∼3)
FL,3 = b

(1∼3)
8 ,∆RFL,5 = (b

(1∼7)
8 |b

(8)
3 ),∆RFL,6

= 0, ∆R
(1,2)
FL,7 = 0 and ∆R

(8)
FL,8 = b

(8)
3 .

This step performs a 135-bit filtration from 2239 pairs, so the expected number of remain-
ing pairs is 2104.

2. Guess 12-bit value KL
(20∼23,25∼32)
4,R , compute the output differences ∆R

(4∼7)
FL,3 , ∆R

(3∼7)
FL,7 and

RFL,4 (from b
(8)
7 = 0 we conclude ∆R

(8)
FL,3 = b

(8)
3 ). Discard the pairs that do not satisfy

∆R
(4∼7)
FL,3 = b

(4∼7)
8 , ∆R

(3∼7)
FL,7 = 0 and ∆RFL,4 = 0, then the expected number of remaining

pairs is 287. Moveover, from ∆RFL,4 = 0 and b
(8)
7 = 0, we get ∆R

(8)
FL,7 = 0 and ∆R

(1∼7)
FL,8 =

b
(1∼7)
8 . Therefore, at the end of this substep, all remaining pairs satisfy the condition ∆RFL =

(b|b|b|0|b|0|0|b), where b = (b
(1∼7)
8 |b

(8)
3 ).

3. Guess 7-bit value K
(9∼15)
22 , compute the intermediate value ∆S22,2 (K

(16)
22 (K

(46)
A ) has already

been guessed in the step 1), and discard the pairs which do not satisfy ∆S22,2 = g′2 ⊕ g′5.
Each pair will be kept with probability 2−8, so the expected number of remaining pairs is
279.

4. Compute the intermediate value P−1(∆R11) = (c′1|c
′
2|c

′
3|c

′
4|c

′
5|c

′
6|c

′
7|c

′
8), then perform the

following substeps.

(a) Guess 17-bit subkeys K12,1, K12,7 and K
(1)
12,8, calculate the value ∆S12,{1,7,8} (7-bit value

K
(1∼7)
12,8 (K

(39∼45)
A ) has been guessed in step 3), and discard the pairs which do not satisfy

∆S
(1∼7)
12,1 = c′

(1∼7)
1 and ∆S

(8)
12,7 = c′

(8)
7 according to proposition 7. The expected number of

remaining pairs is 271. Then we compute the value a8 = ∆S12,1⊕ c′1, a
(1∼7)
5 = ∆S

(1∼7)
12,7 ⊕

c′
(1∼7)
7 and a1 = ∆S12,8 ⊕ c′8 ⊕ a8.

(b) For i = 2 to 6, guess 8-bit subkey K12,i, compute the difference ∆S12,i and discard the
pairs which do not satisfy ∆S12,j = c′j ⊕ a1 ⊕ a5 ⊕ a8 (j = 2, 3, 4), ∆S12,5 = c′5 ⊕ a1 ⊕ a8
and ∆S12,6 = c′6 ⊕ a5 ⊕ a8. Then we expect about 231 pairs remain.

5. Since all of the 128-bit value of KA have been guessed in step 1, 3 and 4, we compute

the values R21 and R′
21 for every remaining pair and keep only the pairs whose ∆R

(1)
21,5 = 0.

Then we partially decrypt R21,5 and R′
21,5 to get the value ∆S21,5, keep only the pairs whose

∆S21,5 = f , which results in 222 remaining pairs.

6. Guess 17-bit value KL
(1∼9)
3,L and KL3,R,1, compute ∆LFL,5, ∆L

(8)
FL,8 and ∆LFL,1. Then dis-

card the pairs whose (∆L
(1∼7)
FL,5 |∆L

(8)
FL,8) 6= 0. The expected number of remaining pairs is

about 214.
7. Guess 8-bit value K13,1, partially encrypt LFL,1 and L′

FL,1 to get the value ∆S13,1 of every
remaining pair. If ∆S13,1 equals to ∆RFL,{1,2,3,5,8}, delete this value from the list of all the
28 possible values K13,1.

8. After analyzing of all remaining pairs, if the list is not empty, announce that the value in
the list along with above 223-bit guessed values are the candidates of 231-bit target value of



subkey KA|K
(61∼68)
R |K

(1∼51,53∼69,93∼100,110∼128)
L , then recover the whole master key KL and

KR by key searching. Otherwise, try the other 223-bit guess.

Complexity. The time complexity is dominated by step 1, which requires about 5 rounds’ en-
cryptions to compute the intermediate values for every plaintext and ciphertext pair. Then the
time complexity is 2120 × 2130 × 5/14 ≈ 2248.5 14-round encryptions. The memory requirement
is dominated by data collection, which needs 2125 bytes to store the known plaintexts and the
corresponding ciphertexts. Similarly, the expected time of the attack for the whole key space is
about 2250.5 14-round encryptions.

Attack on 12-Round Camellia-192 Making use of 2+5 WKID, we mount the weak-key
impossible differential attack on 12-round Camellia-192, which is from round 3 to round 14,
where the 2+5 WKID is applied from round 5 to round 11. The attack procedure is similar to
that of 14-round Camellia-256. To summarize, the time complexity of the attack is about 2180.1

12-round encryptions. The memory requirement is dominated by step 1, which needs 2124.1 bytes
to store the plaintext-ciphertext pairs. For the attack that works for the whole key space, the
data complexity is about 2120.1 chosen plaintexts, and the time complexity is about 2184 12-round
encryptions.

4 8-Round Impossible Differentials of Camellia and Their Applications 2

In this section, we first present a method to construct a set of differentials, which contains at
least one 8-round impossible differential of Camellia with two FL/FL−1 layers for any fixed
key. Based on this differential set, we propose a new attack strategy to recover the correct key.
Finally, we mount impossible differential attacks on reduced-round Camellia-128/192/256 with
the whitening and FL/FL−1 layers from some intermediate round.

4.1 The Construction of 8-Round Impossible Differentials of Camellia

In this section, we present some 8-round impossible differentials of Camellia with two key-
dependent layers by exploiting some properties of the keyed transformation FL/FL−1.

Proposition 7. If the input difference of FL is (a|0|0|0|a′|0|0|0), where a(1) = a′(8) = 0 and

a′(i) =

{

0, kl
(i+1)
L = 0;

a(i+1), kl
(i+1)
L = 1;

for 1 ≤ i ≤ 7, (1)

then the output of FL is (a|0|0|0|0|0|0|0).

Proof. By Lemma 2, we can obtain

∆YR = ((∆XL ∩ klL) ≪ 1)⊕∆XR = (((a|0|0|0) ∩ klL) ≪ 1)⊕ (a′|0|0|0)

= ((a(2∼8)|0 ∩ klL,1)⊕ a′)|0|0|0.

According to a(1) = a′(8) = 0 and the equation (1), we derive that ∆YR = 0. Furthermore,∆YL =
∆XL⊕∆YR⊕(∆YR∩klR) = ∆XL = a|0|0|0. Therefore, the output of FL is (a|0|0|0|0|0|0|0). ⊓⊔

By Propositions 7, we construct an 8-round impossible differential of Camellia with two
FL/FL−1 layers for any fixed subkey.

2 By Ya Liu, Dawu Gu, Zhiqiang Liu and Wei Li.
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Fig. 3. The Structure of 8-Round Impossible Differentials of Camellia

Proposition 8. For an 8 rounds of Camellia with two FL/FL−1 layers inserted after the first
and seventh rounds, the input difference of the first round is (0|0|0|0|0|0|0|0, a|0|0|0|a′ |0|0|0) and
the output difference of the eighth round is (b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0) with a and b being
nonzero bytes and a(1) = b(1) = a′(8) = a′(8) = 0. Four subkeys kli(i = 1, · · · , 4) are used in two
FL/FL−1 layers. If a′ and b′ satisfy the following equations:

a′(i) =

{

0, if kl
(i+1)
1 = 0;

a(i+1), if kl
(i+1)
1 = 1;

b′(i) =

{

0, if kl
(i+1)
4 = 0;

b(i+1), if kl
(i+1)
4 = 1;

for 1 ≤ i ≤ 7,

then
(0|0|0|0|0|0|0|0, a|0|0|0|a′ |0|0|0) 98 (b|0|0|0|b

′|0|0|0, 0|0|0|0|0|0|0|0)

is an 8-round impossible differential of Camellia with two FL/FL−1 layers (See Fig. 3).

Proof. By proposition 7, we obtain that the input difference of the second round and the output
difference of the seventh round are (a|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|0) and (0|0|0|0|0|0|0|0, b|0|0|0|0|0|
0|0), respectively. In [23], Wu et al. constructed an 8-round impossible differential of Camellia
without the FL/FL−1 layers: (0|0|0|0|0|0|0|0, a|0|0|0|0|0|0|0) 98 (b|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|0)
where a and b are nonzero bytes. Thus, (a|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|0) 96 (0|0|0|0|0|0|0|0, b|0|0|0|
0|0|0|0) is a 6-round impossible differential. In other word, the input difference (a|0|0|0|0|0|0|0,
0|0|0|0|0|0|0|0) cannot result in the output difference (0|0|0|0|0|0|0|0, b|0|0|0|0|0|0|0) after six-
round encryption. Therefore,

(0|0|0|0|0|0|0|0, a|0|0|0|a′ |0|0|0) 98 (b|0|0|0|b
′|0|0|0, 0|0|0|0|0|0|0|0)

is an 8-round impossible differential of Camellia with two FL/FL−1 layers. ⊓⊔



For any fixed subkey, an 8-round impossible differential with two FL/FL−1 layers can

be constructed. Each possible value of kl
(2∼8)
1 | kl

(2∼8)
4 corresponds to the existence of an

8-round impossible differential. For example, if the subkeys kl
(2∼8)
1 = kl

(2∼8)
4 = 0(7), then

(0|0|0|0|0|0|0|0, a|0|0|0|0|0|0|0) 98 (b|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|0) is an 8-round impossible dif-

ferential of Camellia with two keyed layers, where a(1) = b(1) = 0. If kl
(2∼8)
1 = kl

(2∼8)
4 = 1(7),

then (0|0|0|0|0|0|0|0, a|0|0|0|a′|0|0|0) 98 (b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0) is an 8-round impossi-
ble differential of Camellia with two keyed layers, where a, b, a′ and b′ are nonzero bytes and
satisfy a(1) = b(1) = a′(8) = b′(8) = 0, a′(1∼7) = a(2∼8) and b′(1∼7) = b(2∼8). All possible values

of kl
(2∼8)
1 | kl

(2∼8)
4 are from 0(14) to 1(14). Denote their corresponding impossible differentials

by ∆i for 0 ≤ i ≤ 214 − 1. However, it is possible that different values of kl
(2∼8)
1 may result in

the same values of a′, and different values of kl
(2∼8)
4 may lead to the same values of b′. There-

fore, some of 214 differentials are equal to each other. Let A be a set including all differentials
∆i(0 ≤ i ≤ 214 − 1).

A = {∆i | 0 ≤ i ≤ 214 − 1} , {δj | 1 ≤ j ≤ t}, where t ≤ 214.

According to Proposition 8, 8-round differentials of A must have the forms:

∆ = (0|0|0|0|0|0|0|0, a|0|0|0|a′ |0|0|0) 98 (b|0|0|0|b
′|0|0|0, 0|0|0|0|0|0|0|0)

with a and b being nonzero bytes and a(1) = b(1) = a′(8) = b′(8) = 0. Among them, a′ and b′ are
either zero or nonzero bytes. We divide all differentials of A into three cases in order to simplify
our analysis. The first one is a′ = b′ = 0. The second one is a′ = 0 and b′ 6= 0, or a′ 6= 0 and
b′ = 0. The last one is a′ 6= 0 and b′ 6= 0.

By proposition 8, we only know the existence of an 8-round impossible differential of Camellia
with two FL/FL−1 layers for any fixed key, but cannot distinguish it from other differentials of
A. Therefore, we require to propose a new attack strategy to recover the correct key based on
this differential set.

The Attack Strategy. Select a differential δi from A. Based on it, we mount an impossible
differential attack on reduced-round Camellia given enough plaintext pairs. More concretely, we
select enough plaintexts such that all wrong keys will be removed with high probability if δi is
an impossible differential.

1. If one subkey remains, we recover the secret key by the key schedule and verify whether it is
correct by some plaintext-ciphertext pairs. If success, end this attack. Otherwise, try another
differential δj(j 6= i) of A and perform a new impossible differential attack.

2. If no subkey or more than one subkeys is left, select another differential of A to execute a
new impossible differential attack.

⊓⊔
Our attack strategy can really recover the correct key. As a matter of fact, if δi is an impossible

differential, we make sure the expected number of remaining wrong keys will be almost zero given
enough chosen plaintexts. Therefore, we only consider those differentials which result in one
subkey remaining. By Proposition 8, we know the differential set A must contain an impossible
differential. So we try each differential of A until the correct key is recovered. The worst scenario
is that the correct key is retrieved from the last try.

4.2 Impossible Differential Attack on 13-round Camellia-256

Based on three scenarios of differentials in A, we present an impossible differential attack on
13-round Camellia-256 with the FL/FL−1 and whitening layers. For each of three cases, we
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Fig. 4. Impossible Differential Attack on 13-round Camellia-256 for Case 1

put two additional rounds on the top and three additional rounds on the bottom of the 8-
round differentials of A. On the basis of this structure, we can attack 13-round Camellia-256
from rounds 4 to 16 or from rounds 10 to 22. Similarly, we put three additional rounds on the
plaintext side and two additional rounds on the ciphertext side to attack 13-round Camellia-256
from rounds 3 to 15 or from rounds 9 to 21. Some previously known skills such as building
hash tables and the early abort technique [15] are also adopted in order to reduce the time
complexity. In this section, we only elaborate the attack procedure of impossible differential
cryptanalysis of 13-round Camellia-256 from rounds 4 to 16. Before introducing our attack, we
list some notations, i.e.,

ka , kw1 ⊕ k4, kb , kw2 ⊕ k5, kc , kw3 ⊕ k16, kd , kw4 ⊕ k15, ke , kw3 ⊕ k14.

We use these equivalent subkeys ka, kb, kc, kd and ke instead of the round subkeys k4, k5, k14, k15
and k16 so as to remove the whitening layers. This new cipher acts as the original one.

Based on the attack strategy in section 4.1, we mount an impossible differential attack on 13-
round Camellia-256 by using differentials of A until the correct key is recovered. In the following,
we discuss this attack by three cases.

Case 1 a′ = b′ = 0: At this time, the differential ∆ = (0|0|0|0|0|0|0|0, a|0|0|0|0|0|0|0) →8

(b|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|0), where a and b are nonzero bytes and a(1) = b(1) = 0 (See Fig. 4).

Data Collection. Select a structure of plaintexts, which contains 255 plaintexts with the fol-
lowing forms:

(P (α1|x1|x2|x3|x4|x5|x6|x7), P (α2|α3|α4|α5|α6|x8|x9|α7)), (2)

where α
(1)
5 , xi(1 ≤ i ≤ 9) are fixed and αj(1 ≤ j ≤ 7, i 6= 5), α

(2∼8)
5 takes all possible val-

ues. Clearly, each structure forms 2109 plaintext pairs, the differences of which have the forms:
(P (g1|0|0|0|0|0|0|0), P (g2 |g3 ⊕ a|g4 ⊕ a|a|g5 ⊕ a|0|0|g6 ⊕ a)) with a and gi(1 ≤ i ≤ 6) being

nonzero bytes and a(1)=0. We take all possible values of (α
(1)
5 , x4, x8, x9) and 243 different val-

ues of xi(1 ≤ i ≤ 7, i 6= 4) to obtain 268 special structures. In total, there are 2123 chosen



plaintexts which form 2177 plaintext pairs. Encrypt these plaintext pairs to obtain the cor-
responding ciphertext pairs. If the left halves of their ciphertexts differences have the form:
P (h1|h2 ⊕ b|h3 ⊕ b|b|h5 ⊕ b|0|0|h8 ⊕ b) with b(1) = 0, then these pairs will be kept. The expected
number of remaining pairs is about 2160.

Key Recovery.

1. Guess ka,1. For each remaining pair, check whether the equation∆S4,1 = (P−1(∆PR))1 holds.
If ∆S4,1 6= (P−1(∆PR))1 for some pair, then this pair will be discarded. Next guess each
possible value of ka,l for l = 2, 3, 5, 8. Keep only the pairs satisfying ∆S4,l = (P−1(∆PR))l ⊕
(P−1(∆PR))4. The total probability of this event is about 2−40. Thus the expected number
of remaining pairs is about 2120. Finally, guess ka,{4,6,7} and compute the inputs of the fifth
round.

2. Guess kb,1 and test whether ∆S5,1 is equal to (P−1(∆PL))1 for each remaining pair. If
∆S5,1 6= (P−1(∆PL))1 for one pair, then this pair will be removed. The probability that to
happen is about 2−8. Thus about 2112 pairs will be kept.

3. Guess kc,l for 2 ≤ l ≤ 8. Verify whether ∆S16,l is equal to (P−1(∆CR))l for every remaining
pair. If∆S16,l 6= (P−1(∆CR))l for some pair, then this pair is discarded. The total probability
of this event is 2−56. Therefore, we expect about 256 pairs remain. Next guess kc,1 and
compute the outputs of the 15-th round for each of the remaining pairs.

4. Guess kd,l for l = 1, 2, 3, 5, 8. Verify whether the equations, ∆S15,1 = (P−1(∆CL))1 and
∆S15,j = (P−1(∆CL))j ⊕ (P−1(∆CL))4 for j = 2, 3, 5, 8, hold for every remaining pair. The
total probability that to happen is about 2−40. Thus there are about 216 pairs remain. Next
guess other bytes of kd and calculate the outputs of the 14-th round.

5. Guess ke,1 and compute the output difference of the S-Boxes in the 14-th round. If ∆S14,1 is
equal to (P−1(∆L14))1, then we remove this value of ke,1 with (ka, kb,1, kc, kd). The probabil-
ity of this event is about 2−8. After trying all possible values of (ka, kb,1, kc, kd, ke,1), if only
one joint subkey remains, then ∆ is likely to be an impossible differential. At this time, we
recover the secret key by the key schedule and verify whether it is correct by some plaintext-
ciphertext pairs. If no subkey or more than one subkeys is left, then ∆ is possible to exist. At
this time, try another differential of A. As a matter of fact, if ∆ is an impossible differential,
the expected number of the wrong subkeys remaining is about 2208 × (1− 2−8)2

16
≈ 2−161.4.

We consider that all wrong subkeys are removed and only the correct subkey is left. Therefore,
we require to perform the following Step 6 only if one subkey is left.

6. We can recover the secret key from this unique 208-bit subkey (ka, kb,1, kc, kd, ke,1). By the
key schedule of Camellia-256, we can obtain:

ka = kw1 ⊕ k4 = (KL ≪ 0)L ⊕ (KR ≪ 15)R, (3)

kb = kw2 ⊕ k5 = (KL ≪ 0)R ⊕ (KA ≪ 15)L, (4)

kc = kw3 ⊕ k16 = (KB ≪ 111)L ⊕ (KB ≪ 60)R, (5)

kd = kw4 ⊕ k15 = (KB ≪ 111)R ⊕ (KB ≪ 60)L, (6)

ke = kw3 ⊕ k14 = (KB ≪ 111)L ⊕ (KR ≪ 60)R. (7)

We first guess each possible values of KB. By the equations (5) and (6), we discard some
wrong candidates of KB with the probability 2−128. Therefore, only one value of KB is left.
Then we calculate 8 bits of KR by the equation (7). Guess the remaining unknown 120 bits of
KR. By property 4 of [17], we can compute the corresponding value for (KL,KA). According
to the equations (3) and (4), we can discard some wrong candidates of (KL,KA). Therefore,
the number of the remaining main keys is approximately 2120 × 2−72 = 248. By about 248

trail encryptions, if some key is correct, stop the attack. Otherwise, try another differential
of A.



Case 2 a′ = 0 and b′ 6= 0, or a′ 6= 0 and b′ = 0: We only attack a special scenario, i.e., a′ = 0,
b′ 6= 0 and b′(1∼7) = b(2∼8). The others can be attacked in the similar way. At this moment, the
differential is ∆′ = (0|0|0|0|0|0|0|0, a|0|0|0|0|0|0|0) →8 (b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0), where a,
b and b′ are non-zero bytes, b′(1∼7) = b(2∼8) and a(1) = b(1) = b′(8) = 0.

Data Collection. We apply 268 special structures of Case 1 above. Totally, there are 2123

chosen plaintexts which form 2177 pairs. At this moment, the form of the ciphertext difference
is random.

Key Recovery.

1. Guess kc,l for 2 ≤ l ≤ 8 and l 6= 5. Verify whether the equation ∆S16,l = (P−1(∆CR))l holds
for every remaining pair. If ∆S16,l 6= (P−1(∆CR))l for some pair, then this pair is discarded.
The whole probability of this event is 2−48. Therefore, we expect about 2129 pairs remain.
Next guess kc,{1,5} and compute the outputs of the 15-th round for each of the remaining
pairs.

2. We first guess kd,1 and check whether the equation ∆S15,1 = (P−1(∆CL))1 holds for each
remaining pair. If ∆S15,1 = (P−1(∆CL))1 for one pair, then this pair will be kept. Oth-
erwise, this pair will be discarded. Second, guess kd,8 and keep only the pairs satisfying

∆S
(1)
15,8 = (P−1(∆CL))

(1)
8 . Third, guess kd,{2∼7}. Test whether ∆S15,l = (P−1(∆CL))l ⊕

(((P−1(∆CL))8 ⊕∆S15,8)
(2∼8)|0) for l = 6, 7 and ∆S15,l = (P−1(∆CL))l ⊕ (P−1(∆CL))8 ⊕

∆S15,8 ⊕ (P−1(∆CL))7 ⊕∆S15,7 for l = 2, 3, 4, 5. The total probability of this step is about
2−57. So the expected number of remaining pairs is approximately 272. Compute the outputs
of the 14-th round for each remaining pair.

3. Guess ke,l for l = 1, 5. Verify whether the equation ∆S14,l = (P−1(∆L14))l holds for each
remaining pair. If this equation is correct for some pair, then this pair will be kept. The
probability of this event is about 2−16. About 256 pairs will be kept.

4. Guess each of possible values ka as like Case 1 for all remaining pairs. Finally, we expect
about 216 pairs remain and calculate the inputs of the fifth round.

5. Guess kb,1. This step is similar to Step 5 of Case 1. If only one joint subkey is left, then
we consider ∆′ is an impossible differential and recover the secret key by the key schedule.
Otherwise try another differential of A. In fact, the expected number of the wrong subkeys
remaining is approximately 2216 × (1− 2−8)2

16
≈ 2−153.4 if ∆′ is an impossible differential.

6. This step is similar to Step 6 of Case 1. The difference is that the equation (7) can give 16
bits of KR. Therefore, we only require to guess 112 bits of KR. About 2

40 keys will be left.
By about 240 trail encryptions, if some key is correct, stop the attack. Otherwise, try another
differential of A.

Case 3 a′ 6= 0 and b′ 6= 0: We only discuss an example, i.e., a′(1∼7) = a(2∼8) and b′(1∼7) = b(2∼8).
At this moment, the differential is ∆′′ = (0|0|0|0|0|0|0|0, a|0|0|0|a′ |0|0|0) →8 (b|0|0|0|b′|0|0|0,
0|0|0|0|0|0|0|0), where a, b, a′ and b′ are nonzero bytes and a(1) = b(1) = a′(8) = b′(8) = 0.

Data Collection. Continue to adopt 2123 chosen plaintexts in Case 1. Because each structure of

Case 1 takes all possible values of α
(1)
5 , x4, x8 and x9, 2

123 chosen plaintexts of Case 1 are equiva-
lent to 243 structures, each of which contains 280 plaintexts with the forms: (P (β1|y1|y2|y3|β2|y4|
y5|y6), β3|β4|β5|β6|β7|β8|β9|β10), where yi(1 ≤ i ≤ 6) are fixed and βj(1 ≤ j ≤ 10) takes all possi-
ble values. It is obvious that one structure generates 2159 pairs. Totally, there are approximately
2202 plaintext pairs satisfying the input differences.



Key Recovery.

1. Guess each byte of kc, kd, ke,{1,5}. This step is similar to Case 2 above. After guessing these
subkeys, we expect about 281 pairs remain.

2. Guess ka,1, ka,8, ka,{6,7} and ka,{2∼5} in turn. After our test, about 224 pairs will be kept.
Compute the inputs of the fifth round for every remaining pair.

3. Guess kb,5 and kept these pairs satisfying ∆S5,5 = (P−1(∆PL))5. Finally, there are about
216 pairs remain. Next guess kb,1 and test whether ∆S5,1 is equal to (P−1(∆PL))1 for
the remaining pairs. If ∆S5,1 = (P−1(∆PL))1 for some pair, then this value kb,1 with
the guessed value (ka, kb,5, kc, kd, ke,{1,5}) are removed. After guessing all possible values
(ka, kb,{1,5}, kc, kd, ke,{1,5}), if only one joint subkey is left, then we consider ∆′′ is an im-
possible differential. At this moment, we execute the following step. Otherwise try another
differential of A. As a matter of fact, the expected number of the wrong subkeys remaining
is approximately 2224 × (1− 2−8)2

16
≈ 2−145.4 if ∆′′ is an impossible differential.

4. Similarly, we require to recover the secret key only if one subkey is left. Compared with Step
6 of Case 2 above, the difference is the equation (5) can give 16 bits of KL. Therefore, the
number of the remaining main keys is approximately 232. By about 232 trail encryptions, if
some key is correct, stop the attack. Otherwise, try another differential of A.

The Algorithm of Impossible Differential Attack on 13-Round Camellia-256:
For each differential δi of A, do

If δi belongs to Case 1, we perform the attacking procedure of Case 1.

If δi belongs to Case 2, we perform the similar attacking procedure of Case 2.

If δi belongs to Case 3, we perform the similar attacking procedure of Case 3.

If the correct key is recovered, end this algorithm. Otherwise, try another differential of A.
⊓⊔

Table 2. Time Complexity of Cases 1

Step Time Complexity (1-round encryptions)

2 2160 × 2× 28 × 5× 1
8
+ 2120 × 2× 264 × 3

8
≈ 2183.6

3 2120 × 2× 264 × 28 × 1
8
= 2190

4 2112 × 2× 272 × 28 × 7× 1
8
+ 256 × 2× 2136 × 1

8
= 2193

5 256 × 2× 2136 × 28 × 5× 1
8
+ 216 × 2× 2200 × 3

8
≈ 2215.6

6 2208 × 2× (1 + (1− 2−8) + · · ·+ (1− 2−8)2
16

)× 1
8
≈ 2214

7 2120 × 6 + 248 × 13 ≈ 2122.4

Analysis of Complexity In table 2, we list the time complexity of each step in Case 1. We find
that the total time complexity is about 2216 1-round encryptions. Similarly, we can compute the
time complexities of Case 2 and Case 3. For Case 2, the total time complexity is approximately
2224 1-round encryptions. For Case 3, the total time complexity is approximately 2240.8 1-round
encryptions. Thus the total time complexity is at most 214 × 2240.8 × 1

13 ≈ 2251.1 13-round
encryptions. Furthermore, the total data and memory complexities are 2123 chosen plaintexts
and 2208 bytes, respectively.

4.3 Impossible Differential Attack on 12-round Camellia-192

In this part, an impossible differential attack on 12-round Camellia-192 is executed. We set
two additional rounds on the top and on the bottom of our 8-round differentials, respectively.
By applying it, we can attack 12-round Camellia-192 from rounds 4 to 15 with the 8-round



impossible differentials inserted rounds 6 to 13. Similarly, we can also attack 12-round Camellia-
192 from rounds i to i+ 11 where i = 3, 5, 9, 10. Some equivalent subkeys ka and kb are defined
as before. In addition, let

k′d = kw3 ⊕ k15 = (KB ≪ 111)L ⊕ (KB ≪ 60)L, (8)

k′e = kw4 ⊕ k14 = (KB ≪ 111)R ⊕ (KR ≪ 60)R. (9)

Case 1 a′ = b′ = 0: The differential is ∆.

Data Collection. We select the same plaintexts of Case 1 mentioned in section 4.2. I.e., 2123

chosen plaintexts can form 2177 pairs. Encrypt these plaintext pairs. Keep only the pairs which
have the form of ciphertext differences: (P (h1|0|0|0|0|0|0|0), P (h2 |h3⊕b|h4⊕b|b|h5⊕b|0|0|h6⊕b)),
where b and hi(1 ≤ i ≤ 6) are nonzero bytes and b(1) = 0. The expected number of remaining
pairs is 2104.

Key Recovery. Guess all possible values (ka, kb,1, k
′
d, k

′
e,1) and discard those subkeys which

acquire the input and output differences of ∆. This step is similar to section 4.2. If ∆ is an
impossible differential, about 2144×(1−2−8)2

16
≈ 2−225.4 wrong subkeys are expected to remain.

Therefore, we will recover the secret key by the key schedule of Camellia-192 only if one subkey is
left. Otherwise, try another differential of A. By the key schedule of Camellia-192, we can recover
the secret key from the 144-bit subkey (ka, kb,1, k

′
d, k

′
e,1). We first guess all possible values of KB .

By the equation (8), we can get rid of some wrong candidates of KB with the probability 2−64.
So about 264 values of KB remain. Then we can compute 8 bits of KR by the equation (9).
Guessing the remaining unknown 56 bits of KR, we calculate (KL,KA) and remove some wrong
values of (KL,KA,KR) by the equations (3) and (4). The expected number of remaining secret
keys is approximately 264× 256× 2−64× 2−8 = 248. By about 248 trail encryptions, if the correct
key is retrieved, end the attack. Otherwise, try another differential of A.

Case 2 a′ = 0, b′ 6= 0 or a′ 6= 0, b′ = 0: For simplicity, we consider a special differential ∆′.

We still select 2123 plaintexts above. In total, there are 268 special structures, each of which
contains 255 plaintexts. Encrypt these plaintext pairs. If the left halves of their ciphertexts
differences have the forms: P (h|0|0|0|h′ |0|0|0) with h and h′ being nonzero bytes, then these
pairs will be kept. Consequently, the expected number of remaining pairs is about 2129. Similarly,
we can remove some subkeys (ka, kb,1, k

′
d, k

′
e,{1,5}) which obtain the input and output differences

of ∆′ for some pair. If only one subkey is left, we recover the secret key by the key schedule.
Otherwise, try another differential of A. In fact, if∆′ is an impossible differential, about 2−217.4(≈
2152 × (1− 2−8)2

16
) wrong subkeys will be left.

Case 3 a′ 6= 0, b′ 6= 0: A special differential ∆′′ will be considered.

The similar attacking procedure can be performed as before. We select 243 structure, each
of which contains 280 plaintexts. Totally, they can form 2202 pairs. After filtering some pairs by
the ciphertext differences, about 2154 pairs are expected to remain. The following steps can be
preformed in the similar way.

By the careful analysis, we found that the time complexity of Case 3 is maximal. Therefore,
the total time complexity is at most 214 × 2173.2 ≈ 2187.2 12-round encryptions. The data and
memory complexities are 2123 chosen plaintexts and 2160 bytes, respectively.



4.4 Impossible Differential Attack on 11-round Camellia-128

For Camellia-128, we put two additional rounds on the top and one additional round on the
bottom of 8-round differentials. Based on it, we attack 11-round Camellia-128 from rounds 4 to
14 or rounds 10 to 20. Similarly, we can also attack Camellia-128 from rounds 5 to 15 and rounds
11 to 21 by setting one additional round on the top and two rounds on the bottom. Here we
present an attack on 11-round Camellia-128 from rounds 4 to 14 briefly. Similarly, we divide all
possible differentials into three different cases as before. For Case 1, we take 267 special structures
(2). Totally, the data complexity is 2122 chosen plaintexts which form 2176 pairs. Their input
differences have the form (P (g1|0|0|0|0|0|0|0), P (g2 |g3⊕a|g4⊕a|a|g5⊕a|0|0|g6⊕a)), where a and
gi(1 ≤ i ≤ 6) are nonzero bytes and a(1) = 0. Encrypt these pairs to acquire the corresponding
ciphertext pairs. Then we discard some pairs whose ciphertext differences don’t satisfy these
form: (b|0|0|0|0|0|0|0, P (h|0|0|0|0|0|0|0)) with b and h being non-zero bytes and b(1) = 0. The
number of remaining pairs after this test is 263. Guess ke,1 and verify whether the equation
∆S14,1 = (P−1(∆CR))1 holds. It is obvious that there are about 255 pairs remain. Next guess
(ka, kb,1), operate the similar step as section 4.2. If only one subkey is left, we retrieve the secret
key by the key schedule. Otherwise, try anther differential of A. As a matter of fact, if ∆ is an
impossible differential, the expected number of remaining pairs is 280 × (1 − 2−8)15 ≈ 2−104.7.
For other two cases, we can accomplish the similar attack procedure.

We find that the dominant time complexity of all steps in three cases is the data collection.
Therefore, the total data, time and memory complexities are 2122 chosen plaintext, 2122 11-round
encryptions and 2102 bytes, respectively.

5 Conclusion

In this paper, we have presented new insight on impossible differential cryptanalysis of reduced-
round Camellia with the FL/FL−1 and whitening layers. First, we propose impossible dif-
ferential attacks on reduced-round Camellia for 75% of the keys, which are then extended to
attacks that work for the whole key space. Specifically, we attack 10-round Camellia-128, 11-
round Camellia-192 and 12-round Camellia-256 which start from the first round and include the
whitening layers. Meanwhile, we also attack 12-round Camellia-192 and 14-round Camellia-256
with two FL/FL−1 layers. Second, we construct a set of differentials including at least one
8-round impossible differential of Camellia with two layers FL/FL−1. These impossible dif-
ferentials have the same length as the best known impossible differential of Camellia without
FL/FL−1 layers. Therefore, our result shows that the keyed functions cannot thwart impossi-
ble differential attack effectively. Based on it, we propose a new strategy to derive an effective
attack on reduced-round Camellia which do not start the first round but include the whitening
and FL/FL−1 layers. More concretely, we mount impossible differential attacks on 11-round
Camellia-128, 12-round Camellia-192 and 13-round Camellia-256.
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Abstract. Grøstl is one of the five finalist hash functions of the SHA-3 competition. For entering
this final phase, the designers have tweaked the submitted versions. This tweak renders inapplicable
the best known distinguishers on the compression function presented by Peyrin [18] that exploited
the internal permutation properties. Since the beginning of the final round, very few analysis have
been published on Grøstl. Currently, the best known rebound-based results on the permutation
and the compression function for the 256-bit version work up to 8 rounds, and up to 7 rounds for
the 512-bit version. In this paper, we present new rebound distinguishers that work on a higher
number of rounds for the permutations of both 256 and 512-bit versions of this finalist, that is 9
and 10 respectively. Our distinguishers make use of an algorithm that we propose for solving three
fully active states in the middle of the differential characteristic, while the Super-Sbox technique
only handles two.

Keywords: Hash Function, Cryptanalysis, SHA-3, Grøstl, Rebound Attack.

1 Introduction

Hash functions are one of the main families in symmetric cryptography. They are functions that,
given an input of variable length, produce an output of a fixed size. They have many important
applications, like integrity check of executables, authentication, digital signatures.

Since 2005, several new attacks on hash functions have appeared. In particular, the hash stan-
dards MD5 and SHA-1 were cryptanalysed by Wang et al. [21,22]. Due to the resemblance of the
standard SHA-2 with SHA-1, the confidence in the former has also been somewhat undermined.
This is why the American National Institute of Standards and Technology (NIST) decided to
launch in 2008 a competition for finding a new hash standard, SHA-3. This competition received
64 hash function submissions and accepted 51 to enter the first round. Now, three years and two
rounds later, only 5 hash functions remain in the final phase of the competition.

Amongst these finalists, there is only one AES-based function, though many were proposed.
This hash function is Grøstl [2], and is at the origin of the introduction of a new cryptanalysis
technique that has been widely deployed, improved and applied to a large number of SHA-3
candidates, hash functions and other types of constructions. This new technique, called rebound
attack, was introduced by Mendel et al. [11] and has become one of the most important tools
used to analyze the security margin of many SHA-3 candidates as well as their building blocks.
As for Grøstl itself, it has been applied and improved in several occasions [3, 12, 13, 15, 18].
Grøstl is undoubtedly one of the SHA-3 candidates that have received the largest amount
of cryptanalysis. When entering the final round, a tweak of the function was proposed, which
prevents the application of the attacks from [18]; we denote Grøstl-0 the original submission of
the algorithm and Grøstl its tweaked version. Apart from the rebound results, the other main
? Supported by the French Agence Nationale de la Recherche through the SAPHIR2 project under Contract
ANR-08-VERS-014.
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analysis communicated on Grøstl was at the presentation of [1] where a higher order property
on 10 rounds of Grøstl-256 permutation with a complexity of 2509 was shown. In Table 1,
we report a summary of the best known results on both 256 and 512-bit tweaked versions of
Grøstl, including the ones that we will present in the following.

In this paper, we propose new results regarding both versions of the finalist Grøstl. First, on
Grøstl-256, we provide the best known rebound distinguishers on 9 rounds of the permutation.
From these results, we show how to make some nontrivial observations on the the compression
function, providing the best known analysis on the compression function exploiting the properties
of the internal permutations. For Grøstl-512, we considerably increase the number of analyzed
rounds, from 7 to 10, providing the best analysis known on the permutation. Both results are
obtained using rebound-like attack techniques and an algorithm that we introduce that allows to
solve three fully active rounds in the middle of the differential characteristic with a much lower
cost than a generic algorithm. Additionnally, we provide in Appendix A the direct application
of our new techniques to the AES-based hash function PHOTON.

These results do not threaten the security of Grøstl, but we believe they will have an im-
portant role in better understanding Grøstl, and AES-based functions in general. In particular,
we believe that our work will help determining the bounds and limits of rebound-like attacks in
these types of constructions.

Target Subtarget Rounds Time Memory Ideal Reference

Grøstl-256 Permutation

8 (dist.) 2112 264 2384 [3]

8 (dist.) 248 28 296 [19]

9 (dist.) 2368 264 2384 Section 3

10 (zero-sum) 2509 − 2512 [1]

Grøstl-512 Permutation
8 (dist.) 2280 264 2448 Section 4

9 (dist.) 2328 264 2384 Section 4

10 (dist.) 2392 264 2448 Section 4
Table 1: Best known analysis on the finalist Grøstl. By best analysis, we mean the ones on the highest number
of rounds.

2 Generalities

2.1 Description of Grøstl

The hash function Grøstl-0 has been submitted to the SHA-3 competition under two different
versions: Grøstl-0-256, which outputs a 256-bit digest and Grøstl-0-512 with a 512-bit
fingerprint. For the final round of the competition, the candidate have been tweaked to Grøstl,
with corresponding versions Grøstl-256 and Grøstl-512.

The Grøstl hash function handles arbitrary long messages by diving them into blocks after
some padding and uses them to update iteratively an internal state (initialized to a predefined
IV) with a compression function. This function is itself built upon two different permutations,
namely P and Q. Each of those two permutations updates a large internal state using the well-
understood wide-trail strategy of the AES. As an AES-like Substitution-Permutation Network,
Grøstl enjoys a strong diffusion in each of the two permutations and by its wide-pipe design,
the size of the internal states is ensured to be at least twice as large as the final digest.



The compression function f256 of Grøstl-256 uses two permutations P256 and Q256, which
are similar to the two permutations P512 and Q512 used in the compression function f512 of
Grøstl-512. More precisely, for a chaining value h and a message block m, the compression
functions (Figure 1) produce the output (⊕ denotes the XOR operation):

f256(h,m) = P256(h⊕m)⊕Q256(m)⊕ h, or: f512(h,m) = P512(h⊕m)⊕Q512(m)⊕ h.

P

Q

h

m

h′

Figure 1: The compression function of Grøstl hash function using the two permutations P and Q.

The internal states are viewed as byte matrices of size 8×8 for the 256-bit version and 8×16
for the 512-bit one. The permutations strictly follow the design of the AES and are constructed
as Nr iterations of the composition of four basic transformations:

R
def
:= MixBytes ◦ ShiftBytes ◦ SubBytes ◦ AddRoundConstant.

All the linear operations are performed in the same finite field GF (28) as in the AES, defined
via the irreducible polynomial x8 + x4 + x3 + x + 1 over GF (2). The AddRoundConstant
(AC) operation adds a predefined round-dependent constant, which significantly differs between
P and Q to prevent the internal differential attack [18] taking advantage of the similarities
in P and Q. The SubBytes (SB) layer is the non-linear layer of the round function R and
applies the same SBox as in the AES to all the bytes of the internal state. The ShiftBytes (Sh)
transformation shifts bytes in row i by τP [i] positions to the left for permutation P and τQ[i]
positions for permutation Q. We note that τ also differs from P to Q to emphasize the asymmetry
between the two permutations. Finally, the MixBytes (Mb) operation applies a maximum-
distance separable (MDS) circulant constant matrix M independently to all the columns of the
state. In Grøstl-256, Nr = 10, τP = [0, 1, 2, 3, 4, 5, 6, 7] and τQ = [1, 3, 5, 7, 0, 2, 4, 6], whereas
for Grøstl-512, Nr = 14 and τP = [0, 1, 2, 3, 4, 5, 6, 11] and τQ = [1, 3, 5, 11, 0, 2, 4, 6].

Once all the message blocks of the padded input message have been processed by the com-
pression function, a final output transformation is applied to the last chaining value h to produce
the final n-bit hash value h′ = truncn(P (h)⊕ h), where truncn only keeps the last n bits.

2.2 Distinguishers

In this article, we will describe algorithms that find input pairs (X,X ′) for the permutation P
(or the permutation Q), such that the input difference ∆IN = X ⊕ X ′ belongs to a subset of
size IN and the output difference ∆OUT = P (X)⊕P (X ′) belongs to a subset of size OUT . The
best known generic algorithm (this problem is different than the one studied in [8] where linear
subspaces are considered) in order to solve this problem, known as limited-birthday problem,
has been given in [3] and later a very close lower bound has been proven in [16]. For a ran-
domly chosen n-bit permutation π, the generic algorithm can find such a pair with complexity



max{min{
√

2n/IN,
√
2n/OUT}, 2n/(IN · OUT )}. If one is able to describe an algorithm re-

quiring less computation power, then we consider that a distinguisher exists on the permutation
π.

In the case of Grøstl, it is also interesting to look at not only the internal permutations P
and Q, but also the compression function f itself. For that matter, we will generate compression
function input values (h,m) such that ∆IN = m ⊕ h belongs to a subset of size IN , and such
that ∆IN ⊕∆OUT = f(h,m)⊕ f(m,h)⊕ h⊕m belongs to a subset of size OUT . Then, one can
remark that:

f(h,m)⊕ f(m,h) = P256(h⊕m)⊕Q256(m)⊕ P256(m⊕ h)⊕Q256(h)⊕ h⊕m,
f(h,m)⊕ f(m,h) = Q256(m)⊕Q256(h)⊕ h⊕m,

f(h,m)⊕ f(m,h)⊕ h⊕m = Q256(m)⊕Q256(h).

Since the permutation Q is supposed to have no structural flaw, the best known generic algorithm
requires max{min{

√
2n/IN,

√
2n/OUT}, 2n/(IN · OUT )} operations (the situation is exactly

the same as the permutation distinguisher with permutation Q) to find a pair (h,m) of inputs
such that h ⊕m ∈ IN and f(h,m) ⊕ f(m,h) ⊕ h ⊕m ∈ OUT . Note that both IN and OUT
are specific to our attacks.

We emphasize that even if trivial distinguishers are already known for the Grøstl compres-
sion function (for example fixed-points), no distinguisher is known for the internal permutations.
Moreover, our observations on the compression function use the differential properties of the
internal permutations.

3 Distinguishers for reduced Grøstl-256 internal permutations

In this section, we describe a distinguisher for the permutation P256 of the Grøstl-256 com-
pression function reduced to 9 rounds. We emphasize that in the latest version of the Grøstl
submission [20], the permutationQ256 has different coefficients in the ShiftRows transformation,
but the technique we describe in the following applies to Q256 as well.

3.1 The truncated differential characteristic

In the following, we will consider truncated differential characteristics, originally introduced by
Knudsen [7] for block cipher analysis. With this technique, already proven to be efficient for AES-
based hash functions cryptanalysis [5, 6, 10, 17], the attacker only checks if there is a difference
in a byte (active byte, denoted by a black square in the Figures) or not (inactive byte, denoted
by an empty square in the Figures) without caring about the actual value of the difference.

The truncated differential characteristic we use has the sequence of active bytes

8
R1−→ 1

R2−→ 8
R3−→ 64

R4−→ 64
R5−→ 64

R6−→ 8
R7−→ 1

R8−→ 8
R9−→ 64,

where the size in the input and output differences subsets are both IN = OUT = 28×8 = 264,
since there are eight active bytes in each extreme state of the truncated characteristic. The actual
truncated characteristic is reported in Appendix B.

Note that we have three fully active internal states in the middle of the differential charac-
teristic, thus impossible to handle with the classical rebound or SuperSBox techniques.



3.2 Finding a conforming pair

The method to find a pair of inputs conforming to this truncated differential characteristic is
similar to the rebound technique: we first find many solutions for the middle rounds (round 3
to round 6) and then we filter them out during the outwards probabilistic transitions through
the MixBytes layers (round 2 and round 7). We denote x → y a non-null truncated differen-
tial transition mapping x active bytes to y active bytes in a column through a MixBytes (or
MixBytes−1) layer, and the MDS property ensures x + y ≥ 9. Its differential probability is
determined by the number (8− y) of inactive bytes on the output: 2−8(8−y) if the MDS property
is verified, 0 otherwise.

Therefore, since in our case we have two transitions 8→ 1 (see Figure 2), the outbound phase
has a success probability of

(
2−8×7

)2
= 2−112 and is straightforward to handle once we found

enough solutions for the inbound phase.

In order to find solutions for the middle rounds (see Figure 2), we propose an algorithm
inspired by the ones in [14,15]: As in [3,8], instead of dealing with the classical 8-bit SubBytes
SBoxes, one can consider 64-bit SBoxes (named SuperSBoxes) each composed of two AES
SBox layers surrounding one MixBytes and one AddRoundConstant function1. Indeed, the
ShiftBytes can be taken out from the SuperSBoxes since it commutes with SubBytes.

We start by choosing the input difference δIN after the first SubBytes layer in state S1
and the output difference δOUT after the last MixBytes layer in state S12 in a way that the
truncated characteristic holds in S0 and S12. Note that since we have 8 active bytes in S1 and
S12, there are as many as 22×64 = 2128 different ways of choosing (δIN , δOUT ). We continue
by constructing the 8 forward SuperSBox independently by considering the 264 possible input
values for each of them in state S3: differences in S1 can be directly propagated to S3 since
MixBytes is linear. This generates 8 independent lists, each of size 264 and composed by paired
values. Doing the same for the 8 backwards SuperSBoxes from state S12, we again get 8
independent lists of 264 elements each, and we end up in state S8 where the 8 forward and the 8
backward lists overlap. In the sequel, we denote Li the ith forward SuperSBox list and L′i the
ith backward one, for 1 ≤ i ≤ 8.

In terms of freedom degrees in state S8, we want to merge 16 lists of 264 elements each for a
merging condition on 2×512 = 1024 bits (512 for values and 512 for differences): we then expect
216×64 2−1024 = 1 solution as a result of the merging process. We detail a method in order to find
this solution in time 2256 and memory 264 (see Figure 3).

Step 1. We start by considering every possible combination of elements in each of the four lists
L′1, L′2, L′3 and L′4. There are 2256 possibilities.

Step 2. This fully constraints 2 × 4 bytes in each of the 8 lists Li, 1 ≤ i ≤ 8 (i.e. the first 4
columns of the internal state). For each of them, we then expect 264 2−8×8 = 1 element to
match the randomized bytes. These elements can be found with one operation by sorting the
lists Li beforehand. At this point, note that the second half of the state S8 has been fully
determined by the choice in L1, . . . , L8.

Step 3. We now need to ensure that the 4 last lists L′5, L′6, L′7 and L′8 contain the elements
imposed: those lists being of size 264 each, this happens with probability 264 2−8×(2×8) = 2−64

independently on each list. Again, these elements can be found with one operation by sorting
the lists L′i beforehand.

1 These SuperSBoxes are 64-bit large in the case of Grøstl, but only 4× 8 = 32 bits for the AES.
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Figure 2: Inbound phase for the 9-round distinguisher attack on the Grøstl permutation P256. The four rounds
represented are the rounds 3 to 6 from the whole truncated differential characteristic. A gray byte indicates an
active byte; hatched and coloured bytes emphasize one SuperSBox: there are seven similar others.
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Figure 3: Steps to merge the 16 lists. Grey cells denote bytes fully constrained by a choice of elements in L′
1, . . . , L

′
4

during the first step.

All in all, trying all the 2256 elements in (L′1, L
′
2, L

′
3, L

′
4), we expect to find 2256 2−64×4 = 1

solution that will verify the 1024 bits of condition and we can find this solution with only a few
operations.

Hence, from random differences (δIN , δOUT ), we find a pair of internal states of the permuta-
tion that conforms to the middle rounds in time 2256 and memory 264. To pass the probabilistic
transitions of the outbound phase, we need to repeat the merging 2112 times by picking another
couple of differences (δIN , δOUT ). In total, we find a pair of inputs to the permutation that con-
forms to the truncated differential characteristic in time complexity 2368 and memory complexity
264.



3.3 Comparison with ideal case

In the ideal case, obtaining a pair whose input and output differences lie in a subset of size
IN = OUT = 264 for a 512-bit permutation requires 2384 computations: we can directly conclude
that this leads to a distinguishing attack on the 9-round reduced version of the Grøstl-256
permutation with 2368 computations and 264 memory. Similarly, as explained in Section 2.2, this
result also induces a nontrivial observation on the 9-round reduced version of the Grøstl-256
compression function with identical complexity.

Finally, one can also derive slightly cheaper distinguishers by aiming less rounds: instead
of using the 9-round truncated characteristic from Appendix B, it is possible to remove either
round 2 or 8 and spare one 8→ 1 truncated differential transition. Overall, the generic complexity
remains the same and this gives a distinguishing attack on the 8-round reduced version of the
Grøstl-256 permutation with 2312 computations and 264 memory. Unfortunately, this is worse
than previously known results.

4 Distinguishers for reduced Grøstl-512 internal permutations

The 512-bit version of the Grøstl hash function uses a non-square 8 × 16 matrix as 1024-bit
internal state, which therefore presents a lack of optimal diffusion: a single difference generates
a fully active state after three rounds where a square-state would need only two. This enables
us to add an extra round to the generalization of the regular 9-round characteristic of AES-like
permutation (Section 3) to reach 10 rounds.

4.1 The truncated differential characteristic

To distinguish its permutation P512
2 reduced to 10 rounds, we use the truncated differential

characteristic with the sequence of active bytes

64
R1−→ 8

R2−→ 1
R3−→ 8

R4−→ 64
R5−→ 128

R6−→ 64
R7−→ 8

R8−→ 1
R9−→ 8

R10−→ 64.

where the size of the input differences subset is IN = 2512 and the size of the output differences
subset is OUT = 264.

The actual truncated characteristic is appended in Appendix C. Again, we split the charac-
teristic into two parts: the inbound phase involving a merging of lists in the four middle rounds
(round 4 to round 7), and an outbound phase that behaves as a probabilistic filter ensuring both
8 −→ 1 transitions in the outward directions. Again, passing those two transitions with random
values occurs with probability 2−112.

4.2 Finding a conforming pair

In the following, we present an algorithm to solve the middle rounds in time 2280 and memory
264. In total, we will need to repeat this process 2112 times to get a pair of internal states that
conforms to the whole truncated differential characteristic, which would then cost 2280+112 = 2392

in time and 264 in memory. The strategy of this algorithm (see Figure 4) is similar to the ones
presented in [14, 15] and the one from the previous section: we start by fixing the difference to
a random value δIN in S1 and δOUT in S12 and linearly deduce the difference δ′IN in S3 and
δ′OUT in S10. Then, we construct the 32 lists corresponding to the 32 SuperSBoxes: the 16
forward SuperSBoxes have an input difference fixed to δ′IN and cover states S3 to S8, whereas
the 16 backward SuperSBoxes spread over states S10 to S6 with an output difference fixed
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Figure 4: Inbound phase for the 10-round distinguisher attack on the Grøstl-512 permutation P512. The four
rounds represented are the rounds 4 to 7 from the whole truncated differential characteristic C. A gray byte
indicates an active byte; hatched and coloured bytes emphasize the SuperSBoxes.

to δ′OUT . In the sequel, we denote Li the 16 forward SuperSBoxes and L′i the backward ones,
1 ≤ i ≤ 16.

The 32 lists overlap in S8, where we merge them on 2048 bits3 to find 264×32 2−2048 = 1
solution, since each list is of size 264. The naive way to find the solution would cost 21024 in
time by considering each element of the Cartesian product of the 16 lists Li to check whether it
satisfies the output 1024 bit difference condition. We describe now the algorithm that achieves
the same goal in time 2280.

First, we observe that due to the geometry of the non-square state, any list Li intersects
with only half of the L′i. For instance, the first list L1 associated to the first column of state S7
intersects with lists L′1, L′6, L′11, L′12, L′13, L′14, L′15 and L′16. We represent this property with a
16× 16 array on Figure 5: the 16 columns correspond to the 16 lists L′i and the lines to the Li,
1 ≤ i ≤ 16. The cell (i, j) is white if and only if Li has a non-null intersection with the list L′j ,
otherwise it is gray.

Then, we note that the MixBytes transition between the states S8 and S9 constraints the
differences in the lists L′i : in the first column of S9 for example, only three bytes are active, so
that the same column in S8 can only have 23×8 different differences, which means that knowing
three out of the eight differences in an element of L′1 is enough to deduce the other five. For a
column-vector of differences lying in a n-dimensional subspace, we can divide the 264 elements
of the associated lists in 28n disjointed sets of 264−8n values each. So, whenever we know the
n independent differences, the only freedom that remains lie in the values. The bottom line of
Figure 5 reports the subspace dimensions for each L′i.

2 It would work exactly the same way for the other permutation Q512.
3 The 2048 bits come from 1024 bits of values and 1024 bits of differences.



Using a guess-and-determine approach, we derive a way to use the previous facts to find the
solution to the merge problem in time 2280. As stated before, we expect only one solution; that
is, we want to find a single element in each of the 32 lists. We start by guessing the values and the
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Figure 5: A X means we know both value and difference for that byte, a  means that we only determined the
difference for that byte and white bytes are not constrained yet.

differences of the elements associated to the lists L′2, L′3, L′4 and L′5. For this, we will try all the
possible combinations of their elements, there are 24×64 = 2256 in total. For each one of the 2256

tries, all the checked cells X now have known value and difference. From here, 8 bytes are known
in each of the four lists L5, L6, L7 and L8: this imposes a 64-bit constraint on those lists, which
filter out a single element in each. Thereby, we determined the value and difference in the other
16 bytes marked by X in Figure 5. In lists L′1 and L′16, we have reached the maximum number
of independent differences (three and two, respectively), so we can determine the differences for
the other bytes of those columns: we mark them by  . In L4, the 8 constraints (three X and two
 ) filter out one element; then, we deduce the correct element in L4 and mark it by X. We can
now determine the differences in L′15 since the corresponding subspace has a dimension equals
to two.

At this point, no more byte can be determined based on the information propagated so far. We
continue by guessing the elements remaining in L′6. Since there are already six byte-constraints
on that list (three X), only 216 elements conform to the conditions. The time complexity until
now is thus 2256+16 = 2272.

Guessing the list L′6 implies a 64-bit constraint of the list L9 so that we get a single element
out of it and determine four yet-unknown other bytes. This enables to learn the independent
differences in L′14 and therefore, we filter an element from L3 (two X and four  ). At this
stage, the list L′1 is already fully constrained on its differences, so that we are left with a set of
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(a) End of the second guess.
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(b) Near the end.

Figure 6: A X means we know both value and difference for that byte, a  means that we only determined the
difference for that byte and white bytes are not constrained yet.

264−3×8 = 240 values constrained on five bytes (five X). Hence, we are able to determine all the
unset values in L′1 (Figure 6a).

Again, the lack of constraints prevent us to determine more bytes. We continue by guessing
the 28 elements left in L1 (two X and three  ), which makes the time complexity increase to
2280. The list L1 being totally known, we derive the vector of differences in L′13, which adds an
extra byte-constraint on L2 where only one element was left, and so fully determines it. From
here, L′7 becomes fully determined as well (four X) and so is L16. In the latter, the differences
being known, we were left with a set of 264−2×8 = 248 values, which are now constrained on six
bytes (six X).

We describe in Figure 6b the knowledge propagated so far, with time complexity 2280 and
probability 1. We observe that L10 is overdetermined (four X and one  ) by one byte. This
means that we get the correct value with probability 2−8, whereas L11 is filtered with probability
1. Similarly, the element of L′8 happens to be correctly defined with probability 2−16; as for
L′9 and L′15, with probability 1. We continue in L′11 by learning the full vector of differences,
which constraints L12 on 11 bytes (five X and one  ) so that we get a valid element with
probability 2−24. Finishing the guess and determine technique is done by filtering L′10 and L12

with probability 1, L16 with probability 2−40 and L13, L14 and L15 with probability 2−64 each.

In total, for each guess, we successfully merge the 32 lists with probability

2−8−16−24−40−64−64−64 = 2−280,

but the whole procedure is repeated 264×4+16+8 = 2280 times, so we expect to find the one existing
solution. All in all, we described a way to do the merge with time complexity 2280 and memory
complexity 264. The final complexity to find a valid candidate for the whole characteristic is then
2392 computations and 264 memory.



4.3 Comparison with ideal case

In the ideal case, obtaining a pair whose input difference lies in a subset of size IN = 2512 and
whose output difference lies in a subset of size OUT = 264 for a 1024-bit permutation requires
2448 computations. We can directly conclude that this leads to a distinguishing attack on the 10-
round reduced version of the Grøstl-512 permutation with 2392 computations and 264 memory.
Similarly, as explained in Section 2.2, this results also induces a nontrivial observation on the
10-round reduced version of the Grøstl-512 compression function with identical complexity.

One can also derive slightly cheaper distinguishers by aiming less rounds while keeping the
same generic complexity: instead of using the 10-round truncated characteristic from Appendix C,
it is possible to remove either round 3 or 9 and spare one 8→ 1 truncated differential transition.
Overall, this gives a distinguishing attack on the 9-round reduced version of the Grøstl-512
permutation with 2336 computations and 264 memory. By removing both rounds 3 and 9, we
achieve 8 rounds with 2280 computations.

One can further gain another small factor for the 9-round case by using a 8 → 2 truncated
differential transition instead of 8 → 1, for a final complexity of 2328 computations and 264

memory. Indeed, the generic complexity drops to 2384 because we would now have OUT = 2128.

5 Conclusion

In this paper, we have provided new and improved cryptanalysis results on the building blocks
of both 256 and 512-bit versions of the finalist Grøstl. This is done by using a rebound-like
approach as well as an algorithm that allows us to pass three fully active states in the middle
of the differential characteristic with lower complexity than a general probabilistic approach. To
the best of our knowledge, all previously known methods only manage to control two fully active
states in the middle of the differential characteristic.

On Grøstl-256, we could provide the best known rebound distinguishers on 9 rounds of the
permutation. For Grøstl-512, we have considerably increased the number of analyzed rounds,
from 7 to 10, providing the best analysis known the permutation.

These results do not threaten the security of Grøstl, but we believe they will have an
important role in better understanding AES-based functions in general. In particular, we believe
that our work will help determining the bounds and limits of rebound-like attacks in these types
of constructions. Future works could include the study of more AES-like functions in regards to
this new cryptanalysis method.

References

1. Boura, C., Canteaut, A., Cannière, C.D.: Higher-order Differential Properties of Keccak and Luffa. In:
FSE. Volume 6733 of LNCS., Springer (2011) 252–269

2. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.:
Grøstl – a SHA-3 candidate

3. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-Like Permutations. In Hong,
S., Iwata, T., eds.: FSE. Volume 6147 of Lecture Notes in Computer Science., Springer (2010) 365–383

4. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash Functions. In Rogaway, P.,
ed.: CRYPTO. Volume 6841 of Lecture Notes in Computer Science., Springer (2011) 222–239

5. Jean, J., Fouque, P.A.: Practical Near-Collisions and Collisions on Round-Reduced ECHO-256 Compression
Function. In Joux, A., ed.: FSE. Volume 6733 of Lecture Notes in Computer Science., Springer (2011) 107–127

6. Jean, J., Naya-Plasencia, M., Schläffer, M.: Improved Analysis of ECHO-256. In Miri, A., Vaudenay, S., eds.:
Selected Areas in Cryptography. Volume 7118 of Lecture Notes in Computer Science., Springer (2011) 19–36

7. Knudsen, L.R.: Truncated and Higher Order Differentials. In Preneel, B., ed.: FSE. Volume 1008 of Lecture
Notes in Computer Science., Springer (1994) 196–211



8. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound Distinguishers: Results on
the Full Whirlpool Compression Function. [9] 126–143

9. Matsui, M., ed.: Advances in Cryptology - ASIACRYPT 2009, 15th International Conference on the Theory
and Application of Cryptology and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings.
In Matsui, M., ed.: ASIACRYPT. Volume 5912 of Lecture Notes in Computer Science., Springer (2009)

10. Matusiewicz, K., Naya-Plasencia, M., Nikolic, I., Sasaki, Y., Schläffer, M.: Rebound Attack on the Full LANE
Compression Function. [9] 106–125

11. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack: Cryptanalysis of Reduced
Whirlpool and Grøstl. In: Fast Software Encryption - FSE 2009. Volume 1008 of Lecture Notes in
Computer Science., Springer (5665)

12. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved Cryptanalysis of the Reduced Grøstl
Compression Function, ECHO Permutation and AES Block Cipher. In Jacobson, Jr., M.J., Rijmen, V., Safavi-
Naini, R., eds.: Selected Areas in Cryptography. Volume 5867 of Lecture Notes in Computer Science., Springer
(2009) 16–35

13. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: Rebound Attacks on the Reduced Grøstl Hash
Function. In Pieprzyk, J., ed.: CT-RSA. Volume 5985 of Lecture Notes in Computer Science., Springer (2010)
350–365

14. Naya-Plasencia, M.: How to Improve Rebound Attacks. Cryptology ePrint Archive, Report 2010/607 (2010)
(extended version). urlhttp://eprint.iacr.org/.

15. Naya-Plasencia, M.: How to Improve Rebound Attacks. In: Advances in Cryptology: CRYPTO 2011. Volume
6841 of Lecture Notes in Computer Science., Springer (2011) 188–205

16. Nikolic, I., Pieprzyk, J., Sokolowski, P., Steinfeld, R.: Known and Chosen Key Differential Distinguishers for
Block Ciphers. In Rhee, K.H., Nyang, D., eds.: ICISC. Volume 6829 of Lecture Notes in Computer Science.,
Springer (2010) 29–48

17. Peyrin, T.: Cryptanalysis of Grindahl. In Kurosawa, K., ed.: ASIACRYPT. Volume 4833 of Lecture Notes
in Computer Science., Springer (2007) 551–567

18. Peyrin, T.: Improved Differential Attacks for ECHO and Grøstl. In Rabin, T., ed.: CRYPTO. Volume 6223
of Lecture Notes in Computer Science., Springer (2010) 370–392

19. Sasaki, Y., Li, Y., Wang, L., Sakiyama, K., Ohta, K.: Non-full-active Super-Sbox Analysis: Applications to
ECHO and Grøstl. In Abe, M., ed.: ASIACRYPT. Volume 6477 of Lecture Notes in Computer Science.,
Springer (2010) 38–55

20. Schläffer, M.: Updated Differential Analysis of Grøstl. Grøstl website (January 2011)
21. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In Shoup, V., ed.: CRYPTO. Volume

3621 of Lecture Notes in Computer Science., Springer (2005) 17–36
22. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In Cramer, R., ed.: EUROCRYPT. Volume

3494 of Lecture Notes in Computer Science., Springer (2005) 19–35

A Distinguishers for other AES-like permutations

Using the same cryptanalysis technique, it is possible to study other AES-like schemes using
permutations similar to the Grøstl ones. For example, the recent lightweigth hash function
family PHOTON [4] is based on five different versions of AES-like permutations. We denote s the
size of the cells (s = 8 for AES) and c the size of the square matrix representing the internal state
(c = 4 for AES), the five versions (s, c) for PHOTON are then (4, 5), (4, 6), (4, 7), (4, 8) and (8, 6)
for increasing versions. All versions are defined to apply 12 rounds of an AES-like process, where
the subkey additions are replaced by constant additions. Since the internal state is always square,
by trivially adapting the method from Section 3 to the specific parameters of PHOTON, one can
hope to obtain distinguishers for 9 rounds of the PHOTON internal permutations. However, we
are able to do so only for the parameters (4, 8) used in PHOTON-224/32/32 (see Table 2 with
the comparison to previously known results). Indeed, the size c of the matrix plays an important
role in the gap between the complexity of our algorithm and the generic one. The bigger is the
matrix, the better will be the gap between the algorithm complexity and the generic one.

The same effect applies on AES in the known-key model, for which distinguishers on only 8
rounds are known as of today [3]. When attacking 9 rounds with the method from Section 3,
the middle rounds will cost about 264 operations per solution, while the two 4 → 1 truncated
differential transitions during the outbound will be verified with probability (2−24)2 = 2−48.



Target Subtarget Rounds Time Memory Ideal Reference

PHOTON-224/32/32 permutation
8 (dist.) 28 24 210 [4]

9 (dist.) 2184 232 2192 Section A
Table 2: Distinguishers on PHOTON internal permutation when applying the method from Section 3.

Overall, one solution for the whole characteristic is found with 2112 computation and 232 memory,
but the generic algorithm can find such a pair with only 264.



B 9-round Grøstl-256 permutation truncated characteristic
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Figure 7: The 9-round truncated differential characteristic used to distinguish the permutation P of Grøstl-256
from an ideal permutation.



C 10-round Grøstl-512 permutation truncated characteristic
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Figure 8: The 10-round truncated differential characteristic used to distinguish the permutation P of Grøstl-512
from an ideal permutation.
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Abstract. The Grøstl hash function is one of the 5 final round candidates of the SHA-3 competition
hosted by NIST. In this paper, we study the preimage resistance of the Grøstl hash function. We
propose pseudo preimage attacks on Grøstl hash function for both 256-bit and 512-bit versions,
i.e., we need to choose the initial value in order to invert the hash function. Pseudo preimage attack
on 5(out of 10)-round Grøstl-256 has a complexity of (2244.85 , 2230.13) (in time and memory) and
pseudo preimage attack on 8(out of 14)-round Grøstl-512 has a complexity of (2507.32, 2507.00). To
the best of our knowledge, our attacks are the first (pseudo) preimage attacks on round-reduced
Grøstl hash function, including its compression function and output transformation. These results
are obtained by a variant of meet-in-the-middle preimage attack framework by Aoki and Sasaki. We
also improve the time complexities of the preimage attacks against 5-round Whirlpool and 7-round
AES hashes by Sasaki in FSE 2011.
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1 Introduction

In FSE 2008, Gaëtan Leurent proposed the first preimage attack on the full MD4 hash func-
tion [12]. Based on this pioneering work, Aoki and Sasaki invented the technique of Meet-int-the-
middle (MitM) preimage attack [2]. The basic idea of this technique is to divide the compression
function into two concatenated sub-functions. The output values of two sub-functions can be
independently calculated from the given input value in the forward direction and the backward
direction. The steps of the forward and backward computation are called forward chunk and
backward chunk. Then the MitM attack is applied to the output values of two sub-functions at
the concatenating point of two chunks.

For hash functions based on block ciphers, the feedforward operations in the mode of oper-
ations like Davis-Meyer, Matyas-Meyer-Oseas and Miyaguchi-Preneel provide a chance for the
applications of new technique called splice-and-cut [2]. The input and output of a compression
function can be regarded as concatenated through the feed-forward operation in these modes of
operations. Then the compression function is in the form of a circle and any step can be selected
as either the starting point or the matching point.

Improvements have been developed on both the starting point and the matching point. The
initial structure technique [16] (also called message stealing [7]) and the local collision3 [15]
technique allows two sub-functions to share several steps without violating the independency
in computing their own values, which provides more attackable rounds. The partial matching

technique [2, 16, 7, 1] takes advantage of the compression function’s diffusion properties at the
matching point. Due to slow diffusion of the Feistel-like round function, part of the state value
can remain independent of the other chunk while proceeding with more reversed rounds. The

3 The local collision technique is proposed by Joux et al. [5], which is originally used in the collision attacks. The
similar idea can be used to construct the initial structure in the MitM preimage attack.



deterministic part of the state is used as the matching point. After finding a match of the partial
values, the equality of the remaining part is calculated and checked. These techniques used in
the MitM preimage attacks are illustrated in Fig. 1.

Chaining 
Value

Target 
Value

Initial Structure Partial Matching

Fig. 1. Advanced techniques for MitM preimage attack

The MitM preimage attacks have been applied to full HAVAL-3/4 [15], MD4 [2, 7], MD5 [16],
Tiger [7], and round-reduced HAS-160 [8], RIPEMD [21], SHA-0/1 [3], SHA-2 [7, 1]. The compres-
sion functions of these hash functions all use Feistel-like structures. In FSE 2011, Yu Sasaki
proposed MitM preimage attack on AES hash mode for the first time [14]. He discussed how
initial structure and partial matching can be used on AES-like structures and proposed direct
applications to AES in different hash modes and round-reduced Whirlpool [4]. The development
of the MitM attacks on hash functions has also inspired several attacks on block ciphers, such
as KTANTAN [22] and XTEA [19].

Our contributions In this paper, we found a way to reduce the complexity of the MitM
preimage attack on AES-like hash functions. By finding the optimal chunk separation with best
balance between freedom degrees and the size of the matching point, the freedom degrees in the
internal states are fully utilized.

Grøstl [6] is one of the five finalists in the third round of SHA-3 [13] competition hosted by
NIST. The Grøstl hash function has been tweaked in the third round. The original version is
renamed to Grøstl-0 and the tweaked version is called Grøstl.

We found that Grøstl’s round-reduced output transformation can be inverted using the
MitM techniques. Then we noticed that if we can control the initial value, preimage of the
output transformation can be connected with a compression function. The Grøstl hash function
uses double-pipe chaining values, so we can actually match 2n-bit chaining value with a time
complexity less than 2n compression function calls. Since the initial value is chosen by us, this
attack is a pseudo preimage attack.

The matching of double sized states is based on a method of variant generalized birthday
attack. The special property of Grøstl’s compression function makes this approach possible. We
found that the matching can be regarded as a special three-sum problem. Since the elements in
one of the three sets can be restricted in a subspace, we can reduce the complexity to less than
2n.

The comparison of previous best attacks and our attacks on Grøstl are shown in Table 1.
Note that the attacks on Grøstl-0 are not included in this table, since our attack is on the
tweaked version.

We also improve the existing attacks against 5-round Whirlpool and 7-round AES hashing
modes. While the previous result on 5-round Whirlpool applies to second preimage only, we
improve the time complexity and also make the attack work for first preimages. We also improve
the time complexity for the attacks against 7-round AES hashing modes. The details are presented
in Appendix due to space limit.



Table 1. Comparison of the attacks on Grøstl-256 and Grøstl-512

Algorithm Target Attack Type Rounds Time Memory Source

Grøstl-256

Hash
Collision 3 264 - [18]

Function

Compression Semi-Free-Start
6 2112 264 [18]

Function Collision

Permutation Distinguisher 8 248 28 [17]

Output
Preimage 5 2206 248 Sect. 4.1

Transformation

Hash Pseudo
5 2244.85 2230.13 Sect. 4

Function Preimage

Grøstl-512

Hash
Collision 3 2192 - [18]

Function

Compression Semi-Free-Start
7 2152 256 [17]

Function Collision

Output
Preimage 8 2495 216 Sect. 5.1

Transformation

Hash Pseudo
8 2507.32 2507.00 Sect. 5

Function Preimage

Outline of this paper In Sect. 2, we describe the specification of the Grøstl hash function. In
Sect. 3, we introduce the attack outline of the pseudo preimage attack on reduced round Grøstl.
Attacks on Grøstl-256 and Grøstl-512 are illustrated in Sect. 4 and Sect. 5 respectively. Sect. 6
is the conclusion.

2 Specification of Grøstl

Grøstl is a double-pipe design, i.e., the size of the chaining value (2n-bit) is twice as the hash
size (n-bit). Message length should be less than 264. The padding rule is not introduced here,
since it’s not important in our attack.

The compression function of Grøstl is written as:

F (H,M) = P (H ⊕M)⊕Q(M)⊕H

Where H is the chaining value and M is the message block, both are of 2n bits. After all message
blocks are processed, the last chaining value X is used as input of the output transformation,
which is written as

Ω(X) = Truncn(P (X)⊕X)

The right half of P (X) ⊕ X is used as the hash value. The compression function and output
transformation are illustrated in Fig. 2.

Fig. 2. Compression function and output transformation of Grøstl



P and Q are AES-like permutations with 8 × 8 and 8 × 16 sized state for Grøstl-256 and
Grøstl-512 separately. Grøstl-256 uses 10-round P , Q and Grøstl-512 uses 14-round P , Q.
The round function of the permutations consists of the four operations:

– SubBytes(SB): applies the Substitution-Box to each byte.

– ShiftBytes(SR): cyclically shifts the i-th row leftwards for i positions.

– MixBytes(MC): multiplies each column of the state matrix by an MDS matrix:

C = circ(02, 02, 03, 04, 05, 03, 05, 07)

– AddRoundConstant(AC): XOR the round constant to the state.

The shift vectors used in P and Q are different. P in Grøstl-256 uses (0,1,2,3,4,5,6,7) and P
in Grøstl-512 uses (0,1,2,3,4,5,6,11). In the description of our attack, we skip Q’s detail since
it’s not required.

An important property of the compression function has been pointed out in the submission
document of Grøstl hash function [6]. Note that with H ′ = H ⊕M , the compression function
can be written as

F (H,M) = P (H ′)⊕H ′ ⊕Q(M)⊕M.

So the generic preimage attack on the compression function with 2n-bit state costs 2n com-
putations, since solving the equation F (H,M) = T can be regarded as a birthday prob-
lem. Then the collision attack on the compression function costs 22n/3 computations, since
F (H1,M1)⊕ F (H2,M2) = 0 is a (four-sum) generalized birthday problem [20].

3 Outline of the Attack on the Grøstl Hash Function

Suppose the hash size is n-bit and the state size is 2n-bit. In order to find a pseudo preimage
(H,M) of the Grøstl hash function, let X = F (H,M), then X is the preimage of the output
transformation: P (X) ⊕X = ∗||T where T is the target hash value and ∗ stands for arbitrary
n-bit value. With H ′ = H ⊕M , we have

(P (H ′)⊕H ′)⊕ (Q(M) ⊕M)⊕X = 0 (1)

If we have collected enough candidates for P (H ′)⊕H ′, Q(M)⊕M and X, the pseudo preimage
attack turns into a three-sum problem. As we know, there is no generic solution for three-sum
problem faster than birthday attack. But if we can restrict P (H ′) ⊕ H ′ in a subspace, it is
possible to break the birthday bound. Here we restrict P (H ′)⊕H ′ in a subspace by finding its
partial zero preimages.

As illustrated in Fig. 3, the attack process is similar to the generalized birthday attack [20].
With four parameters x1, x2, x3 and b, this attack can be described in four steps:

1. Find 2x1 preimages X of the output transformation and store them in lookup table L1.

2. Find 2x3 H ′ such that leftmost b bits of P (H ′)⊕H ′ are all zero. Then store all P (H ′)⊕H ′

and H ′ in lookup table L2. This step can be regarded as finding partial zero preimages on
P (H ′)⊕H ′.

3. Choose 2x2 random M with correct padding and calculate Q(M)⊕M . Then check if there is
an X in L1 with the same leftmost b bits as Q(M)⊕M . We expect to find 2x1+x2−b partial
matches Q(M)⊕M ⊕X here, whose left most b bits are all zero.

4. For each of the 2x1+x2−b Q(M)⊕M ⊕X found in step 3, check if its remaining (2n− b)-bit
value can be found in L2.
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Fig. 3. Outline for pseudo preimage attack on the Grøstl hash function

Once a final match is found, we have H ′,M and X which satisfies equation (1). So, (H ′⊕M,M)
is a pseudo preimage of Grøstl.

Note that to find an X is to find an n-bit partial preimage of P (X)⊕X and the truncation
bits are fixed (the leftmost n-bits are truncated). But for P (H ′)⊕H ′, it’s not necessary to find
partial preimage for the leftmost b bits. In fact, we can choose any b bits as the zero bits. We
will further discuss the differences between fixed position and chosen position partial preimage
attacks later.

Suppose that for Grøstl with 2n-bit state, it takes 2C1(2n,n) computations to find a fixed
position n-bit partial preimage and it takes 2C2(2n,b) computations to find a chosen position b-bit
partial preimage of P (X) ⊕X. Now we calculate the complexity for each of the four attacking
steps:

1. Step 1, building the look-up table 1 takes 2x1+C1(2n,n) computations and 2x1 memory.

2. Step 2, building the look-up table 2 takes 2x3+C2(2n,b) computations and 2x3 memory.

3. Step 3, calculating Q(M)⊕M for 2x2 M and checking the partial match in table 1 takes 2x2

Q calls, which is equivalent to 2x2−1 compression function calls.

4. Step 4, checking the final match for 2x1+x2−b candidates requires 2x1+x2−b table look-ups,
which can be equivalently regarded as 2x1+x2−bCTL compression function calls. CTL is the
complexity of one table lookup, where unit one is one compression function call. For 5-round
Grøstl-256 and 8-round Grøstl-512(the attacked versions), CTL is chosen as 1/640 and
1/2048 respectively4.

Then the overall complexity is:

2x1+C1(2n,n) + 2x3+C2(2n,b) + 2x2−1 + 2x1+x2−b · CTL (2)

with memory requirement of 2x1 + 2x3 .

In the following sections, we first show how to find partial preimages of the function P (X)⊕X
and calculate the complexity C1(2n, n) and C2(2n, b). Then we need to choose optimal param-
eters x1, x2, x3 and b to minimize the complexity with the restriction of x1 + x2 + x3 ≥ 2n and
0 ≤ b ≤ 2n. Since in order to find one final match, we need 2x1+x2+x3−2n ≥ 1 ⇒ x1+x2+x3 ≥ 2n.

4 The constant CTL is chosen as the upper bound of the complexity that one table lookup takes, due to the fact
that 5-round Grøstl-256 software implementation composes of (8 ∗ 8) ∗ 5 ∗ 2 = 640 s-box lookups, and other
operations. In 8-round Grostl-512, there are (8 ∗ 16) ∗ 8 ∗ 2 = 2048 s-box lookups.



4 Pseudo Preimage Attack on 5-round Grøstl-256

In this section, first, we introduce the preimage attack on the output transformation, i.e., the
fixed position partial preimage attack on P (X)⊕X and calculate the complexity C1(512, 256).
Then we introduce the chosen position partial preimage attack on P (H ′) ⊕ H ′ and give the
expression of the function f(b) = C2(512, b). At last, we try to minimize the overall complexity
by finding proper parameters for the generic attack introduced in Section 3.

4.1 Fixed Position Partial Preimage Attack on P (X)⊕X

The chunk separation for this attack is shown in Fig. 4. Note that the yellow cells with a diagonal
line are the truncated bytes, which can be regarded as free variables. In the last state of Fig. 4, the
equations for the truncated byte can be directly removed since they are automatically fulfilled.
The size of the full match is 256-bits for this MitM attack.

SRSBACMCSRSBAC

SRSBAC MC

SRSBAC MC SRSBAC MC

MC

Initial

Structure

Matching

Point

Hash Value

Truncated

Fig. 4. Chunk separation of preimage attack on Grøstl-256’s output transformation

The Colors in the Chunk Separation First, we explain what the colors stand for. Actually,
we use the same colors as in [14] to illustrate the chunk separations. The blue bytes in the
forward chunk can be determined by the blue bytes in the initial structure. The white color in
the forward chunk stands for the bytes whose values are affected by both red bytes and blue bytes
in the initial structure, and can’t be precomputed until the partial match is found. Similarly,
in the backward chunk, red and white cells stand for the certain and uncertain bytes. The gray
cells are constant bytes in the target value, the chaining value and the initial structure, which
are known or can be chosen before the MitM attack.

Freedom Degrees and Size of the Matching Point Before we apply the MitM attack, we
need to know the freedom degrees in the forward and backward directions and the bit size of
the matching point. The calculation method has been explained in [14]. More details about this
is in Appendix A.

With the method introduced in appendix A, we can find that , in Fig. 4, there are D2 = 248

and D1 = 264 freedom degrees in red and blue bytes respectively. In each of the four available
columns, there are two bytes of matching point. So the size of the matching point is m =
4× (2× 8) = 64 bits.

The Attack Algorithm and Its Complexity In this section, we consider a generic MitM
attack algorithm with partial matching technique. Suppose there are 2D1 and 2D2 freedom



degrees in the forward and backward chunks. The size of the matching point is m-bit and
the full matching size is b-bit. Without loss of generality, assume that D1 ≥ D2. Note that if
D1 +D2 ≥ b, we can’t fully use all the freedom degrees. Here we use d1 and d2 to denote the
actually used freedom degrees:

(d1, d2) =











(D1,D2), ifD1 +D2 ≤ b;

(b/2, b/2), ifD1 +D2 > b and D2 ≥ b/2;

(b−D2,D2), ifD1 +D2 > b and D2 < b/2.

(3)

This MitM preimage attack can be described in four steps.

1. Choose random constants in the initial structure.
2. With the chosen constants, for all 2d2 values v2j of the forward direction, calculate all the

partial values p2j and the full values f2
j at the matching point and store all the pairs (v2j , p

2
j )

in a look up table L;
3. For all 2d1 values v1i of the backward direction, calculate p1i . Then check if p1i is in table L.

If we found one partial match that p1i = p2j for some j, calculate the full value f1
i using v1i

and check if f1
i = f2

j ;
4. If no full match has been found yet, go to step 1.

Then we calculate the complexity. Step 2 costs 2d2 f2 calls and 2d2 memory. Step 3 costs 2d1

f1 calls. Consider two kinds of circumstances separately.

– If d1 + d2 ≥ m. After step 3 is done, we expect 2d1+d2−m good candidates that satisfy the
m-bit matching point. Now check if the full value of all good candidates are matched. This
step requires 2d1+d2−m computations. The probability that a good candidate is a full match
is 2m−b. Then the probability that there exists one full match in 2d1+d2−m good candidates
is about 2(d1+d2−m)+(m−b) = 2d1+d2−b. So, we need to repeat the attack 2b−d1−d2 times in
order to find a full match. The complexity is:

2b−d1−d2 · (2d1 + 2d2 + 2d1+d2−m) = 2b · (2−d1 + 2−d2 + 2−m)

– If d1 + d2 < m. After step 3 is done, we can find one good candidate with probability of
2d1+d2−m. So, we need to repeat the attack 2m−d1−d2 times to find one good candidate, then
we calculate the full value of the good candidate at the matching point to check if it is a
full match, which cost one computation. So the complexity to find one good candidate and
check its full value is 2m−d1−d2(2d1 +2d2) + 1. Then find and check 2b−m good candidates to
get a full match. The complexity is:

2b−m · (2m−d1−d2(2d1 + 2d2) + 1) = 2b · (2−d1 + 2−d2 + 2−m)

So, no matter in which case, the complexity to find one full match using this algorithm is always

2b · (2−d1 + 2−d2 + 2−m) (4)

computations and 2d2 memory.

Application to Grøstl’s Output Transformation In Fig. 4, the freedom degrees are D1 =
48,D2 = 64, the partial and full matching size are m = 64 and b = 256 bits. Using the attack
algorithm introduced in Section 4.1, we can calculate the complexity to invert 5-round Grøstl’s
output transformation. Here the complexity is measured by compression function calls. In the
MitM attack it takes about half P calls, i.e. 1/4 compression function calls to evaluate the
matching point for one direction. Thus we can multiply 2−2 to the complexity: 2C1(512,256) =
2−2 · 2256(2−64 + 2−48 + 2−64) ≈ 2206 compression function calls with 248 memory.



On the Choice of the Chunk Separation We can prove that our chunk separation in Fig. 4
is optimal, which minimizes the complexity of inverting the output transformation.

Suppose there are b blue bytes and r red bytes in each column of the matching point. Then
we show the relation between b, r, freedom degrees D1,D2 and the partial matching size m.

In the forward direction, r red bytes in one column of the matching point
AC,SB,SR,MC
−−−−−−−−−−→ r

full red columns
AC,SB,SR
−−−−−−−→ r red bytes in one column. Here we stops at the left end of the initial

structure. In order to produce at least one byte of freedom degrees in the blue color, there are at
least r+1 blue columns in the initial structure. Then there would be at most 8− (r+1) = 7− r
red columns in the initial structure.

In the backward direction, b blue bytes in one column of the matching point
SR−1,SB−1,AC−1

−−−−−−−−−−−−→

8− b white columns
MC−1,SR−1,SB−1,AC−1

−−−−−−−−−−−−−−−−→ 8− b white bytes in each columns.

Now we count the freedom degrees. There are (7−r) red columns in the initial structure and
each column produces 8− b free bytes. So, freedom degrees in red color is D2 = 8(7− r)(8− b)
bits. The minimum freedom degrees in the blue color here is D1 = 264. Size of the matching
point in one column is 8(b + r − 8) bits, so there are 4× 8(b+ r − 8) bits of matching point in
total.

So the complexity is 2−2 · 2256(2−64 +2−8(7−r)(8−b) +2−32(b+r−8)). The minimum complexity
is 2206 when b = 6, r = 4 or b = 5, r = 5. Fig. 4 is the case of b = 6, r = 4.

4.2 Chosen Position Partial Preimage Attack on P (H′) ⊕H
′
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Fig. 5. Chunk separation of chosen position partial preimage attack on P (H ′)⊕H ′ for Grøstl-256

Now, consider the attack model of chosen position partial preimage. In the partial preimage
attack of P (H ′) ⊕H ′, we can choose the positions of the target bits. In order to minimize the
complexity, we choose this chunk separation to maximize the size of the matching point m(b)
within all possible b target bits.

First, we discuss the size of matching point and chosen positions in one column. If less than
8 bits of the red byte in one column are chosen, no matching point can be derived. if b > 8
bits of the red bytes are chosen, as explained in appendix A, there are b − 8 bits of matching
point. Since there are only two red bytes in one column in the last state of Fig. 5, even if b > 16,
no more than 8 bits of matching point can be derived. In order to maximize m(b), we choose
at most 2 red bytes in one column and then chose the red bytes from another column. When
b > 128, m(b) = 64, because there are 64 bits of matching point in total. The graph of m(b) is
shown in Fig. 6.



In this Figure, freedom degrees in the red and blue color are D2 = 40 and D1 = 64. Then
we can calculate the complexity of chosen position partial preimage:

2C2(512,b) = 2−2 · 2b(2−d1 + 2−d2 + 2−m(b))

where d1 and d2 are chosen according to equation (3), i.e.:

(d1, d2) =











(64, 40), if b ≥ 104;

(b− 40, 40), if 80 ≤ b < 104;

(b/2, b/2), if b < 80.

The graph of C2(512, b) is shown in Fig. 7. When b > 80, C2(512, b) ≈ b− 42.
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Fig. 6. Size of the matching point for chosen position
truncations for Grøstl-256
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Fig. 7. Complexity of chosen position partial preimage
of P (H ′)⊕H ′ for Grøstl-256

4.3 Minimizing the Overall Complexity

By now, we have found C1(512, 256) and C2(512, b). So we can start to deal with the overall
complexity in equation (2). In the expression of the complexity, b can be integers from 0 to 512.
For all b ∈ [0, 512], optimal x1, x2 and x3 are chosen to minimize the overall complexity. The
graph of the minimum overall complexity for b ∈ [0, 120] is shown in Fig. 8.

When b = 31, x1 ≈ 36.93, x2 ≈ 244.93 and x3 ≈ 230.13, the complexity is the lowest: 2244.85

compression function calls. Memory requirement is 2230.13. The chosen positions for the 31 bits
≈ 4 bytes are marked in Fig. 5.
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Fig. 8. Overall complexity of pseudo preimage attack on 5-round Grøstl-256



5 Pseudo Preimage Attack on 8-round Grøstl-512

The attack on Grøstl-512 uses the same method for the three-sum phase as in the attack
on Grøstl-256. Here we skip the details of the attack algorithm and introduce the difference
between the attacks on them only.

5.1 Fixed Position Partial Preimage Attack on P (X)⊕X

The chunk separation for 8-round Grøstl-512 is shown in Fig. 9. Note that in this figure, we
use a 2-round initial structure. Freedom degrees in the red and blue bytes are both 216. There
are 4 bytes of matching point in total, as shown in Table 2 in Appendix B.

The parameters for the MitM preimage attack on the output transformation are D1 = D2 =
16,m = 32 and n = b = 512. So the complexity is 2C1(1024,512) = 2−2 ·2512(2−16+2−16+2−32) ≈
2495 compression function calls and 216 memory.
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Fig. 9. Chunk separation of preimage attack on Grøstl-512’s output transformation

On the Choice of the Chunk Separation Actually, we searched for all the possible patterns
of the chunk separation for 8-round Grøstl-512. The chunk separation in Fig. 9 is one of the
best we found. The search algorithm is as follows:

Step 1. Search for the matching point.

We want to find good candidates in all the possible positions of the white columns in round
2 and round 6. Since there are 32 columns in two states, there are 232 patterns in total.

For each of the pattern of white columns, we can calculate round 2 backward and round 6
forward and check if there are at least two byte of matching point. After the search for all the
232 patterns, we found 1322 patterns with at least two bytes of matching point.

Step 2. Search for the initial structure.



Considering the mirror image and rotational similarity, there are only 120 distinct patterns
in all the 1322 patterns of matching point. For each of the 120 patterns, we calculate forward
from round 2 and backward from round 6.

If there is one white column in round 2, the number of possible patterns of the white bytes
in the same column of round 3 is 28 − 1, since there must be at least one white byte in this
column. So size of the search space is (28−1)w, where w is the number of white columns in both
round 2 and round 6. In the 120 possible patterns, w is no more than 4, so the search space is
at most 232 · 120 ≈ 239.

Using early-abort trick, we can directly skip some bad patterns in round 2 without knowing
the pattern in round 6. Then the search space is reduced again and the search is practical.

5.2 Chosen Position Partial Preimage Attack on P (H′) ⊕H
′

For chosen position partial preimage, we use another chunk separation in Fig. 10.
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Fig. 10. Chunk separation of chosen position partial preimage attack on P (H ′)⊕H ′ for Grøstl-512

The freedom degrees for the MitM preimage attack are D1 = 24,D2 = 8. The distribution
of the matching point bytes are shown in Table 3 and The graph of m(b) is in Fig. 11. Then we
can calculate the complexity of chosen position partial preimage:

2C2(1024,b) = 2−2 · 2b(2−d1 + 2−d2 + 2−m(b))

where d1 and d2 are chosen according to equation (3), i.e.,

(d1, d2) =











(24, 8), if b ≥ 32;

(b− 8, 8), if 16 ≤ b < 32;

(b/2, b/2), if b < 16.

The graphs for m(b) and C2(1024, b) are in Fig. 11 and Fig. 12. The figures and tables are
in Appendix B.



5.3 Minimizing the Overall Complexity

With the value and expression of C1(1024, 512) and C2(1024, b), we can deal with the overall
complexity like we have done for Grøstl-256. The minimum overall complexity for different b
is shown in Fig. 13.

When b = 0, x1 ≈ 10.50, x2 ≈ 506.50 and x3 ≈ 507.00, the overall complexity is the lowest:
2507.32. Memory requirement is 2507.00.

6 Conclusion

In this paper, we proposed pseudo preimage attacks on the hash functions of 5-round Grøstl-256

and 8-round Grøstl-512. This is the first pseudo preimage attack on round-reduced Grøstl hash
function, which is a wide-pipe design.

In order to invert the wide-pipe hash function, we have to match 2n-bit state value with
less than 2n computations. This is achieved by exploiting the special property of the Grøstl

compression function. After collecting enough partial preimages on the component P (X) ⊕X,
the double-sized state values are matched using a variant of the generalized birthday attack.

There is an interesting observation that this attack works with any function Q. Thus our
attack can be applied to the Grøstl hash function with round-reduced permutation P and
full-round permutation Q. However, our attacks do not threat any security claims of Grøstl.
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A Calculation of Freedom Degrees and Size of the Matching Point

Calculating Freedom Degrees Compared to original attack, we have less constants in the
initial structure. In Fig. 4, there is no constant in the initial structure. Before the MC operation
that produces uncertain (white) bytes in the forward chunk, there are 24 red bytes. In order
to maintain 18 constant (gray) bytes after the MC operation, it is equivalent to solve such a
equation group with 24 variables and 18 equations:

C ·
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(5)

where C is the MDS matrix, {ri} are the values of red bytes, {ci} are constants and ∗ are
arbitrary values we don’t care. This equation group has 28·(24−18) = 248 solutions, which are the
freedom degrees in the red bytes, i.e. the backward chunk. Similarly, by observing 40 variables
and 32 equations, the freedom degrees in the blue bytes can be calculated as 28·(40−32) = 264.

Calculating Size of the Matching Point First, we need to explain how the partial matching
through MR operation works. Use the first column of the matching point in Fig. 4 as an example,
our target is to find proper values that satisfies the following equation:

C ·
(

x0 x1 x2 x3 x4 x5 x6 x7

)T
=

(

y0 y1 y2 y3 y4 y5 y6 y7

)T
(6)



where x0, x1, x2, x3, x6, x7, y0, y5, y6, y7 are known bytes and x4, x5, y1, y2, y3, y4 are uncertain
bytes. So only four equations of y0, y5, y6 and y7 are useful to us:

05x4 + 03x5 = 02x0 + 02x1 + 03x2 + 04x3 + 05x6 + 07x7 + y0 (7)

07x4 + 02x5 = 04x0 + 05x1 + 03x2 + 05x3 + 02x6 + 03x7 + y5 (8)

05x4 + 07x5 = 03x0 + 04x1 + 05x2 + 03x3 + 02x6 + 02x7 + y6 (9)

03x4 + 05x5 = 02x0 + 03x1 + 04x2 + 05x3 + 07x6 + 02x7 + y7 (10)

From equations (7)(8), obtain x4, x5 with linear combinations of the known bytes:

x4 = F7x0 +A5x1 + 00x2 + 52x3 +A5x6 + 53x7 + 52y0 + 52y5

x5 = F6x0 +A4x1 + 8Cx2 + 50x3 + 2Ax6 +DDx7 +DFy0 + 52y5

Then equation (10) can be rewritten as:

F1x0 + 52x1 + 8Cx2 +A9x3 +D3x6 + 23x7 = 2Ay0 +A4y5 + y6 (11)

03x0 + F5x1 + 8Ex2 + F8x3 + 71x6 + 73x7 = 78y0 + F7y5 + y7 (12)

Equations (11) and (12) are used as the matching point, since they provide equations of the
known bytes that can be pre-computed, stored separately and then checked using table look-ups.
Here the matching point is not directly truncated from the state value. In Fig. 4, two bytes of
matching point can be derived from one column. At most 8 bytes (64 bits) of matching point
can be found, since there are only four available columns.

Suppose there are b and r known bytes in one column of the input and output values of
the MC at the matching point. 8 − b uncertain bytes are regarded as variables and r known
red bytes can provide r equations. 8 − b of the equations are used to determine values of the
variables. Then the remaining r − (8− b) = r + b− 8 equations are on the known bytes, which
are regarded as the matching point. Note that if b + r ≤ 8, no matching point can be derived
from this column. Otherwise, there are b+ r − 8 bytes of matching point in this column.

If size of the known bits b′ and r′ are not exact multiples of 8, we can further split the linear
equations on bytes into linear equations on bits. The bit size of matching point can be calculated
as b′ + r′ − 64.

B Figures and Tables for Grøstl-512

Table 2. The matching point in Fig. 9

column index 9 10 11 12 13 14 15 16

blue bytes 4 3 3 4 5 5 4 3

red bytes 4 3 3 4 5 5 4 3

sum 8 6 6 8 10 10 8 6

matching point(bytes) 0 0 0 0 2 2 0 0

C Preimage Attack on round-reduced Whirlpool

C.1 Specification of Whirlpool

Whirlpool uses MD-strengthening structure, with narrow-pipe chaining value and no block
counters. So it is vulnerable to generic attack, like the expandable messages [10] and multi-
target pseudo preimage [12] attack. We will talk about the details later.



Table 3. matching points in Fig. 10

column index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

blue bytes 5 4 3 2 0 2 3 4 5 4 5 6 6 6 5 4

red bytes 2 3 2 0 0 0 2 3 2 2 2 3 4 3 2 2

sum 7 7 5 2 0 2 5 7 7 6 7 9 10 9 7 6

matching point(bytes) 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0
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Fig. 11. Size of the matching point for chosen position
truncations for Grøstl-512
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Fig. 12. Complexity of chosen position partial preim-
age of P (H ′)⊕H ′ for Grøstl-512
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Whirlpool accepts any message with less than 2256 bits as input and the 256-bit binary
expression of bit length is padded according to MD-strengthening, i.e. M ||1||0∗||length. Size
of the message block, the chaining value and the hash value is 512-bit.

Compression function of Whirlpool can be regarded as a block cipher called W in Miyaguchi-
Preneel mode.

F (H,M) = WH(M)⊕M ⊕H

where block cipher W use AES-like iteration with 8× 8 state of bytes and the (8i+ j)-th input
byte of the message block is placed at the i-th row and j-th column of the state. Each round
consists of four operations:

– SubBytes(SB): applies the Substitution-Box to each byte.
– ShiftColumns(SC): cyclically shift the i-th column downwards for i positions.
– MixRows(MR): multiply each row of the state matrix by an MDS matrix

C = circ(01, 01, 04, 01, 08, 05, 02, 09)

– AddRoundKey(AK): XOR the round key to the state.

Since the key schedule is not important in our attack, the description is omitted.

C.2 Improved Second Preimage Attack on Whirlpool

In [14], Yu Sasaki proposed a second preimage attack on 5-round Whirlpool using the MitM
approach. In their attack, there are only 28 freedom degrees in both chunks, but the size of
matching point is much larger (40 bytes=320 bits). The comparison of the preimage attacks on
Whirlpool is shown in Table 4.

Table 4. Comparison of the preimage attacks on Whirlpool

Attack Type Rounds Time Memory Source

Second Preimage 5 2504 28 [14]

Second Preimage 5 2448 264 this section

Preimage 5 2481.5 264 this section

In this section, we propose an improved chunk separation with more freedom degrees and a
smaller matching point in Fig. 14.
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Fig. 14. Chunk separation for improved 2nd-preimage attack on 5-round Whirlpool

We use the same colors as in [14] to illustrate the chunk separations. The blue bytes in the
forward chunk can be determined by the previously chosen blue bytes in the initial structure.



The white bytes in the forward chunk stands for the bytes whose value are affected by the red
bytes from initial structure and can’t be precomputed until the partial match is found. Similarly,
in the backward chunk, red and white cells stand for the certain and uncertain bytes. The gray
cells are constant bytes in the target value, the chaining value and the initial structure.

Since this is a second preimage attack, the second last chaining value and the last message
block with proper padding are known. We choose random messages and get a random chaining
value at the third last position. With this chaining value, apply MitM preimage attack of the
compression function.

With chunk separation in Fig. 14, we have a MitM attack with D1 = 72,D2 = 64,m = 64
and b = 512. According to equation 4, the complexity can be computed as 2−12512(2−72+2−64+
2−64) ≈ 2448. Memory requirement is 264. Note that the complexity of computing the two chunks
and checking the full match may be different. Here, we don’t consider the difference between
them and they are all regarded as the same cost of half compression function call. Methods
for calculating freedom degrees of two chunks and the size of matching point are described in
appendix A, which can also be found in [14].

C.3 First Preimage Attack on Whirlpool

This attack consists of three steps: First, find a preimage of the last block with proper padding.
Second, construct an expandable message. At last, connect expandable message and the last
block with MitM. The attack process is illustrated in Fig. 15.

Fig. 15. Outline of the first preimage attack on 5-round Whirlpool

Dealing with Message Padding In order to apply the first preimage attack, the message
padding must be dealt with properly. In our attack, the last message block consists of 255-bit
message concatenated with one bit of “1” padding and 256-bit binary expression of the message
length l. Since Whirlpool uses 512-bit message block, l ≡ 255 mod 512. Then the last 9 bits
of l are fixed to 011111111.
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Fig. 16. Chunk separation for the last message block of Whirlpool



In Fig. 16, the initial structure is relocated at the beginning of the compression function for
the convenience of the message padding, since in MP mode, the first state is the message block
itself. Value of the black byte in the first state is fixed to 0xff , because it is the last 8 bits of
l. One red byte is marked with a “0”, which means the last bit of it is fixed to zero due to the
message length l. There is another blue byte marked with a “1”, which comes from the “1-0”
padding.

Parameters for this MitM attack are D1 = D2 = 63,m = 64 and b = 512. According to
equation 4, the complexity is about 2449 computations and 263 memory for the last block. When
the attack on the last block is done, the remaining bits of the message length are fulfilled by
expandable messages.

Expandable Messages Expandable messages [10] can be constructed using either Joux’s
multi-collision [9] or fix points of the compression function.

Expandable 2k-collision can be constructed with k ·2n/2 computations and k memory. But its
length can only be in the range of [k, k+2k − 1] blocks. If the message length obtained from the
last block is less than k (with a very small probability), we choose different random constants
and repeat the attack.

Fix points of MP mode can be constructed by finding the zero preimages of the compression
function in MMO mode, since

WH(M)⊕M ⊕H = H ⇔ WH(M)⊕M = 0.

This can be done using the same technique as in our 2nd-preimage attack, with complexity of
(2449, 264), which is an affordable cost for us. Note that for random H, the fix point exists with
probability of 1 − e−1. If no fix point can be found for IV, we choose a random message block,
compute the following chaining value and try to find fix point for this chaining value instead.

So, either way is fine to construct the expandable message here and has little influence on
the overall complexity.

Turns Pseudo Preimage into Preimage After preparing preimage for the last message block

F (H,M) = T and the expandable message IV
M∗

−−→ H ′. Now we can connect them to form a
first preimage.

Suppose it takes 2c to find a pseudo preimage. A traditional MitM approach can convert
preimage attack on the compression function into preimage attack on the hash function works
like this. First, find and store 2k pseudo preimages with 2k+c computations and 2k memory.
Then choose 2n−k random message , calculate from IV to find a chaining value appearing in
one of the pseudo preimages. The complexity is 2n−k + 2k+c. Take the optimal k = n−c

2 , the

minimum complexity is 2
n+c
2

+1. Using the pseudo preimage attack described in Sect. C.2, the
preimage attack has a complexity of (2481.5, 264).

D Improved MITM Attacks against AES Hashing Modes

It has been shown by Sasaki [14] that pseudo/second preimage of 7-round AES can be found in
2120 under hashing modes of Davies-Meyer (DM), Matyas-Meyer-Oseas (MMO), and Miyaguchi-
Preneel (MP). In this section, we show that the pesudo-preimage can speed up with the help of
the multi-target pseudo-preimage techniques proposed in [7], when the number of given targets is
more than one. These improvements result in faster preimage and second preimages of 7-round
AES hash modes. Details of the results are summarized in Table 5, comparing with those by
Sasaki in [14].



Attack Mode Time Memory Message length Reference

2nd Preimage

MMO, MP 2120 28 - [14]

MMO, MP, DM 2128−k 2k 2k blocks [10]

MMO, MP, DM 2120−min(k,24) 28+min(k,24) 2k blocks this section

Preimage
DM 2125 28 - [14]

DM 2122.7 216 > 28 blocks this section

Table 5. Results on (Second) Preimages of 7-round AES Hashing Modes.

We refer to Fig. 17 for the details of the attack. The states of AES are divided into two chunks,
while the backward (red) chunk consists of states #8—#15 and forward (blue) chunk consists of
states #20—#28 and #0—#7, the initial structure works for states #16—#19. These divisions
are same as in [14]. However, when setting degree freedoms for both chunks, we find that we can
have 232 and 28 for the backward and forward directions, respectively. There is only one free
byte in blue as in state #15 and the rest three bytes in the colunn are set to some constants.
This byte is later propagated through the MixColumn into all four bytes of the first column in
state #16. Similarly, we do not allow influence from red bytes in state #19 into the blue bytes in
#20. Hence there is only (3-2)=1 free byte in each column of #19, which results in at most 232

(4 bytes) for backward chunk. If one considers the situation that there are 2k available targets
T . Then the attack works in the follows.

1. Use 28+min(k,24) freedom degrees out of 232 for the backward direction, and compute the
values of the bytes in red and gray from state #15 back to #8, store them in a table.

2. For all 28 freedom degrees, compute the values of the bytes in blue and gray from state
#15—#28, then for each of the 28 candidates, xor the 2min(k,24) targets, so that 28+min(k,24)

candidates will be available for state #0. Continue compute forward up to state #7.
3. Carry out the indirect partial matching between state #7 and #8.
4. Repeat until a full match is found.

It is easy to see that the overall complexity for this attack is 2120−min(k,24), with memory
requirement 28+min(k,24). While this can be directly applied when finding second preimages, we
will use a tree-like construction as in [7] to find a first preimages for the AES hash in Davies-
Meyer mode. Generally, given k targets with 1 < k < 224, a pseudo preimage can be found in
2120/k. When finding the first preimage given one target T , one finds a pseudo preimage with
chaining T2 in 2120, then finds the second pseudo preimage with the target set {T, T2} in time
2120/2, and so on. Hence finding Z pseudo preimages costs

∑Z
z=1 2

120/z ≃ 2120 · ln(Z). Finally,
finding a message linking the IV to one of the targets costs 2128/Z. The overall time complexity
is 2120 · ln(Z) + 2128/Z, which is 2122.7 when Z = 28 is chosen.
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Abstract. The ARMADILLO2 primitive is a very innovative hardware-oriented multi-purpose design
published at CHES 2010 and based on data-dependent bit transpositions. In this paper, we first
show a very unpleasant property of the internal permutation that allows for example to obtain a
cheap distinguisher on ARMADILLO2 when instantiated as a stream-cipher. Then, we exploit the very
weak diffusion properties of the internal permutation when the attacker can control the Hamming
weight of the input values, leading to a practical free-start collision attack on the ARMADILLO2

compression function. Moreover, we describe a new attack so-called local-linearization that seems
to be very efficient on data-dependent bit transpositions designs and we obtain a practical semi-free-
start collision attack on the ARMADILLO2 hash function. Finally, we provide a related-key recovery
attack when ARMADILLO2 is instantiated as a stream cipher. All collision attacks have been verified
experimentally, they require negligible memory and a very small number of computations (less than
one second on an average computer), even for the high security versions of the scheme.
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1 Introduction

Hash functions are among the most important and widely spread primitives in cryptography.
Informally a hash function H is a function that takes an arbitrarily long message as input
and outputs a fixed-length hash value of size n bits. The classical security requirements for
such a function are collision resistance and (second)-preimage resistance. Namely, it should be
impossible for an adversary to find a collision (two different messages that lead to the same
hash value) in less than 2n/2 hash computations, or a (second)-preimage (a message hashing to
a given challenge) in less than 2n hash computations. In general, a hash function H is built from
an iterative use of a n-bit output compression function h in a Merkle-Damg̊ard-like operating
mode [6, 4]. The compression function takes a chaining variable CV (fixed to an initial value IV
at the beginning) and a message block M as inputs and in order to allow security proofs on the
operating mode, one requires the same security properties as a hash function, namely collision
and (second)-preimage resistance. However, the compression function allows several flavors of
security properties depending on how well the attacker can control the chaining variable:

• free-start collision: the attacker fully controls the chaining variable, i.e. both its value and
difference
• semi-free-start collision: the attacker control partially the chaining variable, i.e. only its value,

and the difference is null
• collision: the attacker does not control the chaining variable, the value is defined by the IV

and the difference is null
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For all three flavors, it should be impossible for an adversary to find a collision in less than
2n/2 compression function computations. Note that free-start collision is required as necessary
assumption regarding the compression function in the Merkle-Damg̊ard-like security proofs.
Moreover, a semi-free-start collision means there exists initial values IV for which it is possible
to find collisions for the hash function. Therefore, both these two notions are very important
and should be verified for a secure compression function.

ARMADILLO2 [2] is a very novel primitive dedicated to hardware, defining a FIL-MAC, a
stream cipher and a hash function. Originally, two versions were proposed, ARMADILLO and
ARMADILLO2, the later being the recommended one. A key recovery attack on ARMADILLO was
rapidly published by a subset of the designers [9]. ARMADILLO2 remained unbroken until Abdelra-
heem et al. [1] found a meet-in-the-middle technique that allows to invert the ARMADILLO2 main
function. This cryptanalysis eventually led to a key recovery attack on the FIL-MAC and the
stream cipher, and a (second)-preimage attack on the hash function. However, while being the
first weakness published on ARMADILLO2, this work is an improved meet-in-the-middle technique,
therefore requiring a lot of computations and memory, often close to the generic complexity. For
example, the preimage attack on the 256-bit output hash function requires either 2208 compu-
tations and 2205 memory or 2249 computations and 245 memory. With its data-dependent bit
transpositions and original compression function construction, ARMADILLO2 is clearly not follow-
ing the classical design trends for symmetric-key primitives (for example RC5 [7] and RC6 [8]
use data-dependent rotations, while IDEA [5] use data-dependent multiplication). As a conse-
quence, it would be interesting to look at this proposal without necessarily relying on known
cryptanalysis techniques.

Our contributions. In this paper, we first observe the very unpleasant property that the par-
ity bit is preserved through all ARMADILLO2 internal permutations. This allows us for example
to derive a very cheap distinguisher for the stream-cipher. Then, we analyze the differential dif-
fusion of the permutations and we provide practical free-start collision attacks for all versions of
the compression function of ARMADILLO2. We extend our results by introducing a new technique,
the local linearization, that seems very efficient against data-dependent bit transpositions. This
method led us to practical semi-free-start collision attacks for all versions of ARMADILLO2. All
attacks require very few computations (at most 210.2 operations for 256-bit output version) and
negligible memory. Moreover, our implementations validate our techniques and we provide colli-
sion examples. Finally, we provide a related-key recovery attack when ARMADILLO2 is instantiated
as a stream cipher.

2 The ARMADILLO2 function

We let X[i] denote the i-th bit of a word X. Let C be an initial vector of size c and U be a
message block of size m. The size of the register (C||U) is k = c + m, where || denotes the
concatenation operation. The internal ARMADILLO2 function transforms the vector (C,U) into
(Vc, Vt) as described in Figure 1, (Vc, Vt) = ARMADILLO2(C,U). The internal ARMADILLO2 function
relies on a parameterized permutation on k bits Q, instantiated by QU and QX , where U is a
m-bit parameter and X is a k-bit parameter.

Let σ0 and σ1 be two fixed bitwise permutations of size k. In [2], the permutations are not
specifically defined but some criteria they should fulfill is given. We denote by cst a constant of
size k defined by alternating 0?s and 1?s, i.e. : cst = 1010 · · · 10. Using these notations, we can
specify Q which is used twice in the internal ARMADILLO2 function. Let A be the a-bit parameter
and B be the k-bit input of Q, the parameterized permutation QA can be divided into a = |A|
simple steps. The i-th step of QA (reading A from its least significant bit to its most significant
one) is defined by:
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Fig. 1. The internal function of ARMADILLO2. The thick line at the side of a register represents the least significant
bit.

• an elementary bitwise permutation: B ← σA[i](B), that is if the i-bit of A is 0 we apply
σ0 to B, otherwise we apply σ1.

• a constant addition (bitwise XOR) of cst: B ← B ⊕ cst.

The internal ARMADILLO2 function first computes X = QU (C||U), then Y = QX(C||U), and
finally outputs (Vc, Vt) = Y ⊕X.

Using this internal primitive, ARMADILLO2 builds a FIL-MAC, a stream-cipher and a hash
function:

• Stream-cipher: the secret key is inserted in the C register and the output sequence is
obtained by taking the k bits of the output (Vc, Vt) after one iteration. The keystream is
composed of k-bit frames indexed by U (which is a public value).

• Hash function: it uses a strengthened Merkle-Damg̊ard construction, where Vc represents
the output of the compression function (i.e. the next chaining value or the hash digest), U
is the incoming message block and C is the incoming chaining variable.

• FIL-MAC: the secret key is inserted in the C register and the challenge, considered known
by the attacker, is inserted in the U register. The response to the challenge is the m-bit
output Vt.

Five different sets of register sizes (k, c,m) are provided, namely (128, 80, 48), (192, 128, 64),
(240, 160, 80), (288, 192, 96) and (384, 256, 128).

3 First tools

We denote HAM(X) the Hamming weight of the word X. We recall from [1] that for two random
k-bit words A and B of Hamming weight a and b respectively, the probability that HAM(A∧B) = i



(where ∧ stands for the bitwise AND function) is given by the formula
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Moreover, we would like to deduce from it the probability that HAM(A ⊕ B) = i (where ⊕
stands for the bitwise XOR function) for two randomly chosen k-bit words A and B of Hamming
weight a and b respectively. We remark that HAM(A⊕B) = a+ b− 2 · HAM(A∧B) and therefore
the probability that HAM(A⊕B) = i is given by the formula

Pxor(k, a, b, i) =

Pand(k, a, b, a+b−i2 ) for (a+ b− i) even

0 for (a+ b− i) odd

Since they have not been specified in the original ARMADILLO2 document, in the following we
assume that σ0 and σ1 are randomly chosen bit permutations.

4 Parity preservation

We call the parity bit of an a-bit word A the bit value
⊕a−1

i=0 A[i]. Regardless of the parameter A
of the internal permutation QA, we have that the parity of the input is always maintained
through the permutation. This can be easily verified by remarking that QA is composed
of several identical rounds, all satisfying this property. Indeed, one round is composed of a bit
permutation (which fully maintains the Hamming weight) and an XOR of the internal state
with the constant cst = 1010...10. This constant being always the same during the whole
ARMADILLO2 computation and its parity being even, the parity of the internal state remains the
same after application of the XOR. Note that even if this constant was changed during the
rounds, the attacker would only have to compute the parity of the XOR of all constants to be
able to tell if the parity bit will be maintained or negated. This property is moreover maintained
whatever number of rounds is applied in the permutations, thus the attack proposed in this
section is independent of the number of rounds.

Distinguisher for the stream cipher mode. We can exploit the previous property to build
a cheap distinguisher on ARMADILLO2 when used as a stream-cipher. In the attack model, the
whole output of the function is assumed to be known as it is a frame of the keystream. This
output is generated by a XOR of internal states X and Y . Since permutations QU and QX
will maintain the parity, their respective outputs X and Y will both have the same parity as
(C||U). As a consequence, the output of the function X ⊕ Y always has an even parity. For a
random sequence, this will only happen with probability 1/2, as for ARMADILLO2 this happens
with probability 1. In other words, the entropy of the ARMADILLO2 function output is reduced
by one bit.

5 Controlled diffusion: practical free-start collision attack

In this section, we show how an attacker can control the bit difference diffusion in ARMADILLO2

function by using the available inputs. This leads to a very cheap free-start collision attack
against the compression function.

5.1 General description

Assume that we insert a single bit difference in C, that is HAM(∆C) = 1, and no difference in
U that is ∆U = 0. We can use c distinct ∆C, one for each active bit position. The attack is
depicted in Figure 2.
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Fig. 2. A schematic view of the free-start collision attack on ARMADILLO2. The thick line at the side of a register
represents the least significant bit and black circles stand for bit differences. The dashed box indicates the first
round of QX , which contains a difference on its corresponding parameter input bit.

Difference propagation in QU . Since we have no difference in U , the permutation QU always
remains the same. We only have to study the propagation of the bit difference in C through
QU . Note that one round of the internal permutation QU provides no difference diffusion since
it is only composed of a bit permutation and a constant addition. Therefore, the single bit
difference in C will be just transfered to some random bit position in X at the end of QU and
we have HAM(∆X) = 1. We would like the single bit difference in X to be positioned in bit 0, i.e.
∆X = 00...01 (this will later allow us to use the freedom degrees efficiently). For a randomly
chosen value of U and C, this happens with probability

PX =
1

k
.

Difference propagation in QX . Since we have a single difference on the first bit of X
(corresponding to the first step of QX), the permutation QX remains the same except for the
first step where we switch from bit permutation σ0 to σ1 or from σ1 to σ0. We denote by
Pstep(in, out) the probability that in active bits are mapped to out active bits through a step
of data-dependent permutation with a difference (i.e. σ0 and σ1 are swapped). Assume for the
moment that after this first step, only b bits are active in the internal state. This happens
with probability Pstep(1, b). Since the next rounds of the internal permutation QX provide no
difference diffusion, we end up in Y with b active bits randomly distributed. We need to ensure
that all the b active bits remaining in Y will go to the m-bit Vt part of the k-bit output, so
that all differences will be truncated and we eventually obtain a collision on the output of the
compression function. For b ≤ m, this happens with probability

Pout(b) = Pand(k,m, b, b) =

(
b
b

)(
k−b
m−b

)(
k
m

) =

i=b−1∏
i=0

m− i
k − i

.



During the feed-forward afterQX the single active bit ofX is already on the Vt part of the output.
Overall the probability of obtaining a compression function collision for randomly chosen U and
C values is:

Pcollision = PX ·
i=m∑
i=1

Pstep(1, i) · Pout(i).

the sum stopping at m because when i > m, we trivially have Pout(i) = 0. At this point our
problem is that in order for the probability Pout(i) to be high enough, we need the number i of
active bits to be small. On the other side, if i is small, Pstep(1, i) will be very low (we do not
explain how to compute Pstep(1, i) here as we will study a slightly more detailed problem in the
next section). However, in this scenario we only considered an attacker that randomly chooses
the value of U and C and the bit difference position in C, but we can do much better by using
the available degrees of freedom efficiently.

5.2 Using the freedom degrees

First, note that the event related to the probability PX only depends on the position of the bit
difference in C and on the value of U . We can therefore attack QU in a first phase (by fixing
the position of the bit difference in C and the value of U), and then independently attack QX
by choosing the value of C.

Handling QU . We will see later that we would like C and U values to have an extremely low
or extremely high Hamming weight. Therefore, we fix ∆X = 00...01 and test with the two
values U = 00..00 and U = 11..11 how the bit difference will propagate through Q−1U (note
that we are dealing with the inverse of QU , thus attacking backwards from ∆X). For each try,
we have a probability Pand(k, c, 1, 1) = c/k that the single bit difference is mapped to the C
part of the input. Since for all ARMADILLO2 versions we have 2c/k > 1, we expect at least one
of the two U candidates to satisfy ∆X = 00...01, HAM(∆C) = 1 and HAM(∆U) = 0. Overall,
this phase costs us only 2 operations. We assume without loss of generality that the selected
candidate has value U = 00..00.

Handling QX . At the present time, everything is fixed except the value of C and we have
∆X = 00...01 and U = 00..00. We now describe a simple criteria in order to choose the
values of C such that the first round probability Pstep(1, i) in QX is high, even for small i. As
an example, let’s assume that C = 0, that is HAM(C||U) = 0. In that case, we trivially have that
Pstep(1, 1) = 1 (and Pstep(1, i) = 0 for all other i) since changing the bit positions of the word
00..00 (switching from σ0 to σ1 or from σ1 to σ0) will not have any effect at all and the single bit
difference in C will just be placed to some random bit position. Similarly, with a single one-bit
in C, that is HAM(C||U) = 1, we have that Pstep(1, 1) = 1

128 + 2·127
1282

and Pstep(1, 3) = 127·126
1282

(and
Pstep(i) = 0 for all other i). More generally, we have to compute the probability Pstep(1, b, hw)
which corresponds to the probability Pstep(1, b) knowing that the input word hamming weight is
hw. This can be modeled as follows: choose two random k-bit words x and y both with Hamming
weight hw (they represent σ0(C||U) and σ1(C||U)) and compute z = x⊕ y⊕ 1 (the 1 represents
the single bit difference in C). Then Pstep(1, b, hw) is the probability that HAM(z) = b (note that
HAM(z) is always odd thus we have Pstep(1, 2i, hw) = 0 for all i) and we have:

Pstep(1, b, hw) =
hw

c
· Pxor(k, hw, hw − 1, b) +

c− hw
c

· Pxor(k, hw, hw + 1, b).



The complexity for handling QX is finally

Comp =
1∑i=m

i=1 Pstep(1, i, hw) · Pout(i)
.

5.3 Complexity results

The number C of candidate values we can generate with Hamming weight hw is
(
c
hw

)
and in

order to have a good chance to find a collision after QX with this amount, we need to ensure
that (

c

hw

)
≥ 1/

i=m∑
i=1

Pstep(1, i, hw) · Pout(i).

One can check that in order to minimize the complexity Comp, the dominant factor of the
sum is when i is small. Then, for i small, Pstep(1, i, hw) is higher when hw is close to 0 or close
to k, in other words the input should have very low or very high Hamming weight. Since we
previously chose U = 00..00 our goal is to find for each ARMADILLO2 versions the smallest hw
value hwmin that ensures enough C candidate values to handle the collision probability in QX
(but the same reasoning is possible with U = 11..11 and the biggest hw value hwmax). Overall,
the full attack runs in 2 + Comp operations (i.e. compression function calls) and negligible
memory in order to find a free-start collision for the ARMADILLO2 compression function. We
depict in Table 1 our results relative to all proposed versions of ARMADILLO2. This attack has
been implemented and verified in practice for k = 128 and we give free-start collision examples
in the Appendix.

Table 1. Summary of results for free-start collision attack on the different size variants of the ARMADILLO2

compression function. The number of C candidates must always be enough so as to handle the collision probability
in QX .

scheme parameters attack parameters

k c m
generic

hwmin

number of collision attack

complexity C candidates probability in QX complexity

128 80 48 240 1 26.3 2−4.1 27.5

192 128 64 264 1 27 2−4.6 27.8

240 160 80 280 1 27.3 2−4.7 28.1

288 192 96 296 1 27.6 2−4.7 28.3

384 256 128 2128 1 28 2−4.8 28.7

6 Local linearization: practical semi-free-start collision attack

In this section, we show how one can obtain a semi-free-start collision attack (no difference
on the input chaining variable) with a very low computational complexity for the ARMADILLO2

compression function.

6.1 General description

The previous method only allows to add differences on the capacity part of the input, thus leading
to free-start collision attacks. One can directly extend this technique to allow only differences



in the message part of the input, but this only leads to semi-free-start collisions for randomly
chosen bit permutations σ0 and σ1 with a not-so-high probability of success.

We would like to derive a semi-free-start collision attack that will output a result with very
high probability. In order to achieve this goal we propose a new technique for data-dependent
bit transposition ciphers, so-called local linearization: by guessing some part of the input we
are able to render a few rounds of the internal permutation linear. Indeed, by knowing the g
first bits of U we completely determine the permutations applied during the first g rounds of
QU . Therefore, for those g rounds the primitive QU only consists of known bit permutations
and known constant additions. With this method we neutralize for the first g rounds the only
non-linearity source: the fact that we don’t know which bit permutation σ0 or σ1 is applied each
round.

On a high-level view, our semi-free-start collision attack will force a collision on the X value
at the output of QU thanks to the local linearization technique. This collision on X will ensure
that the QX permutation will be the same for both inputs. Therefore, the difference Hamming
weight on the input of QX will remain the same in the output. We then hope that those bit
differences will be mapped in the truncated part of the output in order to eventually obtain the
semi-free-start collision (no difference is feed-forwarded from X since we forced a collision on
it). The attack is depicted in Figure 3.
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Fig. 3. A schematic view of the semi-free-start collision attack on ARMADILLO2. The thick line at the side of a
register represents the least significant bit and black circles stand for bit differences. The dashed box indicates
the linearized part.

During a first phase, the input will be divided into two parts: the fixed and the unfixed part.
The fixed part z ∈ {0, 1}g is composed of the g first bits of U and we choose random values for
those g bits (so as to know the g first choices of σ0 or σ1). The unfixed part w ∈ {0, 1}k−g is
composed of the rest of the input bits and we will be set to a value later. We force the input
difference to be contained in the fixed part and we denote it ∆z ∈ {0, 1}g (since we are looking
for semi-free-start collisions we obviously have g ≤ m, otherwise we would have a difference in
the input chaining variable C). Let I1 = (C1||U1) (resp. I2 = (C2||U2)) be the k-bit value of the



first input (resp. second output), we have:

I1 = (x||z) and I2 = (x||z ⊕∆z).

and our goal is to have the collision X = QU1(I1) = QU2(I2).

Assume for the moment that this collision on X happens. Then the same permutation QX
will be used for both inputs I1 and I2 on the right side of Figure 1. As a consequence, no
additional bit difference will be introduced during the computation of QX , but the bit difference
positions will be randomly moved. In order to obtain a semi-free-start collision on the output of
the function, we need the b = HAM(∆z) active bits of the input to be mapped in the truncated
part of the output through QX . As already explained in Section 5, this happens with probability

Pout(b) = Pand(k,m, b, b) =
i=b−1∏
i=0

m− i
k − i

.

6.2 Colliding on X

We need now to evaluate the probability of getting a collision on X. Note that for any round, if
there is no difference on the bit choosing the permutation to apply σ0 or σ1, the bit differences
at the input of this round will only have their position changed and cannot be erased. Therefore,
if we want to obtain a collision on X, we need to obtain it at latest just after the last round of
QU for which a difference is inserted on the side (in U). We consider from now on that the input
difference ∆z contains at least one active bit on its MSB, thus this last round is the g-th one.

We know the value of the g first bit of U , therefore we know exactly the permutation applied
to I1 and I2 for the g first rounds of QU . For a collision after g rounds of QU , we want that

σU1[g−1](· · · (σU1[1](σU1[0](I1)⊕ cst)⊕ cst) · · · )
= σU2[g−1](· · · (σU2[1](σU2[0](I2)⊕ cst)⊕ cst) · · · )

and since all operations are linear, this can be rewritten as

ρ(I1)⊕A = ρ′(I2)⊕B = ρ′(I1 ⊕∆z)⊕B = ρ′(I1)⊕ ρ′(∆z)⊕B

where

ρ = σU1[g−1] ◦ · · ·σU1[1] ◦ σU1[0] A = σU1[g−1](· · · (σU1[1](cst)⊕ cst) · · · )

ρ′ = σU2[g−1] ◦ · · ·σU2[1] ◦ σU2[0] B = σU2[g−1](· · · (σU2[1](cst)⊕ cst) · · · ).

Finally, we end up with the equation

ρ(I1)⊕ ρ′(I1) = A⊕B ⊕ ρ′(∆z) (1)

Since we know the value of the g first bit of U , we can compute the value of A and B.
Moreover, assuming that we already chose a ∆z, then the collision condition (1) can be rephrased
as

I1 ⊕ τ(I1) = C

where C = ρ−1(A⊕B ⊕ ρ′(∆z)) and τ = ρ−1 ◦ ρ′.

In order to study this system S of k bit equations, we model τ as a random bit permutation
and C as a random k-bit word. Note that since this equation system is linear finding the potential
solutions requires only a few operations, but we would like to know how many such systems we



need to generate before finding a solution, i.e. a collision on X. Thus, our goal is now to deduce
the probability that this system has at least one solution and what is the average number of
expected solutions.

The structure of this equation system is very particular and the number of independent
groups of bit equations is exactly the number of cycles of the bit permutation τ . More precisely,
let CYCLE(τ) represent the number of cycles of the permutation τ and let Si denote the set of
bits belonging to the i-th cycle of τ .

Theorem 1. The equation system S : I1 ⊕ τ(I1) = C admits a solution if and only if for every
cycle set Si of τ the parity of the sum of the corresponding C bit is null, that is⊕

p∈Si

C[p] = 0.

If this system is solvable, then the number of solutions that can be generated is exactly equal to
2CYCLE(τ).

The idea of the theorem is that when we want to find a solution for the system, we can start
by fixing one bit a0 to a random value. This bit is involved into two binary equations from S. All
equations having only two terms, one of the two equations directly links bit a0 with say bit a1,
and we can deduce the value of a1. The bit a1 is in turn linked with bit a2 through his second
equation and we directly deduce the value of a2. This chain of dependency will eventually cycle
(the new bit deduced will be a0 again) and will be validated if and only if the sum of the C
bits of the equations visited is null (otherwise we encounter a inconsistency). This check is then
performed for all cycles.

Proof. Since τ is a bit permutation, the equation system S can be represented as a collection
of cycles, each cycle depicting the direct cyclical dependencies between some set of bits: if bit x
and bit y are linked by one of the k equations, then they belong to the same cycle. The vertex
weight between two members x and y of the cycle is the value C[x].

If we fix the bit value of a member of a cycle Si, then this determines entirely all the other
bits of that cycle (according to the vertices values). Then, if the XOR of all the vertex weights is
different from zero, we have a direct contradiction. A solution can only exist if all cycles present
no internal contradiction.

Each cycle can have either zero or two solutions (the two solutions being their mutual
complement). If every cycle has no contradiction, then there exists exactly 2CYCLE(τ) distinct
combinations of cycle solutions, each one leading to a distinct solution for the whole equation
system S. ut

From Theorem 1, we directly deduce that the probability that the system admits a solution
is equal to 2−CYCLE(τ). The expected number of cycles for a randomly chosen permutation on
k elements is log(k). Therefore, we have to try at least 2log(k) different equation systems before
finding one admitting a solution. When one system admits a solution, we directly get 2log(k)

solutions for free. Overall, the cost for finding one solution of the system is 1 on average (the
average cost is the meaningful one here since we will have to find several inputs colliding on X
during the whole attack).

6.3 Complexity results

We now look for a solution such that the original guess of the g first bits of the input was right
(with probability 2−g) and such that the b bit differences in QX are mapped to the truncated



part of the output (with probability Pout(b)). Overall, the total complexity of the semi-free-start
collision attack is 2g ·P−1out(b) with b ≤ g. Minimizing g and b will minimize the overall complexity,
but we need to ensure that we can go through enough equation systems in order to have a good
chance to find a collision eventually. More precisely, we need

1/2 · 2g ·
(
g

b

)
≥ 2g · P−1out(b)

which can be rewritten as (
g

b

)
≥ 2 · P−1out(b).

We depict in Table 2 our results relative to all proposed versions of ARMADILLO2. This attack
has been implemented and verified in practice for k = 128 and we give semi-free-start collision
examples in the Appendix.

Table 2. Summary of results for semi-free-start collision attack on the different size variants of the ARMADILLO2

compression function.

scheme parameters attack parameters

k c m
generic

g b Pout(b)
time

complexity complexity

128 80 48 240 6 2 2−2.9 28.9

192 128 64 264 7 2 2−3.2 210.2

240 160 80 280 7 2 2−3.2 210.2

288 192 96 296 7 2 2−3.2 210.2

384 256 128 2128 7 2 2−3.2 210.2

7 Related-key recovery in stream cipher mode

In this section we will present a related key attack that will allow us to recover all key bits in
practical time when using ARMADILLO2 in the stream cipher mode. We will first present the main
idea of this attack, and afterwards, we will give a more detailed analysis of the probabilities and
complexities.

7.1 Using Related-keys for Recovering the Key

First of all, we consider a pair of related keys (K1,K2) that have one only bit of difference,
that is HAM(K1 ⊕ K2) = HAM(∆K) = 1. Our analysis will work for any bit difference position
d amongst all the bits of the key. Note that we expect a pair of keys valid for performing the
related-key attack to appear after using about (2k/k)1/2 keys.

Let us consider a value of U for generating k bits of key-stream with each of both keys K1

and K2. We use the index i for the intermediate states generated from the key Ki. We first make
the following observations, important in order to understand the whole attack procedure:

• Since no difference is inserted in the U part (it is a public value) and since HAM(∆K) = 1, we
have HAM(X1 ⊕X2) = 1. Let e be the bit position of this difference in X.

• The first (e− 1) intermediate states of QX will also have a difference of Hamming weight 1.



We assume that the attacker can choose the values of U . In this case, we can make the bit
difference in the key to go from position d to any wanted position e in X through QU . We expect
2m/k distinct values of U that make the bit difference go from position d to e for e ∈ [0, k − 1].
We denote by Ue each one of these k subgroups of U values.

The output of the function (Vc, Vt) = X ⊕ Y is known to the attacker, but concerning X he
only knows the m bits of the U part (since U is known, he can deduce directly where the bits
coming from U and C will be eventually located in X). Thus, he can recover m bits from the
outputs of QX , Y1 and Y2. If he could compute backward from Y1 and Y2 until the beginning of
the e-th step of QX , the colliding positions of the bits known from Y1 and from Y2 will have the
same values with maybe the exception of one, which would be the original single bit difference
before the step e.

Our attack basically consists in choosing several values for U from Ue, for decreasing e values
(starting from e = k − 1), that will gradually increase the number of key bits appearing in X
after position e. Each time we will guess the value of the new key bits appearing and discard
the guesses that will not lead to collisions on the bit values in the colliding positions just before
step e when computing backward from Y1 and Y2 in QX . The complexity of this attack depends
on the bit permutations σ0 and σ1, but in the next subsection we give a complexity analysis
assuming that these permutations are randomly chosen.

7.2 Generic Complexity Estimation

We start at e = k − 1. First, we choose the value of i (denoted imax), that maximizes the
probability Pand(k,m,m, i) that we denote pmax. For instance, if we consider the smallest version
of ARMADILLO2, where k = 128, c = 80 and m = 48, then we have imax = 18 and the probability
of obtaining 18 positions of known bits that collide is equal to pmax = 2−2.72.

Amongst the values from Uk−1, we choose pmax
−1 random ones. Each of them is introduced

in the ARMADILLO2 function parametrized with the keys K1 and K2. For each of the pmax
−1 pairs

of values, we guess the bit at position k − 1 of X1 and of X2 (for example 1 and 0 respectively
since there is a difference on this bit position) and we end up with 2 · pmax−1 pairs. Then, we
can undo the last round of QX for the known bits from Y1 and Y2. We consider that a guess
passes the test if it verifies the conditions on the number of colliding values on the colliding bit
positions. For one of these 2 · pmax−1 pairs (in our example (Q−11 (Y1), Q

−1
0 (Y2))), the number

of colliding bit positions will be imax. When this is the case, if the guess on the bit of X1 and
X2 was incorrect, we have a probability of 2−imax+1 to pass the test, while we will pass it with
probability one if the guess was correct. Finally, we have determined one bit of each key K1 and
K2 with a complexity of 2 · pmax−1, which in our example would be 23.72.

We can continue the process by considering e = k − 2 and pmax
−1 values from Uk−2 that

have a key bit at position k − 1. Following the same method as before, we will recover one key
bit, i.e. the one at position k − 1 in X when we have 18 colliding bits before the step k − 1 of
QX . Let us remark here that in practice we do not have to wait for having a collision on 18 bits,
but most of the time collisions on a different number of bits will also be enough for determining
if a guess passes the test or not. We can repeat this step in order to obtain the biggest possible
number of key bits and determining each bit will add at most a complexity of pmax

−1.

The next steps depend on the number of bits that we have already determined. All in all, we
conjecture that when both bit permutations behave like random ones, the complexity will not
exceed 2 · c · pmax−1.



Conclusion

We have presented some new and practical analysis of ARMADILLO2. Notably a free-start and
semi-free-start collision attacks for the full ARMADILLO2 hash functions. Extending this work to
real collisions (i.e. with a predefined IV) might be possible but it is not very appealing because
it is likely that several message blocks are required (all versions have c > m) and therefore the
task of the cryptanalyst would be quite complex to handle. ARMADILLO2 should not be used
in any security application since our attacks have a very low complexity. This work and the
local-linearization method is a first step in order to evaluate the security of data-dependent bit
transpositions cryptographic designs.
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A Implementation of the collision attacks for k = 128

We implemented all attacks for k = 128 and they require less than a second and negligible
memory on an average computer (Intel Core2 Duo CPU @ 2.13 GHz) in order to find a collision.
Since no specific σ0 and σ1 bit transpositions are defined for ARMADILLO2, we run the attack
for many randomly chosen instances so as to ensure the soundness of our reasoning. We give
here examples of (semi)-free-start collisions for ARMADILLO2 with a σ0 and σ1 bit transpositions
instance that fulfill the criteria required in [2] for k = 128. Namely, we denote λ the second
largest eigenvalue of the matrix M = 1

4(Pσ0 + P 128
σ0 + Pσ1 + P 128

σ1 ), then for the σ0 and σ1
instance found we have λ = 0.87. This means that there exists a distinguisher with advantage
λ256 = 2−51.4, while our attacks have much better advantage.

Free-start collision for ARMADILLO2 with k = 128, c = 80, m = 48:

ARMADILLO2(ffffffffffffffffbfff, ffffffffffff) = dfb0d8f2b763ce97f785

ARMADILLO2(fffffdffffffffffbfff, ffffffffffff) = dfb0d8f2b763ce97f785



Semi-free-start collision for ARMADILLO2 with k = 128, c = 80, m = 48:

ARMADILLO2(6bc8c848de5ff533cd6f, 0850b04b82e2) = 26827e3d614d2fc75d64

ARMADILLO2(6bc8c848de5ff533cd6f, 0850b04b82f0) = 26827e3d614d2fc75d64

Bit transpositions σ0 and σ1 used:

σ0 = 62, 98, 14, 114, 36, 77, 55, 3, 28, 88, 29, 122, 57, 90, 66, 52, 44, 22, 95, 118, 69, 86,

35, 56, 58, 82, 18, 97, 78, 21, 85, 101, 19, 65, 10, 6, 116, 121, 70, 99, 61, 102, 4, 91,

39, 119, 79, 16, 84, 50, 113, 45, 93, 104, 73, 112, 8, 5, 51, 9, 105, 46, 64, 94, 41, 54,

127, 67, 106, 23, 63, 49, 123, 15, 60, 81, 96, 72, 110, 37, 30, 89, 7, 92, 2, 68, 40, 32,

53, 11, 71, 26, 103, 59, 109, 111, 38, 74, 20, 48, 24, 43, 126, 117, 13, 124, 31, 33, 100,

125, 87, 27, 83, 128, 12, 42, 80, 107, 108, 17, 25, 120, 76, 75, 115, 47, 1, 34

σ1 = 10, 60, 111, 78, 38, 57, 110, 75, 104, 56, 88, 79, 23, 99, 16, 22, 128, 94, 120, 24, 64, 3,

6, 55, 42, 51, 43, 82, 114, 89, 26, 35, 61, 73, 77, 36, 28, 21, 105, 15, 67, 70, 113, 65, 39,

80, 122, 31, 101, 100, 107, 124, 18, 46, 85, 19, 49, 14, 12, 71, 86, 68, 102, 91, 58, 95, 1,

53, 83, 125, 66, 98, 81, 44, 48, 59, 27, 9, 119, 40, 45, 74, 92, 112, 93, 69, 5, 108, 106,

115, 90, 13, 84, 126, 7, 109, 54, 127, 33, 121, 62, 87, 30, 29, 63, 2, 97, 116, 4, 47, 11,

8, 34, 96, 118, 72, 52, 103, 37, 25, 123, 50, 76, 17, 20, 41, 117, 32
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Abstract. In this article, we study the security of the IDEA block cipher when it is used in various
simple-length or double-length hashing modes. Even though this cipher is still considered as secure,
we show that one should avoid its use as internal primitive for block cipher based hashing. In
particular, we are able to generate instantaneously free-start collisions for most modes, and even
semi-free-start collisions, pseudo-preimages or hash collisions in practical complexity. This work
shows a practical example of the gap that exists between secret-key and known or chosen-key
security for block ciphers. Moreover, we also settle the 20-year-old standing open question concerning
the security of the Abreast-DM and Tandem-DM double-length compression functions, originally
invented to be instantiated with IDEA. Our attacks have been verified experimentally and work even
for strengthened versions of IDEA with any number of rounds.

Key words: IDEA, block cipher, hash function, cryptanalysis, collision, preimage

1 Introduction

Hash functions are considered as a very important building block for many security and cryp-
tography applications. Informally, a hash function H is a function that takes an arbitrarily long
message as input and outputs a fixed-length hash value of size n bits. In cryptography, we want
these functions to fulfill three security requirements, namely collision resistance and (second)-
preimage resistance. It should be impossible for an adversary to find a collision (two different
messages that lead to the same hash value) in less than 2n/2 hash computations, or a (second)-
preimage (a message hashing to a given challenge) in less than 2n hash computations. Most
of nowadays hash functions divide the whole input message into blocks after padding it, and
then process the blocks in an iterative way. A very known and utilised example is the Merkle-
Damgåard algorithm [12, 33], which uses an n-bit compression function h in order to process the
m message blocks Mi: CVi+1 = h(CVi,Mi), where CVi is the n-bit internal state (or chaining
variable) that is initialized by a fixed public value CV0 = IV and the final hash value is Hm.
This algorithm is very interesting because it allows to reduce the collision/preimage security of
the hash function to the collision/preimage security of the compression function. However, in
order to guarantee the soundness of the construction, a designer must ensure that an attacker
can not break the collision/preimage resistance of the compression function. One can identify
different security properties for a compression function:

• free-start collision: in less than 2n/2 computations, find two different pairs (CV,M) 6=
(CV ′,M ′) such that they lead to the same compression function output value: h(CV,M)
= h(CV ′,M ′),
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• semi-free-start collision: in less than 2n/2 computations, find one chaining variable CV and
two different message blocks M 6= M ′ such that they lead to the same compression function
output value: h(CV,M) = h(CV,M ′),
• preimage: in less than 2n computations, find one chaining variable CV and one message

block M such that they lead to a given output challenge X: h(CV,M) = X.

Note that a semi-free-start collision for the compression function where the chaining variable
CV is not chosen by the attacker directly leads to a collision for the whole hash function. In
any case, a semi-free-start collision is very dangerous since it means that for some choices of IV ,
the attacker knows how to generate a collision. Even free-start collision are considered serious
as they invalidate the collision resistance assumption on the compression function and we have
seen many free-start collision attacks eventually turning into full hash collision attacks in the
recent history (for example free-start collision attacks for MD5 were quickly identified [14], then
upgraded to semi-free-start collision attacks [15] and eventually to full collision attacks [38]). As
for preimage attacks on the compression function (also known as pseudo-preimages), they are
very relevant since there exist a meet-in-the-middle algorithm that in most cases can turn them
into a preimage attack for the full hash function.

The separation between a block cipher and a compression function has always been blurry.
Constructions are known to turn the former into the latter [7, 36] or the latter into the for-
mer [31]. For example, the Davies-Meyer mode [1] converts a secure block cipher E into a secure
compression function and is incorporated in a large majority of the currently known hash func-
tions. While very satisfying solutions exist to transform a secure n-bit block cipher into an
n-bit compression function (Davies-Meyer, Miyaguchi-Preneel, Matyas-Meyer-Oseas modes [1]
or see [7, 36] for a systematic study of this problem), there is still a lot of research being actively
conducted on double-block length compression functions (where the block cipher size is n bits
and the compression function output size is 2n), from simple-key block ciphers such as AES-128
or double-key such as AES-256 [11].

A major difference between the cryptanalysis of block ciphers and compression functions
is that the attacker can fully control the inner behavior of the compression function. In other
words, the attacker can use more efficiently the freedom degrees available on the input (i.e.
the number of independent binary variables he has to determine). A new security model for
block ciphers, the so-called known-key model [24], was recently proposed in order to fill the gap
between these two situations. In this model, the secret key is known to the adversary and its
goal is to distinguish the behavior of a random instance of the block cipher from the one of a
random permutation by constructing a set of (plaintext, ciphertext) pairs satisfying an evasive
property. Such a property is easy to check but impossible to achieve with the same complexity
and a non-negligible probability using oracle accesses to a random permutation and its inverse.
In general, these known-key attacks are not regarded as problematic when the block cipher is
used in a classical “secret key” setting. Moreover, it is rare that such threats are extended to
attacks on the compression function.

A potential candidate for hashing is the 64-bit block cipher IDEA [26, 39] that uses 128-bit
keys. While a simple-length hashing mode would only provide a 64-bit hash output, insufficient
for most of nowadays security applications, a double-block length construction (DBL) would
allow 128-bit hash outputs which can be sufficient in some scenarios. As IDEA handles double-
length keys, more freedom in the constructions is possible. In fact, the well known Abreast-DM
and Tandem-DM modes were specifically created to perform hashing with IDEA (see page 2
and Section 6 of [39]). These modes were later studied in much details [16, 17, 28, 30], but the
security they provide when instantiated with IDEA remains a 20-year-old standing open question.
In classical “secret key” setting, IDEA has already been studied a lot [2–6, 9, 10, 13, 18] and is still
considered as a secure cipher despite its age and despite the current best attack [5] that requires



263 data (half the codebook) and 2114 computations to recover the secret key for IDEA reduced to
7.5 rounds over a total of 8.5 (the attack on the full cipher from [5] is very marginal with 2126.8

computations and the one from [22] requires 2126 computations and 252 chosen plaintexts). One
can also cite the work of [6], that exposes a weak key class of size 264. Note also that a first step
towards analysis of IDEA in hashing mode was done in [21] where a 3-round chosen-key attack
is described and in [9] where the authors show how to find a free-start near collision (only a
subset of the output collides) when IDEA is plugged into the Hirose DBL mode [9] (and also a
free-start collision if the internal constant c is controlled by the attacker).

Our contribution. In this paper, we study the security of the IDEA block cipher [26, 39]
when plugged into various block cipher based compression function constructions, such as the
classical Davies-Meyer mode [1], also DBL constructions such as Hirose [19, 20], Abreast-DM
and Tandem-DM [27, 39], Peyrin et al. (II) [35] or MJH-Double [29]. Even if this cipher is still
considered as secure in the classical “secret key” setting, its security remains an open problem
in hashing mode. Depending on the IDEA-based hash construction, we show that an attacker
can find free-start collisions instantaneously, preimages or semi-free-start collisions practically.
For some modes, we even describe a method to compute collisions for the whole hash function.
These attacks are based on weak keys utilisation, but in contrary to the “secret key” setting
where the goal of the attacker is to exhibit the biggest weak key class possible, in hashing mode
the goal is to find and exploit the weakest of all keys. We use the fact that the key 0 in IDEA

is extremely weak, actually rendering the whole encryption process a T-function [23], already
known as dangerous for building a hash function [34]. While weak-keys are already known to be
dangerous for block cipher-based hash functions, our method use a novel and non-trivial almost
half-involution property for IDEA. Even strengthened versions of the cipher with any number of
rounds can be attacked with about the same complexities. This work is one more example that
one has to be very careful when hashing with a block cipher that presents any weakness when
the key is known or controlled by the attacker. In particular, one should strictly avoid the use
of a block cipher for which weak keys exist, even if only a single weak key is known.

2 The IDEA block cipher

The International Data Encryption Algorithm (IDEA) is a 64-bit block cipher handling 128-bit
keys and designed by Lai and Massey [26, 39] in 1990. While its use is reducing over the recent
years, it remains deployed in practice and has not been broken yet despite its advanced age. It
has a very simple design, performing 8.5 rounds composed of only 16-bit wide XOR, additions
and multiplications. More precisely, one round is composed of three layers: first the key addition
layer (denoted KA), a multiplication-addition layer (denoted MA) and a middle words switching
layer (denoted S). For the eighth round, the switching is omitted.

Let Xi represent the 64-bit internal state of IDEA before application of the i-th round and
we can view it as four 16-bit subwords Xi = (Xi

1, X
i
2, X

i
3, X

i
4), with 1 ≤ i ≤ 9. Also, Y i =

(Y i
1 , Y

i
2 , Y

i
3 , Y

i
4 ) will stand for the intermediate internal state value of IDEA during the i-th round,

right between the KA and the MA layers. We denote by ⊕ the bitwise XOR operation, by � the
addition modulo 216 and by � the multiplication modulo 216+1, where the value 0 is considered
as 216 and vice-versa. Finally, Zi = (Zi1, Z

i
2, Z

i
3, Z

i
4, Z

i
5, Z

i
6) represents the six 16-bit subkeys used

during the i-th round (only the first four subkeys for the last half round).

The KA layer simply incorporates four subkeys:

Y i
1 = Xi

1 � Zi1, Y i
2 = Xi

2 � Zi2, Y i
3 = Xi

3 � Zi3, Y i
4 = Xi

4 � Zi4.



The MA layer first computes B = Zi6�((Y i
2⊕Y i

4 )�(Zi5�(Y i
1⊕Y i

3 ))) and A = B�(Zi5�(Y i
1⊕Y i

3 )).
Then, after application of the S layer we have:

Xi+1
1 = Y i

1 ⊕B, Xi+1
2 = Y i

3 ⊕B, Xi+1
3 = Y i

2 ⊕A, Xi+1
4 = Y i

4 ⊕A.

All the subkeys are simply determined by choosing consecutive bits in the 128-bit master
key according to the Table 2 given in Appendix A. Finally, ciphering the plaintext P with IDEA

to obtain the ciphertext C is defined as: C = KA ◦ S ◦ {S ◦MA ◦KA}8(P ). Figure 1 provides a
schematic view of one round of IDEA.
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Fig. 1. One round of IDEA

Currently, the best cryptanalysis work published on IDEA [5] can reach 7.5 rounds with 263

data (half the codebook) and 2114 computations. Concerning weak keys, the current biggest
weak key class contains 264 elements and has been published in [6].

3 Hashing with a double-length key block cipher

We will study the security of the various block cipher-based constructions that can use IDEA as
the internal primitive. Therefore, we only consider the ones that use a double-key block cipher.
More precisely, we denote C = EK(P ) the process of ciphering the 64-bit plaintext P with IDEA

using the 128-bit key K.

3.1 Simple-length compression function

A simple-length compression function construction with IDEA will provide a 64-bit output CVi+1.



Davies-Meyer is the most usual simple-length mode [1] and it handles 128-bit message blocks:
CVi+1 = EM (CVi) ⊕ CVi. Most standardized hash functions are actually implementing this
mode, with an ad-hoc internal block cipher. While some weaknesses such as fixed-points are
known, its security in terms of preimage and collision resistance have been studied and proved
in the ideal cipher model [7]. Namely, we should expect at least 232 and 264 computations
respectively to generate a (semi)-free-start collision or preimage for the compression function.
Note that Miyaguchi-Preneel and Matyas-Meyer-Oseas simple-block length modes [1] are not
considered in this article since they require the internal primitive to have the same block and
key size, which is not the case for the IDEA block cipher.

3.2 Double-length compression function

A more interesting design strategy with IDEA would be to define double-block length construc-
tions, in order to get 128-bit output, represented by two 64-bit words CV 1i and CV 2i. This
problem has already been studied a lot and remains a very active research domain, even when
the internal primitive is a double-key block cipher.

Abreast-DM and Tandem-DM will of course be considered in this article since they both
have been especially designed for IDEA [27, 39]. Tandem-DM handles a 64-bit message block M .
We define W = ECV 1i||M (CV 2i) and then we have

CV 1i+1 = EM ||W (CV 1i)⊕ CV 1i,

CV 2i+1 = W ⊕ CV 2i.

Abreast-DM also handles a 64-bit message block M :

CV 1i+1 = EM ||CV 2i(CV 1i)⊕ CV 1i,

CV 2i+1 = ECV 1i||M (CV 2i)⊕ CV 2i,

where X stands for the bitwise complement of X.

Hirose proposed a construction that contains two independent block cipher instances [19], later
improved to only a single instance [20] by using a constant c to simulate the two independent
ciphers:

CV 1i+1 = ECV 2i||M (CV 1i)⊕ CV 1i,

CV 2i+1 = ECV 2i||M (CV 1i ⊕ c)⊕ CV 1i ⊕ c.

Peyrin et al. described in [35] a compression function (denoted Peyrin et al.(II)) that utilizes 5
calls to independent 3n-to-n-bit compression functions, advising to be instantiated with double-
key internal block ciphers such as AES-256 or IDEA. It handles two 64-bit message blocks M1
and M2:

CV 1i+1 = f1(CV 1i, CV 2i,M1)⊕ f2(CV 1i, CV 2i,M2)⊕ f3(CV 1i,M1,M2),

CV 2i+1 = f3(CV 1i,M1,M2)⊕ f4(CV 1i, CV 2i,M1)⊕ f5(CV 2i,M1,M2),

where the functions fi can be build for example by using the IDEA block cipher into a Davies-
Meyer mode and we can simulate their independency by XORing distinct constants to the
plaintext inputs, as it is done in [20]: fi(U, V,W ) = EU ||V (W ⊕ i)⊕W (note that XORing the
constants on the key input would be avoided in practice because it would lead to very frequent



rekeying and therefore reduce the overall performance of the hash function). Since no real can-
didate was proposed by the authors, all possible position permutations of the three fi inputs
will be considered. Note that when cryptanalysing this scheme, we will attack the functions fi
independently. Thus, we will not use any weakness coming from potential dependencies between
the functions fi (apart of course that all 5 functions are based on IDEA).

MJH-Double is a rate 1 double-block length compression function recently published by Lee
and Stam [29]. It uses a double-key block cipher and handles two 64-bit message blocks M1 and
M2:

CV 1i+1 = EM2||CV 2i(CV 1i ⊕M1)⊕ CV 1i ⊕M1,

CV 2i+1 = g · (EM2||CV 2i(f(CV 1i ⊕M1))⊕ f(CV 1i ⊕M1))⊕ CV 1i,

where f is an involution with no fixed point and g 6= 0, 1 is a constant.
For all these double-block length proposals, the conjectured security is 264 and 2128 com-

putations respectively to generate a (semi)-free-start collision or preimage for the compression
function or hash function. We summarize all of them in Appendix D.

4 Weak keys for IDEA

Weak keys for IDEA has already been studied in details [6, 10, 18], but what we are looking for
is slightly different. Indeed, for block cipher cryptanalysis, since the attacker can not control
the key input he looks for the biggest possible class of weak keys, so as to get the highest
possible probability that a weak key will indeed be chosen. In the case of compression function
cryptanalysis, the key input is fully known or even controlled by the attacker. The goal is
therefore not to find the biggest possible class of weak keys, but to find the weakest possible
key. As we will show for IDEA, even if only one weak key is found, its weakness might directly
lead to successful attacks on the whole compression or hash function.

4.1 Analysis of the internal functions

When looking at the internal round function of IDEA, one might wonder what would be a weak
key. In IDEA, the most annoying functions for the cryptanalyst are clearly the multiplications
in Z216+1. Indeed, these operations are strongly non-linear and provide good diffusion between
the different bit positions. On the contrary, XOR operations are linear and do not provide
any diffusion between the bit positions, while the additions in Z216 can be easily approximated
linearly and the diffusion between the bit positions only happens through the carry. Moreover,
XOR and additions are even weaker in IDEA since no rotations are present, comparing with
Addition-Rotation-XOR (ARX) designs. Here the rotation is done through the multiplications
in Z216+1 and our goal is therefore to avoid them.

When adding (a + b) mod 216, we can avoid any diffusion by forcing one operand to 0.
When multiplying (a� b) = (a · b) mod 216 + 1, the good diffusion will happen especially when
(a · b) ≥ 216 + 1. An easy way to avoid this is to fix one of the two operands to 1. In that case,
we have (a � 1) = (a · 1) mod 216 + 1 = a mod 216. As already remarked in [10], a good choice
is also 0, since

(a� 0) mod 216 = ((a · 216) mod (216 + 1)) mod 216

= (((a · 216 + a) + (216 + 1)− a) mod (216 + 1)) mod 216

= (0 + 216 + 1− a) mod 216 = 1− a mod 216

= 2 + (216 − 1− a) mod 216 = (2 + a) mod 216

and the multiplication is reduced to only a complement and an addition with a constant.



4.2 Weak keys classes

Based on the remark that the operand 0 is very weak for both multiplications and additions,
Daemen et al. [10] generated a class of weak keys. A first obvious candidate is the null key
(all bits set to zero), which will force all the subkeys to zero as well. As a consequence, all
subkeys additions can be simply removed and all subkeys multiplications can be replaced by a
complement (or XOR with 0xffff) and an addition with value 2. At this point, all the operations
in IDEA with null key are either XOR or additions. Therefore, by inserting differences only on the
Most Significant Bit (MSB) of the four 16-bit plaintext input words, the attacker is ensured that
only the MSB of the four output words will contain a difference. Even better, the mapping from
an MSB input difference pattern to an MSB output difference pattern is completely deterministic
(is it linear since on the MSB no carry is propagated). Such a property is largely sufficient to
consider the null key as weak. This reasoning can be generalized by observing that the attacker
does not necessarily need all subkeys to be null, but only the ones that are multiplied to an
internal word which contains a MSB difference. Since the MSB differential paths are quite
sparse, many of the null constraints on the subkeys are relaxed and one finally gets 235 weak
keys.

4.3 The null weak key

We show that the null key is particularly weak for hash function utilization. Even if other keys
belong to a weak key class, they do not present the same special properties as the null key.

Almost half-involution When using the null key, we remark that all subkeys will be null as
well. Then, all rounds layers will be the same and we write KA0 and MA0 the KA and MA layers
with null subkeys. A nice practical feature of IDEA is that the decryption is done using the very
same algorithm as encryption, but with different subkeys. The decryption subkeys for the MA
layer are the same as the encryption ones since the MA layer is an involution (i.e. MA=MA−1).
The decryption subkeys for the KA layer are the respective multiplicative and additive inverses
of the encryption subkeys. However, note that a null subkey is both its own multiplicative
and additive inverse and the KA layer becomes an involution as well (i.e. KA0=KA−10 ). To
summarize, using the null key, we are ensured that KA0=KA−10 and MA0=MA−10 . Note that we
trivially have S=S−1.

Now, since the KA layer and S layer commute, IDEA with null key can be rewritten as

C = KA0 ◦ S ◦ {S ◦MA0 ◦KA0}8(P )

= KA0 ◦ S ◦ {S ◦MA0 ◦KA0}3 ◦ S ◦MA0 ◦KA0 ◦ {S ◦MA0 ◦KA0}4(P )

= KA0 ◦MA0 ◦ {S ◦KA0 ◦MA0}3︸ ︷︷ ︸
σ−1

◦KA0 ◦ S︸ ︷︷ ︸
θ

◦ {MA0 ◦KA0 ◦ S}3 ◦MA0 ◦KA0︸ ︷︷ ︸
σ

(P )

which eventually gives C = σ−1 ◦ θ ◦ σ(P ). One can check that since KA0, MA0 and S are
involutions, the operation denoted by σ−1 is indeed the inverse of the one denoted by σ. Thus,
using the notation

P
σ−1

−→ U
θ−→ V

σ−→ C

where U and V are internal state values, we have

P
σ←− U θ−→ V

σ−→ C.

We will use this almost half-involution property in Section 6 to find free-start collisions and
even hash function collisions for some IDEA-based constructions.



T-function: When using the null key, we have already described that all operations remaining
are either XOR or additions. These operations are triangular functions [23] (or T-functions) in
the sense that any output bit at position i only depends on the input bits located at a position
i or lower. A composition of T-functions is itself a T-function, therefore the whole permutation
defined by IDEA with the null key is a T-function. As shown in [34], this property might be very
dangerous in a hash function design. We will explain in Section 7 how to exploit this weakness
and compute preimages by guessing the input words bit layer by bit layer.

5 Simple collision attacks

As shown by Daemen et al. [10], when using the null key for the encryption process of IDEA,
differences inserted uniquely on the MSB of the four 16-bit input plaintext words will lead
to differences on the MSB of the four 16-bit output ciphertext words. Moreover, since this
difference mapping is linear (the difference on the carry is not propagated further than the
MSB), all possible differential characteristics have a differential probability 1. For example, we
denote by δMSB = 0x8000 the 16-bit word with difference only on the MSB and by ∆MSB =
(δMSB, δMSB, δMSB, δMSB) the 64-bit difference composed of 4 words with difference δMSB.
Then, ∆MSB propagates to itself with probability 1 through one round of IDEA, or through its
last half-round. Therefore, we have with probability 1

∆MSB

IDEAK=0

−−−−−−−−−→ ∆MSB.

Note that instead of using δMSB only, one can generalize the input difference space and
obtain other very good differential paths for the encryption of IDEA with the null key. However,
we omit this generalization here since the methods described in later sections already provide
much better attacks.

Davies-Meyer. Finding a free-start collision on Davies-Meyer mode instantiated with IDEA is
very easy. Since the difference ∆MSB is mapped to itself through the IDEA encryption process
with the null key, the attacker only has to pick M = 0. Then, any value of CV with difference
∆MSB applied to it will lead to a collision with probability 1. We give in Appendix C.1 examples
of such a free-start collision.

Hirose. The same method as for Davies-Meyer mode can be applied to the Hirose mode in
order to find free-start collisions. The attacker fixes CV 2 = 0 and M = 0 so as to force the
null key to both encryptions. Then, any value of CV 1 with a difference ∆MSB applied to it will
lead to a collision with probability 1, since ∆MSB will appear on the plaintext input of both
encryptions with the null key. We give in Appendix C.3 examples of such a free-start collision.

Abreast-DM. This technique seems impossible to apply to the Abreast-DM mode since forcing
a difference ∆MSB on any of the two encryptions plaintext input will imply a difference inserted
in the key input of the other encryption block. Therefore, one cannot use ∆MSB difference on
plaintext input with null key in both encryption blocks. Even if the attacker tries to attack only
one encryption block with this method, the other block will not be controlled and he will have
to deal with random differences on its output. These random differences cannot be dealt with
some birthday technique because fixing all inputs of one encryption block will fix all inputs of
the other one as well.



Tandem-DM. This technique seems impossible to apply to the Tandem-DM mode for the
exact same reasons as for Abreast-DM.

Peyrin et al.(II). We have to separate in two groups the possible instances of this construc-
tion, obtained by permuting the position of the three inputs of each internal function fi. If all
compression function inputs CV 1, CV 2, M1 and M2 appear in at least one of the IDEA key
inputs of any fi internal function, then the attack will not apply. Indeed, since all inputs will
be involved at least one time, the attacker will necessarily have to insert a difference in at least
one IDEA key input and he will not be able to use the differential path with probability 1. Note
that these instances would be avoided in practice because they would lead to more frequent re-
keying and therefore reduce the overall performance of the hash function. If this condition is not
met, then we can apply the following free-start collision attack. Let X ∈ {CV 1, CV 2,M1,M2}
denote the input that is missing in all the IDEA key inputs of the compression function. The
attacker simply fixes the difference ∆MSB on X (one can give any value to X) and all other
inputs are set to 0 in order to get the null key in every internal IDEA. The attacker ends up with
several Davies-Meyer in parallel, with either no difference at all or with null key and ∆MSB as
plaintext input difference. Thus, he obtains a collision with probability 1. If X 6∈ {CV 1, CV 2},
then this attack finds semi-free-start collisions.

MJH-Double. The MJH-Double mode prevents this simple attack since even if we fix CV 2 = 0
and M2 = 0 in order to get the null key in both encryptions, it is hard to force the difference
∆MSB on both their plaintext inputs. Indeed, the f operation will randomize the difference and

in order for the attack to run, we would require ∆MSB
f−→ ∆MSB which is unlikely to happen.

6 Improved collision attacks

In this section, using the almost half-involution property with the null key, we will show how to
get the same difference on the input and on the output of the IDEA ciphering process with good
probability. Then, we will use this weakness to derive our collision attacks, for any number of
rounds.

6.1 Exploiting the almost half-involution

We have already shown in Section 4 that when the key is null, IDEA encryption process can be
rewritten as

P
σ←− U θ−→ V

σ−→ C

where
σ = {MA0 ◦KA0 ◦ S}3 ◦MA0 ◦KA0 and θ = KA0 ◦ S.

We denote ∆U the XOR difference between two 64-bit internal state values U and U ′, i.e
∆U = U ⊕ U ′, and δUi represents the 16-bit difference on the i-th word of ∆U , that is ∆U =
(δU1, δU2, δU3, δU4). Let us consider two random 64-bit internal state values U and U ′ such
that δU2 = δU3 and we denote this 16-bit difference δM . For truly random values U and U ′, this
condition happens with probability 2−16. One can check that applying θ on U and U ′ to obtain
V and V ′ respectively will lead to δV2 = δV3 = δM since layer S only switches the two middle
words and layer KA0 has no effect on them (addition of null subkeys).

Let δL and δR represent the difference on δU1 and δU4 respectively, i.e. ∆U = (δL, δM ,
δM , δR). Applying function θ to U and U ′, we would like the same differences to appear on
internal state V and V ′: ∆V = (δL, δM , δM , δR). The previous condition with probability 2−16



already ensures the two middle differences being the same δM . Concerning differences δL and
δR, they will both be unaffected by layer S, but they might be modified through layer KA0 that
applies a multiplication with a null subkey. Therefore, we need to study the probability that a
random difference δ is mapped to itself through a multiplication by the null subkey. We show in

Appendix B that this probability is equal to 2−1.585 and finally we have Pr[(δL, δM , δM , δR)
θ−→

(δL, δM , δM , δR)] = 2−3.17.

At this point, we proved that for randomly chosen internal state values U and U ′, we will
observe with probability 2−19.17 the same difference on U and V , i.e. ∆U = ∆V .

One can see that computing backward from internal states U to P or forward from V to C,
the function σ is applied. Our final goal is to have the same difference on P and C. However,
this seems unlikely to happen since U and V have different values, the forward and backward
computations of σ should be completely unrelated, even with the same input difference. Yet, this
reasoning does not take in account the fact that while U and V have distinct values, they are far
from being independent: V = θ(U) with θ being a very light function. Moreover, we remarked
that almost each time that we got the same difference on P and C, the same differences were
observed as well in all rounds of the forward and backward σ computations (the round success
probability increasing with the number of rounds already processed). Because all the rounds
are not independent and because U and V are strongly related, it is very difficult to compute
theoretically the probability of observing the same difference on P and C and we leave this
as an open problem. Therefore, we measured it by choosing random values of U , δL, δM , δR,
computing V = θ(U), and checking for collisions on the difference of P and C. The probability
obtained was 2−16.26 for about 228 tests (note that this probability somehow contains the 2−3.17

probability computed previously, but we can not separate them because the two events are not
independent).

To conclude, the probability that two randomly chosen internal state values U and U ′ give
the same difference on P and C is equal to 2−16−16.26 = 2−32.26 (instead of 2−64 expected for
a random function). In other words, using the birthday paradox, one can find such a pair with
about 216.13 computations.

Interestingly, we have observed that most of the pairs fulfilling the differential path for
the full IDEA will also be valid for a strengthened version of the cipher with any number of
additional rounds. Since the subkeys are always null, strengthening the cipher would mean that
σ = {MA0 ◦ KA0 ◦ S}t ◦MA0 ◦ KA0 for any t > 3. We checked that the probability that two
randomly chosen internal state values U and U ′ give the same difference on P and C tends to
2−32.54 when t tends to infinite. Thus, similarily to the method presented in the previous section,
the attacks using this almost half-involution property will work for any number of rounds.

6.2 Improving collision attacks

Davies-Meyer. A first obvious application of having the same difference in P and C is collision
search on Davies-Mayer mode, where the feed-forward will cancel the two differences in the
output. The attack finds collisions for the whole hash function and the procedure is very simple:
we start from the IV and add random differences in the first message block M0. This will cause
random differences in the the first chaining variable CV1. For the second message block M1, we
will set all its bits 0 (M1 = 0), forcing the internal IDEA computation to use the null key. Since we
estimated in the previous section that with the null key a random pair of inputs has a probability
2−32.26 to give the same input/output difference, one can use the birthday paradox to generate a
collision on CV2 with only 216.13 distinct message blocks M0. We give in Appendix C.2 examples
of hash collisions for the Davies-Meyer mode. Note that finding semi-free-start collisions with



this technique is impossible since we would have to insert differences in the message input, which
forbids the use of the null key in the internal cipher.

Hirose. We already showed how to find free-start collisions for the Hirose mode. However,
finding semi-free-start collisions with this technique is impossible since we would have to insert
differences in the message input, which forbids the use of the null key in the internal cipher. Also,
concerning hash collisions, it seems hard as well because forcing the null key during iteration i
requires us to obtain a chaining variable CV 2i−1 = 0 during the previous iteration. This half-
preimage already costs the same complexity as a generic collision search on the entire compression
function.

Abreast-DM. One can derive a free-start collision attack for the Abreast-DM compression
function using this technique. The attacker first fixes CV 1 = 0 and M = 0. Then, he builds
a set of 248.13 distinct values CV 2 and checks if a pair of this set leads to a collision. The
probability that a pair leads to a collision on the first (top) branch is 2−32.26 (since the internal
cipher on this part has the null key), and 2−64 on the other half. Overall, using the birthday
paradox on the set of 248.13 values CV 2 is sufficient to have a good chance to obtain a collision.
Note that finding a semi-free-start collision for the compression function or a collision for the
hash function seems impossible with this method, for the same reasons as the Hirose mode.

Tandem-DM. The situation of Tandem-DM is absolutely identical to the Abreast-DM one:
one can find free-start collisions for compression function using this technique. The attacker first
fixes CV 1 = 0 and M = 0. Then, he builds a set of 248.13 distinct values CV 2 and checks if a pair
of this set leads to a collision. The probability that a pair leads to a collision on the first (top)
branch is 2−32.26 (since the internal cipher on this part has the null key), and 2−64 on the other
half. Overall, using the birthday paradox on the set of 248.13 values CV 2 is sufficient to have a
good chance to obtain a collision. Again, finding a semi-free-start collision for the compression
function or a collision for the hash function seems impossible with this method, for the same
reasons as the Hirose mode.

Peyrin et al.(II). We showed in previous section how to find (semi)-free-start collisions with
probability 1 for a certain subset of Peyrin et al.(II) constructions, but here we provide attacks
on a bigger subset. If all compression function inputs CV 1, CV 2, M1 and M2 appear in at least
one of the IDEA key inputs of f1, f2, f3 (left side) and in at least one of the IDEA key inputs
of f3, f4, f5 (right side), then the attack will not apply. Indeed, for both left side and right
side of the compression function, the attacker will necessarily have to insert a difference in at
least one key input (since all inputs will be involved) and he will not be able to use the null
key completely. Note that these instances would be avoided in practice because they would lead
to more frequent rekeying and therefore reduce the overall performance of the hash function.
However, if this condition is not met, then we can apply the following free-start collision attack.
Let X ∈ {CV 1, CV 2,M1,M2} denote the input that is missing in all the IDEA key inputs of
f1, f2, f3 (wlog the reasoning is the same with f3, f4, f5). The attacker first fixes all inputs
but X to 0 in order to get the null key in every internal IDEA on the left side. Then he chooses
248.13 random values for X and checks among them if any pair collides on the whole compression
function output. Since he has a probability 2−32.26 to get a collision on the left side and 2−64

on the right side, using a birthday search the attacker finds a solution with complexity 248.13.
Again, if X 6∈ {CV 1, CV 2}, then this attack finds semi-free-start collisions. However, finding a
collision for the hash function seems impossible with this method, because at least one of the



chaining variable inputs CV 1 and CV 2 will be present as key input for one of the IDEA internal
emcryption. Setting this word to 0 is equivalent to a half-preimage that already costs the same
complexity as a generic collision search on the entire hash function.

MJH-Double. One can derive a semi-free-start collision attack on the MJH-Double compres-
sion function instantiated with IDEA. The attacker first fixes CV 2 = 0 and M2 = 0 and this
will force the null key in both encryptions. Now he chooses a random value for CV 1 (note that
actually this value could be fixed by the challenger) and builds a set of 232.26 values M1. In
this configuration, it is easy to see that one will have random differences on the plaintext inputs
to both encryptions. Since the null key is used for both, we have a probability 2−64.52 that a
pair of M1 leads to a collision after the feed-forward of both encryptions (on the output of the
bottom block and just before the application of g on the top block). Therefore, with a birthday
technique, one can find such a pair with only 232.26 computations. Note that while this pair will
directly lead to a collision on the bottom CV 1 output, the difference on M1 is injected two
times before computing the top CV 2 output. Two times of the same difference will cancel them-
selves and we eventually get a full semi-free-start collision. Note that it seems hard to extend
this attack to a hash collision since the attacker would require to force the incoming chaining
variable CV 2 to be equal to 0 and this half-preimage already costs the same complexity as a
generic collision search on the entire hash function.

7 Preimage attacks

We showed in Section 4 that if used with the null key, the whole permutation defined by IDEA is a
T-function. Since any output bit at position i only depends on the input bits located at a position
i or lower, we reuse the idea of preimage attack for hash functions based on T-functions [34]
where the preimage is computed bit layer by bit layer, starting from the LSB. However, here
our situation is different than the functions studied in [34] since we do not have any truncation
or reduction of the internal state at the end of the process.

We denote by p the probability that given a random challenge, our algorithm outputs a
preimage for this challenge. We denote by s the average number of preimage solutions that
the algorithm will output, given that at least one is found. The average number of solutions
outputted by our algorithm is then A = s · p. For an n-bit ideal compression function, a generic
attack restricted to C computations can generate A = C · 2−n solutions on average. Thus, we
can consider that a preimage attack is found if we exhibit an algorithm that outperforms this
generic complexity.

Davies-Meyer. Since the key is fixed to 0 and since the plaintext and ciphertext sizes are
the same, we trivially have that A = 1. We measured3 that p = 2−17.50, thus we directly
deduce that s = A/p = 217.5. A straightforward implementation is a recursive depth first search,
attacking the T-function by bit layer from the LSB to the MSB of the 16-bit state words.
Wrong candidates at lower layers are discarded thanks to an early-abort strategy. On average,
the amount of IDEA encryptions required to find all the possible preimages (if at least one can
be found) can be estimated as C ' 16 · 24 · s = 225.5, since we have 16 bit layers, each having
4 bits of input, and on average the number of candidates in one layer is s. This is a very
conservative estimation since only p = 2−17.50 of the challenges on average will eventually lead
to a solution and the early-abort strategy will make the actual search of very low complexity. In
the ideal case, with C = 225.5 computations allowed, an attacker should only be able to generate

3 from 231 random challenges, we measured that p = 2−17.50 and s = 217.74.



A = 225.5−64 = 2−38.5 solutions on average for an ideal 64-bit compression function. We give an
example of a preimage in Appendix C.4.

Hirose. We can reuse the attack on Davies-Meyer, but only one of the two branches will be
controlled, with the other behaving randomly. We first find a preimage for the first branch (with
probability 2−17.5) and then use the 217.5 solutions on average to also match the second branch
(with probability 217.5−64 = 2−46.5). Therefore, our preimage search algorithm have parameters
p = 2−17.5−46.5 = 2−64 and s = 1, while the average number of preimage solutions found is
A = 2−64. The complexity of the search is equivalent to the Davies-Meyer case, C = 225.5.
For an attacker using at most 225.5 computations on an ideal 128-bit compression function, the
average number of solutions he could find is only 2−102.5.

Abreast-DM. Similarly to Hirose, by setting for example M = CV 1 = 0, one can attack
one branch bit layer by bit layer while the other branch will behave randomly. The complexity
analysis is identical to Hirose’s case.

Tandem-DM. Similarly to Hirose, by setting M = CV 1 = 0, one can attack one branch
bit layer by bit layer while the other branch will behave randomly. The complexity analysis is
identical to Hirose’s case.

Peyrin et al.(II). If all compression function inputs CV 1, CV 2, M1 and M2 appear in at
least one of the IDEA key inputs of f1, f2, f3 (left side) and in at least one of the IDEA key inputs
of f3, f4, f5 (right side), then the attack will not apply (because the attacker will not be able
to use the null key completely). Otherwise, similarly to Hirose, by setting all IDEA keys to 0 on
one side, one can attack it bit layer by bit layer while the other side will behave randomly. The
complexity analysis is identical to Hirose’s case.

MJH-Double. The attacker first fixes M2 = CV 2 = 0 so as to get the null key for both
IDEA encryptions. Then, similarly to the Davies-Meyer case, he find a preimage with probability
p = 2−17.5 for one of the two sides and this defines the value of M1⊕ CV 1. In order to get the
preimage on the second side as well, the attacker only has to modify the value of M1 accordingly.
If a solution is found on the first side, the attacker therefore gets s = 217.5 preimages. On average,
he finds A = 1 solutions and the complexity is again 225.5 computations. For an attacker using
at most 225.5 computations on an ideal 128-bit compression function, the average number of
solutions he should find is only 2−102.5.

8 Results and implementations

We depict in Table 1 our results for the block cipher to compression function modes considered in
this article when instantiated with IDEA. We implemented all attacks of reasonable complexities
and provide in Appendix C the collision/preimage examples obtained.

Conclusion

In this article, we showed collision and preimage attacks for several single and double-length
block cipher based compression function constructions when instantiated with the block cipher
IDEA. Namely, we analyzed all known double-key schemes such as Davies-Meyer, Hirose, Abreast-
DM, Tandem-DM, Peyrin et al. (II) and MJH-Double. While most of these constructions are



Table 1. Summary of results for block cipher to compression function modes when instantiated with IDEA (we
did not include MDC-2 as it does not provide ideal collision resistance). The preimage complexity results find s
preimages on average with a certain probability p, for a total average of A = s·p solutions. The results for Peyrin et
al.(II) construction, marked with a *, depend on the instance considered (see relevant parts of Sections 5, 6 and 7
for more details).

Mode

hash compression function hash function

output free-start semi-free-start preimage attack collision

size collision attack collision attack complexity (s, p) attack

Davies-Meyer [1] 64 21 225.5 (217.5, 2−17.5) 216.13

Hirose [19, 20] 128 21 225.5 (1, 2−64)

Abreast-DM [27, 39] 128 248.13 225.5 (1, 2−64)

Tandem-DM [27, 39] 128 248.13 225.5 (1, 2−64)

Peyrin et al.(II) [35] 128 21 / 248.13? 21 / 248.13? 225.5 (1, 2−64)?

MJH-Double [29] 128 232.26 232.26 225.5 (217.5, 2−17.5)

conjectured or proved to be secure in the ideal cipher model, we showed that their security is
very weak when instantiated with the block cipher IDEA, which remains considered as secure in
the secret key model. In particular, we answer in the negative for the 20-year-old standing open
question concerning the security of the Abreast-DM and Tandem-DM instantiated with IDEA.
All our practical attacks have been implemented and they can work even for any number of IDEA
rounds. Our results indicate that one has to be very careful when hashing with a block cipher
that presents any weakness when the key is known or controlled by the attacker. Also, since we
extensively use the presence of weak-keys for IDEA, as a future work it would be interesting to
look at the security of hash functions based on block ciphers for which some key sets are known
to be weaker than others.
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A The IDEA subkeys

i-th round Z
(i)
1 Z

(i)
2 Z

(i)
3 Z

(i)
4 Z

(i)
5 Z

(i)
6

1 0-15 16-31 32-47 48-63 64-79 80-95

2 96-111 112-127 25-40 41-56 57-72 73-88

3 89-104 105-120 121-8 9-24 50-65 66-81

4 82-97 98-113 114-1 2-17 18-33 34-49

5 75-90 91-106 107-122 123-10 11-26 27-42

6 43-58 59-74 100-115 116-3 4-19 20-35

7 36-51 52-67 68-83 84-99 125-12 13-28

8 29-44 45-60 61-76 77-92 93-108 109-124

OT 22-37 38-53 54-69 70-85

Table 2. Key bits used for subkeys Z
(i)
j in the i-th round of IDEA

B Proof of difference preservation through multiplication with a null subkey

We prove in this section that for randomly chosen values a and a′ with a⊕a′ = δ, the probability
that the difference δ is preserved after multiplication by the null subkey is equal to 2−1.585. The
condition we expect can be translated into the following equation

δ = a⊕ a′ = (a� 0)⊕ (a′ � 0).

Since the � operation is equivalent to a complement (or XOR with 0xffff) and an addition
with value 2, we can rewrite

δ = ((a⊕ 0xffff) + 2)⊕ ((a′ ⊕ 0xffff) + 2)

δ = ((a⊕ 0xffff) + 2)⊕ ((a⊕ δ ⊕ 0xffff) + 2)

δ = (b+ 2)⊕ ((b⊕ δ) + 2)

δ ⊕ (b+ 2) = (b⊕ δ) + 2

where b = a⊕ 0xffff. One can check that the least significant bit condition of this equation is
always fulfilled.

If the second least significant bit of b is 0 (probability 1/2), then (b + 2) = b ⊕ 2 and the
equation is fulfilled if and only if the second least significant bit of (b⊕ δ) is also 0 (probability
1/2). Overall, this situation happens with probability 1/4.

If the second least significant bit of b is 1 (probability 1/2), then we will have a carry
propagating and we require the second least significant bit of (b ⊕ δ) to be also 1 (probability
1/2). If the third least significant bit of b is 0 (probability 1/2), then (b + 2) = b ⊕ 6 and the



equation is fulfilled if and only if the third least significant bit of (b ⊕ δ) is also 0 (probability
1/2). Overall, this situation happens with probability (1/4)2.

Continuing this reasoning over all the bits layers, we obtain that the success probability is
equal to

14∑
i=1

(1/4)i = 2−1.585.

C Collision and preimage examples

C.1 Free-start collision for Davies-Meyer mode

CVi : 0x9efc 0x14ef 0x85d6 0xc557

CV ′i : 0x1efc 0x94ef 0x05d6 0x4557

M = M ′ : 0

CVi+1 = H(CVi,M) : 0x7f11 0x83f1 0x7617 0x8af3

CV ′i+1 = H(CV ′i ,M
′) : 0x7f11 0x83f1 0x7617 0x8af3

C.2 Hash function collision for Davies-Meyer mode

We use as initial value the first 64 output bits of the SHA-2 computation of the string “IDEA”:

SHA-2(”IDEA”) = ”9f8c7b26cde59ca3dacc74ec7afda737ac1d15aa5239206416f79019dbd7ec37”

IV : IV1 = 0x9f8c, IV2 = 0x7b26, IV3 = 0xcde5, IV4 = 0x9ca3

M1: 0xdacc 0xdacc 0xdacc 0xdacc 0xdacc 0xdacc 0xcadc 0x0282

M ′1: 0xdacc 0xdacc 0xdacc 0xdacc 0xdacc 0xdacc 0xcade 0x1a3f

CV1 = H(IV,M1): 0xb782 0x4583 0x83b6 0x0bef

CV ′1 = H(IV,M ′1): 0x1ce2 0x8553 0xe656 0x4387

CV2 = H(CV1, 0): 0xdffd 0x3ffd 0x8e7d 0x6e7d

CV ′2 = H(CV ′1 , 0): 0xdffd 0x3ffd 0x8e7d 0x6e7d

C.3 Free-start collision for Hirose mode

For Hirose mode, we used as constant c the first 64 output bits of the SHA-2 computation of the
string “IDEA”:

SHA-2(”IDEA”) = ”9f8c7b26cde59ca3dacc74ec7afda737ac1d15aa5239206416f79019dbd7ec37”

c : 0x9f8c 0x7b26 0xcde5 0x9ca3

CV 1i : 0x93e8 0x4d86 0x45a5 0xa829

CV 1′i : 0x13e8 0xcd86 0xc5a5 0x2829

CV 2i = CV 2′i : 0



M = M ′ : 0

CV 1i+1 : 0x2101 0x23c9 0xde42 0xdc96

CV 1′i+1 : 0x2101 0x23c9 0xde42 0xdc96

CV 2i+1 : 0x0009 0x0401 0x3d38 0x3934

CV 2′i+1 : 0x0009 0x0401 0x3d38 0x3934

C.4 Preimage for Davies-Meyer mode

Since a random 64-bit challenge has preimage(s) with a probability p, we show the preimage of
a challenge which we are sure at least one preimage exists (similar to a second-preimage search).
In order to get the challenge, we use as input the first 64 output bits of the SHA-2 computation
of the string “IDEA”, and provide one of the preimages found:

SHA-2(”IDEA”) = ”9f8c7b26cde59ca3dacc74ec7afda737ac1d15aa5239206416f79019dbd7ec37”

The challenge H(0x9f8c7b26cde59ca3, 0) : 0x20ad1fc924e61ba2

CVi+1 = H(CVi,M) : 0x20ad 0x1fc9 0x24e6 0x1ba2

M : 0

CVi : 0x1860 0x002e 0x2d82 0x0200

CVi is one preimage out of 223.585 for CVi+1, the search takes 225.486 IDEA encryptions, and the
average cost per preimage is around 21.9.
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Abstract. We prove the security of CBC encryption with ciphertext stealing. Our results cover
all versions of ciphertext stealing recently recommended by NIST. The complexity assumption is
that the underlying blockcipher is a good PRP, and the security notion achieved is the strongest
one commonly considered for chosen-plaintext attacks, indistinguishability from random bits (ind$-
security). We go on to generalize these results to show that, when intermediate outputs are slightly
delayed, one achieves ind$-security in the sense of an online encryption scheme, a notion we formalize
that focuses on what is delivered across an online API, generalizing prior notions of blockwise-
adaptive attacks. Finally, we pair our positive results with the observation that the version of
ciphertext stealing described in Meyer and Matyas’s well-known book (1982) is not secure.

Keywords: blockwise-adaptive attacks, CBC, ciphertext stealing, cryptographic standards, modes
of operation, provable security.

1 Introduction

Ciphertext stealing. Many blockcipher modes require the input be a sequence of complete
blocks, each having a number of bits that is the blockcipher’s blocksize. One approach for dealing
with inputs not of this form is ciphertext stealing. The classical combination is CBC encryption
and ciphertext stealing, a mode going back to at least 1982 [14].

In 2010, NIST put out an addendum [8] to Special Publication 800-38A [7], the document
that had defined blockcipher modes ECB, CBC, CFB, OFB, and CTR. The addendum defines
three ways to enrich CBC with ciphertext stealing. The modes are named CBC-CS1, CBC-CS2,
and CBC-CS3. See Fig. 1 for the definition of these modes, which differ only in the ordering of
ciphertext bits.

Despite the classicism of ciphertext-stealing, its adoption in standards, and the strong pref-
erences, these days, for proven-secure modes, there has, until now, been no proof offered for
CBC with ciphertext stealing. This paper fills in this gap.

Our contributions. We begin by looking at the NIST ciphertext-stealing modes, which we
collectively call CBC-CS. Assuming a random IV, we show that the CBC-CS schemes achieve
the strongest conventional form of chosen-plaintext-attack (CPA) security: what we call ind$,
indistinguishability from random bits under an adaptive chosen-plaintext attack. The definition,
easily shown to imply all conventional formulations of CPA-style semantic security, formalizes
that a ciphertext C is indistinguishable from as many random bits.

Next we show that delayed versions of CBC-CS achieve an analogous IND$ notion that we
define for online security. The idea of delayed CBC is from Fouque, Martinet, and Poupard [11].
Our formulation for online security generalizes their and subsequent work (further history and
credits coming shortly). In particular, prior definitional approaches were specific to blockcipher-
based schemes of a specified form—restrictions not in keeping with identifying a general notion
of security. We levy no such restrictions, but do imagine that the encryption scheme is written
to an incremental API (application programming interface). Each time a user presents a piece
of plaintext to encrypt she will get back a corresponding chunk of ciphertext. The length of
both is arbitrary. One can understand our definition of online security as establishing that a
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10 algorithm CBC-CS IV
K (P )

11 n← �|P |/b�
12 P1 · · ·Pn−1P

∗
n ← P where |P1| = · · · = |Pn−1| = b

13 Pn ← P ∗
n 0b−d where d← |P ∗

n |
14 C0 ← IV ;
15 C1 · · ·Cn ← CBC IV

K (P1 · · ·Pn) where |C1| = · · · = |Cn| = b
16 C∗

n−1 ← MSBd(Cn−1)
17-1 return C1 · · ·Cn−2C

∗
n−1Cn ⇐ for CS1

17-2 if d=b return C1· · ·Cn−2C
∗
n−1Cn else return C1· · ·Cn−2CnC

∗
n−1 ⇐ for CS2

17-3 return C1 · · ·Cn−2CnC
∗
n−1 ⇐ for CS3

20 algorithm CBC IV
K (P1 · · ·Pn) where |P1| = · · · = |Pn| = b

21 C0 ← IV
22 for i← 1 to n do Ci ← EK(Ci−1⊕Pi)
23 return C1 · · ·Cn

Fig. 1. Encryption under NIST modes CBC-CS1, CBC-CS2, and CBC-CS3. The schemes differ only
in which version of line 17 is used. The schemes depend on a blockcipher E: K×{0, 1}b → {0, 1}b that determines
the key space K, the IV space IV, and the message space P = {0, 1}≥b. We insist that K ∈ K, IV ∈ IV, and
P ∈ P.

specified incremental API introduces no new security vulnerabilities. Technically, we reconcep-
tualize an encryption scheme as the incremental interface. We regard a general definition for
online security—a definition motivated by cryptographic APIs and not the characteristics of any
particular encryption mode—as an important and independent contribution of this paper.

The workings of delayed CBC—the naturalness of this scheme and how much one must
delay—are clarified by freeing the definition of online security from a demand on a scheme
being blockcipher-based. Now it is the security analysis, not the syntax, that surfaces by just
how much one must delay—an amount that is, in fact, slightly different for the CS1/CS2 and
the CS3 versions of the scheme. Absent a careful treatment of such matters the author of an
incremental API could well get these things wrong, buffering more than what is necessary or
less than what is needed.

Finally, we point out that a 30-year-old version of ciphertext stealing described in the book
of Meyer and Matyas [14] is essentially wrong: it will not achieve any desirable security notion
we know. The apparently unnoticed observation highlights the importance of having proofs in
this domain, and underscores NIST’s wisdom in selecting the versions of ciphertext stealing that
it did.

Additional history. The provable-security treatment of CBC, and of other blockcipher-based
encryption modes, begins with Bellare, Desai, Jokipii, and Rogaway [3]. The stronger ind$-
definition that we adopt here is from Rogaway, Bellare, Black, and Krovetz [16]. For online
security, the delayed-CBC scheme that we embellish with NIST’s versions of ciphertext stealing
is due to Fouque, Martinet, and Poupard [11].
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Our definition of online security springs from the line of work on blockwise-adaptive attacks
that starts with Bellare, Kohno, and Namprempre [4] and Joux, Martinet, and Valette [13]
and continues with Fouque, Martinet, and Poupard [11], Fouque, Joux, and Poupard [10], and
Bard [2]. As explained, our own security definitions take a different turn by divorcing the notion
of online security from its former association with blockcipher-based schemes. We instead assume
an arbitrary symmetric encryption scheme that is presented to the user by way of an incremental
API. The user provides the plaintext as a sequence of chunks and the encryption algorithm,
buffering what it needs, returns corresponding ciphertext chunks. The approach echos Gennaro
and Rohatgi [12], which likewise transplants a primitive (digital signatures) from a setting that
sees messages as atomic to one that sees messages as something produced and consumed across
an expanse of time.

Discussion. A possible reaction to any discussion of ciphertext stealing is to say: forget it, use
CTR mode instead. We are sympathetic to this point of view, knowing no convincing reason to
favor CBC encryption over CTR mode, which natively handles plaintexts of arbitrary length.
But the fact remains that CBC encryption is widely used, and that ciphertext stealing is a
classical, standardized, and elegant way to extend it. This makes it worth attending to.

In justifying the use of ciphertext stealing in a mode that employed it, Matt Ball writes that
“[d]espite lacking a formal security proof, ciphertext stealing still has general approval in the
cryptographic community” [1, p. 5]. Probably this statement is at some level true, but “general
approval” is hard to gauge and far removed from being a proof.

We think that security notions that attend to the vulnerabilities introduced by the specifics of
an envisioned API comprise an interesting direction in narrowing the gap between conventional
abstractions of cryptographic primitives and what cryptographic practice actually exports. It is
not just that protocols may segment conceptually atomic messages (the original motivation for
dealing with blockwise adaptivity); rather, it is that the segmentation is actually surfaced to
users, and therefore desirable to directly model.

We do not discuss the security of CBC-CS when the IV fails to be unpredictable; it would
seem that no interesting or desirable security notion is achieved in this case. NIST SP800-38A
appropriately demands an unpredictable IV for CBC [7, Appendix C].

The CBC-CS schemes predate NIST’s addendum [8]: CBC-CS2 goes back to at least 1996
[17], while older versions of ciphertext stealing go back to at least 1982 [14]. Looking at these
schemes from a modern vantage is long overdue.

2 Preliminaries

Notation. Strings are assumed to be binary, elements of {0, 1}∗. Both A ‖ B and A B denote
the concatenation of strings A and B. If X is a string then |X| is its length. The empty string
is denoted ε. Throughout this paper we fix an integer b ≥ 1 called the blocksize. For a string X
and a number d ≤ |X| let MSBd(X) and LSBd(X) be the leftmost and rightmost d bits of X.

Blockciphers. A blockcipher is a map E: K×{0, 1}b → {0, 1}b where K ⊆ {0, 1}∗ is finite and
EK(·) = E(K, ·) is a permutation for each K ∈ K. Let Perm(b) be the set of all permutations
on b bits. This may be regarded as a blockcipher with a (2b!)-size key space. Let Advprp

E (A) =

Pr[AEK(·)⇒ 1 ] − Pr[Aπ(·)⇒ 1 ] with K
$←K and π

$← Perm(b). Similarly define Advprf
E (A) =

Pr[AEK(·)⇒ 1 ]−Pr[Aρ(·)⇒ 1 ] with K
$←K and ρ

$← Func(b) for Func(b) the set of all functions
from b bits to b bits. Here EK(·) need not be a permutation.

Encryption schemes. It has become traditional to regard blockciphers as fixed functions but
encryption schemes as tuples, as in Π = (K, E ,D). To simplify and unify matters we formalize
an encryption scheme more like a blockcipher: an (IV-based, symmetric) encryption scheme is a
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function E : K×IV ×P → P . We call K, IV , and P the key space, IV space, and message space.
For simplicity we assume that K is finite and IV is the set of all strings of some one particular
length. We write E IVK (P ) instead of E(K, IV , P ). To keep things simple we require that E IVK (·) be
a length-preserving permutation for all K ∈ K and IV ∈ IV . The condition implies that E has
a unique inverse, the map D where DIV

K (C) = P when E IVK (P ) = C. Because there is no formal
need to specify the decryption direction D of an encryption scheme E , we never do so. Of course
it is important in practice that E and D have efficient realizations, it is simply that this doesn’t
show up in the statement of definitions or security results.

Let E : K × IV × P → P be an IV-based encryption scheme and let A be an adversary
(algorithm) with one of two types of oracles. A real encryption oracle Real(·) chooses a random
K

$←K and then, on input P ∈ P, returns C ← IV ‖ E IVK (P ) for a random IV
$←IV . A fake

encryption oracle Fake(·) takes an input P ∈ P and returns C
$←{0, 1}c where c = |IV |+ |P | (for

IV ∈ IV). Define Advind$
E (A) = Pr[AReal(·)⇒ 1 ]−Pr[AFake(·)⇒ 1 ]. This “indistinguishability-

from-random-bits” definition is easily shown to imply all conventional (CPA) formulations of
indistinguishability and semantic security [3]; that we have selected a different syntax makes no
difference in the proofs.

Note that even though the encryption function is formalized as taking, besides the key, an
IV and a plaintext, the security definition does not allow the adversary to specify the IV; the
adversary asks P and the IV is randomly generated, used, and and returned. Our security notion
thus formalizes security for random IVs, not, for example, security for nonce IVs.

3 Conventional Security of the CBC-CS Schemes

We begin with a simple proposition about the security of conventional CBC encryption (no
ciphertext stealing) with a random IV. The result is needed insofar as we deduce the security of
CBC-CS from it. Recall that the mode was defined in Fig. 1 and was proven secure by Bellare
et al. [3]. That proof, however, is for a somewhat weaker definition than the one we use here.
The proof below is a simple application of the game-playing technique [5, 18].

Lemma 1. SupposeA asks queries totaling at most σ blocks. Then we haveAdvind$
CBC[Perm(b)](A) ≤

σ2/2b.

Proof. The difference between Advind$
CBC[Perm(b)](A) and r = Advind$

CBC[Func(b)](A) is at most

0.5σ2/2b; this is a standard application of PRP/PRF switching [5]. It thus suffices to bound r by
r ≤ 0.5σ2/2b. To that end, consider the games of Fig. 2. Observe that, with E = CBC[Func(b)],
Pr[AReal(·) ⇒ 1] = Pr[AG1(·) ⇒ 1], while Pr[AFake(·) ⇒ 1] = Pr[AG0(·) ⇒ 1]. As a consequence,
we have that r = Pr[AG1(·)⇒ 1] − Pr[AG0(·)⇒ 1] and, the two games being identical-until-bad,
we know that r ≤ Pr[AG0 sets bad]. Because in game G0 all of the Ci values are uniform and
independent of Pi, so too all of the Xi values are uniform and independent of one another,
so the probability that bad gets set—the probability some two of the Xi’s collide—is at most
(1 + 2 + · · · (σ − 1))/2b ≤ 0.5σ2/2b. This completes the proof.

Turning now to the CBC-CS modes, we claim that these inherit CBC’s security with no quanti-
tative degradation. The needed observation is that CBC-CS1IVK (P ) is just CBCIV

K (P 0∗) (minimal
padding to the next multiple of b bits) with some bits excised and some bits reordered. Which
bits are excised and how bits are rearranged depends only on |P |. Thus if CBCIV

K (·) looks ran-
dom, so too will look CBC-CS1IVK (·). The same comments hold for CBC-CS2 and CBC-CS3;
these are just different rearrangements of the bits of CBCIV

K (P 0∗). The observation and proof
are formalized by the proposition below.
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100 algorithm Enc(P ) Game G0

101 P1 · · ·Pn ← P where |P1| = · · · = |Pn| = b Game G1

102 C0, . . . , Cn
$←{0, 1}b

103 for i← 1 to n do
104 Xi ← Pi⊕Ci−1

105 if ρ(Xi) then bad ← true, Ci ← ρ(Xi)
106 ρ(Xi)← Ci

107 return C0 C1 · · ·Cn

Fig. 2. Proof of the ind$-security of CBC encryption with a random IV. This application of game-playing
is probably simple and well-known enough to be considered folklore. Game G1 includes the boxed statement
following the setting of bad; game G0 omits it. Variable bad is initialized to false and ρ is initialized to everywhere
undefined, a value treated as false if used as a boolean.

Theorem 1. Let E be any of CBC-CS1[Perm(b)], CBC-CS2[Perm(b)], or CBC-CS3[Perm(b)]
and suppose adversary A asks queries totaling at most σ blocks. Then Advind$

E (A) ≤ σ2/2b.

Proof. Suppose that A, asking σ total blocks of queries, gets advantage δ at distinguishing oracles
E = CBC-CS1(·) and $(·). The first of these oracles chooses a random permutation π

$← Perm(n)
and then, when asked a query P ∈ {0, 1}≥b, returns IV ‖ CBC-CS1IVπ (P ) for a random
IV

$←{0, 1}b; the second oracle, when asked a query P , returns a random string of length b+ |P |.
We construct from A an adversary B that, also asking σ blocks worth of queries, also gets ad-
vantage δ, but now at distinguishing between CBC(·) and $(·). The first of these oracle chooses
a random permutation π

$← Perm(n) and then, when asked a query P ∈ ({0, 1}b)+, returns
IV ‖ CBC IV

π (P ) for a random IV
$←{0, 1}b. Adversary B now works as follows: it runs A and

when A generates a query of P ∈ {0, 1}≥b adversary B queries its own oracle on P ′ = P 0∗,
meaning P padded on the right with the minimal number of zero-bits so that P ′ is a multiple
of b bits. Suppose this returns a ciphertext C = C0C1 · · ·Cn where |Ci| = n. Then B returns
to A the string C∗ = C0C1 · · ·C∗

n−1Cn where C∗
n−1 = MSBd(Cn−1) and d = b − (|P | mod b).

We observe that Pr[BCBC-CS1(·)⇒ 1] = Pr[ACBC(·)⇒ 1] (we have reordered bits exactly as re-
quired by CBC-CS1) and that Pr[B$(·) ⇒ 1] = Pr[A$(·) ⇒ 1] (reordered and pruned uniform
random bits are still uniform), and so δ = Advind$

CBC-CS1[Perm(b)](A) = Advind$
CBC[Perm(b)](B). By

Proposition 1 we thus have δ ≤ 0.5σ2/2b. This establishes the first of the three results. The
analogous results for CBC-CS2 and CBC-CS3 are obtained simply by modifying the string C∗

returned to A: for CBC-CS2 return C∗ = C0C1 · · ·Cn−2C
∗
n−1Cn when |P | is a multiple of b and

C∗ = C0C1 · · ·Cn−2CnC
∗
n−1 otherwise; for CBC-CS3 always return C∗ = C0C1 · · ·Cn−2CnC

∗
n−1.

This completes the theorem.

The proof’s simplicity stems from having unidentified a clean abstraction boundary: directly
modifying the proof of Lemma 1 to attend to the ciphertext stealing would be much more
complex.

Finally, one can pass from the information-theoretic result to its complexity-theoretic analog
in the standard way, trading the family of random permutations for a conventional blockcipher.
Stating the result for completeness, we have the following.

Corollary 1. Let E: K× {0, 1}b → {0, 1}b be a blockcipher and let E be any of the encryption
schemes CBC-CS1[E], CBC-CS2[E], or CBC-CS3[E]. Suppose A asks queries that total σ blocks,
runs in time t, and achieves advantage δ = Advind$

E (A). Then there is an adversary B, explicitly
known and constructed from A in a blackbox manner, that asks at most σ queries, runs in time
at most t+λbσ, and achieves advantage Advprp

E (B) ≥ δ−σ2/2b. Here λ is an absolute constant
depending only on details of the model of computation.
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4 Defining Online Security

Syntax. We adjust the syntax of an encryption scheme to accommodate the staged presentation
of plaintexts and ciphertexts. Rather than messages being atomic objects that get encrypted
all at once, messages may be arbitrarily partitioned into chunks, each of which gets fed into
a stateful encryption engine. Breaking with former treatments, we do not assume that chunks
are single blocks, nor multiples of blocks, where the length of a block is the blocksize of some
underlying blockcipher. Instead, we provide a general definition where one assumes nothing
about the structure of the underlying encryption scheme (in particular, there is no assumption
that it is blockcipher-based). As each installment of plaintext is provided to the encryption
interface, it is up to the algorithm to decide how much ciphertext to spit out. The algorithm
will thus return not only a ciphertext chunk, but also an updated state.

Realizing the idea above, we choose to define an online encryption scheme as a function
E : K × V × {0, 1} × {0, 1}∗ → {0, 1}∗ × V. We write EV, δK (P ) for E(K,V, δ, P ). We call K and V
the key space and state space, respectively. The key space is finite and the state space is a finite
set of strings. The third argument to E , a bit, is the end-of-message indicator. The final argument
to E is the next chunk of message. An online encryption scheme E must have an associated IV
space IV ⊆ V and message space P ⊆ {0, 1}∗. The former contains strings of some one fixed
length. Formally, an online encryption scheme is the tuple (E , IV ,P), but we will usually use
the first component as shorthand for the whole.

We also impose a number of “syntactic” requirements on an online encryption scheme (E , IV ,P).
First we define some additional notation. We write (C1, . . . , Cn) ← E IVK (P1, . . . , Pn) for the se-
quence:

V0 ← IV
for i← 1 to n− 1 do (Ci, Vi)← EVi−1, 0

K (Pi)

(Cn, Vn)← EVn−1, 1
K (Pn)

return (C1, . . . , Cn).
Alternatively, we can think of E IVK (P1, . . . , Pn) as returning a single string, setting E IVK (P1, . . . , Pn)
to C = C1 · · ·Cn where (C1, . . . , Cn)← E IVK (P1, . . . , Pn).

Now fix an online encryption scheme (E , IV ,P).
The consistency requirement says that you get the same ciphertext regardless of how you
split up the plaintext. More formally, if P1 ‖ · · · ‖ Pn = P ′

1 ‖ · · · ‖ P ′
n′ = P ∈ P then

E IVK (P1, . . . , Pn) = E IVK (P ′
1, . . . , P

′
n′). We can therefore write this as E IVK (P ) without ambi-

guity.

The invertibility requirement is that E IVK (·) is injective on P (for all K ∈ K and IV ∈ IV).
The length requirement is that the length of the first and second components of EV, δK (P )
depend only on |V |, |P |, and δ. This ensures that, when (C1, · · · , Cm)← E IVK (P1, · · · , Pm),
the lengths of C1, C2, . . . , Cm reveal nothing about P = P1 · · ·Pm beyond how it was
partitioned up.

Indistinguishability.We define a very strong form of indistinguishability for an online encryp-
tion scheme: indistinguishability from random bits. Fix an online encryption scheme (E , IV ,P)
and consider the following two E-dependent oracles.
• Real(i,M, δ): At the beginning, set K

$←K and Vi
$←IV for all i ∈ N. Then, on query

(i, P, δ) ∈ N× {0, 1}∗ × {0, 1}, compute (C, Vi)
$←EVi,δ

K (P ) and return C.

• Fake(i, P, δ): At the beginning, set K
$←K and Vi

$←IV for all i ∈ N. Then, on query

(i, P, δ) ∈ N× {0, 1}∗ × {0, 1}, compute (C, Vi)
$←EVi,δ

K (P ) and return |C| random bits.

We define AdvIND$
E (A) = Pr[AReal⇒1]−Pr[AFake⇒1]. Informally, an online encryption scheme

is IND$-secure if an adversary can’t distinguish the ciphertexts it is receiving from random bits.
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Discussion. Some of our high-level definitional choices differ for conventional and online en-
cryption schemes. A conventional encryption scheme does not spit out its IV, while an online
scheme does. The former is needed to match NIST’s definitions for the CBC-CS schemes, but
it works less well in the online setting, as here it is important that the algorithm can decide if
and when to release the IV. Typically, the IV does get discharged, and as the first part of the
ciphertext, so we say that an online encryption scheme (E , IV ,P) is IV-prefixed if C = E IVK (P ) is
always IV followed by some |P | additional bits (assuming K ∈ K and IV ∈ IV). An IV-prefixed
online encryption scheme (E , IV ,P) determines a conventional encryption scheme Ê in the nat-
ural way, setting Ê IVK (P ) to be E IVK (P ) stripped of its initial |IV | bits. Conversely, a conventional

encryption scheme Ê : K× IV × P → P is realized by an IV-prefixed online encryptions scheme
(E , IV ,P) if the latter determines the former in the manner just defined. In this way one can
speak of an encryption scheme E : K × IV × P → P as being online; the statement means that
it has a secure online realization (the notion of security soon to be defined).

While our notions make sense regardless of whether or not V is finite, its being finite is
the essence of what it means to be online: that one can encrypt (and decrypt) streaming mes-
sages without having to buffer more than a constant number of bits. Equivalently, that one
can implement an incremental API with a fixed-size context. Our notions allow one to con-
sider things in a more quantitative manner, using |V| as a measure of worth. We say that
E : K × V × {0, 1} × {0, 1}∗ → {0, 1}∗ × V uses v-bits of state if v is the smallest number such
that V ⊆ {0, 1}≤v.

Since we concern ourselves only with chosen-plaintext security, we do not formalize syntax
or security for the decryption direction of an online encryption scheme. Still, we comment that
if an incremental encryption scheme is online then it has an online (that is, finite state-space)
decryption.

We regard the initialization vector IV as the initial value of the saved state V . The embed-
ding of the IV space into the state space doesn’t prevent a scheme from performing “special”
initialization; one can always distinguish the first chunk of a message from subsequent chunks
of message by arranging that point in IV are never returned as a modified state.

An online encryption function has control over if and when the IV is revealed. This can be
essential for security: in particular, the Delayed CBC scheme we will soon describe is insecure if
the IV is revealed too soon.

Note that the IND$-definition allows interleaved querying of multiple streams; this is the
purpose of the index i. Fouque, Martinet, and Poupard earlier observed that, with respect to
their definitions for online indistinguishability, this made for a stronger security notion [11]. The
same is true for us; it is easy to see that if the adversary were restricted to asking a sequence of
messages with nondecreasing indexes, a restriction that amounts to forbidding the interleaving
of encryptions, the resulting security notion would be properly weaker.

We do not find it necessary to demand that, once an oracle query (i, ·, 1) is made, there are
no subsequent queries (i, ·, ·). Nonetheless, this is the expected behavior, as the setting of δ = 1
is meant to indicate that the message is complete.

5 Online Security of the CBC-CS Schemes

Delayed CBC. We now present an online version of CBC mode. For the moment, assume all
messages have a multiple of b bits. The most obvious approach for defining an online version
of CBC is to just spit out ciphertext blocks as they are formed. But this does not work: if
an adversary knows Ci−1 it can choose Pi such that Ci−1 ⊕ Pi = Pj ⊕Cj−1 for some j < i,
whence Ci will be Cj if the adversary has a “real” encryption oracle, while this is unlikely if the
adversary has a “fake” encryption oracle. We can defend against this attack and, more broadly,
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30 algorithm DCBC V, δ
K (P )

31 if |V | < b then return error
32 C0 P0 ← V where |C0| = b
33 P ← P0 P ; n← 	 |P |/b 

34 P1 · · · Pn P ∗ ← P where |P1| = · · · = |Pn| = b
35 if δ = 1 and P ∗ �= ε then return error
36 for i← 1 to n do Ci ← EK(Pi⊕Ci−1)
37 if δ = 0 then (C, V ′)← (C0 · · ·Cn−1, CnP

∗)
38 if δ = 1 then (C, V ′)← (C0 · · ·Cn, ε)
39 return (C, V ′)

Fig. 3. Mode DCBC. An online encryption scheme, encryption now depends on the saved state V ∈ {0, 1}∗.
The first b bits of V comprise the pending ciphertext, C0, while the remaining 0 to b − 1 bits are unprocessed
plaintext, P0. Bit δ signals if the plaintext is over.

300 algorithm Enc(j, P, δ) Game G0

301 if |Vj | < b then return error Game G1
302 C0 P0 ← Vj where |C0| = b
303 P ← P0 P ; n← 	 |P |/b 

304 P1 · · · Pn P ∗ ← P where |P1| = · · · = |Pn| = b
305 if δ = 1 and P ∗ �= ε then return error
306 for i← 1 to n do
307 Xi ← Pi⊕Ci−1

308 Ci
$←{0, 1}b

309 if ρ(Xi) �= undefined then bad ← true, Ci ← ρ(Xi)
310 else ρ(Xi)← Ci

311 if δ = 0 then (C, V ′
j )← (C0 · · ·Cn−1, CnP

∗)
312 if δ = 1 then (C, V ′

j )← (C0 · · ·Cn, ε)
313 return C

Fig. 4. Proof of the IND$-security of Delayed CBC. Game G1 includes the boxed statement following the
setting of bad; game G0 omits it. The variable bad is initialized to false, Vj is initialized to a random b-bit string
chosen uniformly at random for each j ∈ N, and ρ is initialized to everywhere undefined.

get online-secure scheme, simply by delaying the last ciphertext block from each plaintext chunk,
holding onto it until the relevant blockcipher has already been made. The idea is due to Fouque,
Martinet, and Poupard [11]. The contents of this section are a strengthening and extension
of that work, adding ciphertext stealing, employing less restrictive syntax, and establishing a
stronger notion of security.

The algorithm, detailed in Fig. 3, is called delayed CBC, or DCBC. The state consists of
two parts: a pending ciphertext block, which initially contains a randomly generated IV, and
unprocessed plaintext, a partial block, possibly empty, carried over from the previous message
chunk. If the blockcipher acts on b bits then the state will be at most v = 2b − 1 bits. In the
pseudocode of Fig. 3, regard Ci · · ·Cj as the empty string if i > j.

Informally, the algorithm of Fig. 3 proceeds as follows. The algorithm receives a key K, a
state V , an end-of-message indicator δ, and a plaintext chunk P . It parses the state into a b-bit
delayed ciphertext block C0, and a partial plaintext block P0 with 0 ≤ |P0| < b. The algorithm
then adjusts the incoming plaintext chunk P by prefixing it with P0. Next it splits P into b-bit
blocks P1, . . . , Pn, leaving a leftover and possibly empty partial block P ∗. Since DCBC can only
cope with messages that are an integral number of blocks long, the algorithm fails (it reports an
error) if P ∗ �= ε when δ = 1. The algorithm next performs the CBC encryption: for 1 ≤ i ≤ n,
set Ci = EK(Pi⊕Ci−1). Finally, if δ = 1 the algorithm outputs all of C = C0 · · ·Cn, and clears
the state. If δ = 0 then it outputs C = C0 · · ·Cn−1, holding V ′ = Cn ‖ P ∗ in the revised state.

Online security of DCBC. We now show that Delayed CBC achieves IND$ security.
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Theorem 2. Suppose that adversary A asks queries totaling at most σ blocks (each query P
contributes � |P |/b  blocks). Then AdvIND$

DCBC[Perm(b)](A) ≤ σ2/2b.

Proof. Let r = AdvIND$
DCBC[Func(b)](A). As in the proof of Lemma 1, the PRF/PRP switching gives

us that
∣
∣AdvIND$

DCBC[Perm(b)](A) − r
∣
∣ ≤ σ2/2b+1. It remains to show that r ≤ σ2/2b+1, for which

we use the games in Fig. 4.

The games are constructed so that, with E = DCBC[Func(b)], we have Pr[AReal(·,·,·)⇒ 1] =
Pr[AG1(·,·,·) ⇒ 1] and Pr[AFake(·,·,·) ⇒ 1] = Pr[AG0(·,·,·) ⇒ 1]. Furthermore, games G0 and G1

are identical-until-bad, and hence we get r =
∣
∣Adv[AG1(·,·,·) ⇒ 1] − Adv[AG0(·,·,·) ⇒ 1]

∣
∣ =

Pr[AG0 sets bad ].

In game G0, all of the Ci values are uniform and independent: all except C0 in the initial
call are generated explicitly by the oracle—and that C0 is the initial state Vj , chosen uniformly
as part of the initialization.

Since the Pi are determined solely by the adversary’s inputs, we can think of them as being
selected directly by the adversary. We claim that the adversary must choose each Pi before
receiving any information about Ci−1. For i > 1 this is clear, since Ci−1 is chosen uniformly
at random after Pi has been determined. It remains to show that C0 is uniformly distributed
and independent of the adversary’s view until P1 is determined. (Ensuring this property is
the reason for delaying the ciphertext block.) We do this inductively, and separately for each
index j ∈ N. The base case is the first encryption query with index j: then C0 = Vj is the
randomly selected initialization vector. Here the adversary can’t know anything about its value
at this stage since it hasn’t been used in any computations at all. The state is empty and we
return an immediate error if the previous call’s end-of-message indicator was set, so there is no
C0 to concern ourselves with. In the remaining case, the value of C0 is equal to the value of Cn

from the previous encryption query with the same index; the inductive step, therefore, is to show
that Cn is uniform and independent of the adversary’s view if C0 is also and δ = 0. But nothing
dependent on Cn is part of the oracle’s output if δ = 0, and Cn is either freshly generated (if
n > 0), or equal to C0 and therefore uniform and independent of the adversary by the induction
hypothesis (if n = 0).

It immediately follows that each Pi is independent of Ci−1, and therefore all of the Xi values
are uniform and independent of one another. Hence the probability that two Xi collide—and
bad is set—is at most σ2/2b+1, completing the proof.

As usual, it is easy to pass from the information-theoretic setting to complexity-theoretic one.

Delayed CBC with ciphertext stealing. The algorithms DCBC-CS1, DCBC-CS2, and
DCBC-CS3 are defined in Fig. 5. Implicitly, the modes are all parameterized by a blockcipher
E: K×{0, 1}b → {0, 1}b. The state V once again maintains two portions: the pending ciphertext
and the unprocessed plaintext. The pending ciphertext is a single block—or possibly two blocks
in the cases of DCBC-CS3—that the algorithm retains until it is “safe” to spit this out. This is
followed by 0 to b− 1 bits of unprocessed plaintext. The dividing line between the two portions
is always clear from the length of the string V . Note that for DCBC-CS3, the state has grown
from 2b − 1 bits to 2b bits while, for DCBC-CS1 and DCBC-CS2 the state remains at 2b − 1
bits.

The IND$ security of the DCBC-CS schemes can be inferred from the IND$ security of the
DCBC schemes. This is done in the proof below.

Theorem 3. Let E be any ofDCBC-CS1[Perm(b)],DCBC-CS2[Perm(b)], orDCBC-CS3[Perm(b)],
and suppose A asks queries totaling at most σ blocks. Then AdvIND$

E (A) ≤ σ2/2b.
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40 algorithm DCBC-CS V, δ
K (P )

41 if |V | < b then return error
42 C−1 C0 P0 ← V where |C−1| ∈ {0, b}, |C0| = b, |P0| < b
43 P ← P0 P
44 if δ = 0 then P1 · · ·Pn P ∗ ← P where n← 	|P |/b
, |P1| = · · · = |Pn| = b

45 else P1 · · ·Pn←P 0b−d where n←�|P |/b�, d←b+|P |−nb, |P1|= · · ·= |Pn|=b
46 for i← 1 to n do Ci ← EK(Pi⊕Ci−1)
47 if δ = 0 then
48-1 (C, V ′)← (C0 · · ·Cn−1, CnP

∗) ⇐= for CS1
48-2 (C, V ′)← (C0 · · ·Cn−1, CnP

∗) ⇐= for CS2
48-3 (C, V ′)← (P ∗=ε)? (C−1C0 · · ·Cn−2, Cn−1Cn) : ⇐= for CS3

(C−1C0 · · ·Cn−1, Cn P ∗)
49 if δ = 1 then
50 if n > 0 then Cn−1 ← MSBd(Cn−1)
51-1 (C, V ′)← (C0 · · ·Cn−2Cn−1Cn, ε) ⇐= for CS1
51-2 (C, V ′)← (d = b)? (C0 · · ·Cn−2Cn−1Cn, ε) : ⇐= for CS2

(C0 · · ·Cn−2CnCn−1, ε)
51-3 (C, V ′)← (C−1C0 · · ·Cn−2CnCn−1, ε) ⇐= for CS3
52 return (C, V ′)

Fig. 5. Delayed CBC with ciphertext stealing: DCBC-CS. Each online scheme depends on E: K×{0, 1}b →
{0, 1}b. String C−1C0 is pending ciphertext (with C−1 used only for DCBC-CS3). String P0 is unprocessed
plaintext from the prior call.

400 algorithm DCBC-CSV, δ
K (P )

401 if |V | ≤ b then (W,C−1, �)← (V, ε, 0) else [W,C−1, �]← V
402 m← �+ |P |, d← m− b	 (m− 1)/b 

403 if δ = 1 then P ← P 0b−d

404 (C,W ′)← DCBCW, δ
K (P )

405 C0 · · · Cn ← C where n← |C|/b− 1 and |C0| = · · · = |Cn| = b
406 if δ = 0 then
407-1 (C′, C′

−1)← (C0 · · ·Cn, ε) ⇐= for CS1
407-2 (C′, C′

−1)← (C0 · · ·Cn, ε) ⇐= for CS2
407-3 (C′, C′

−1)← (d = b)? (C0 · · ·Cn−1, Cn) : (C0 · · ·Cn, ε) ⇐= for CS3
408 �′ ← (d = b)? 0 : d
409 if δ = 1 then
410 if n > 0 then Cn−1 ← MSBd(Cn−1)
411-1 C′ ← C0 · · ·Cn−2Cn−1Cn ⇐= for CS1
411-2 C′ ← (d = b)? C0 · · ·Cn−2Cn−1Cn : C0 · · ·Cn−2CnCn−1 ⇐= for CS2
411-3 C′ ← C0 · · ·Cn−2CnCn−1 ⇐= for CS3
412 �′ ← 0, C′

−1 ← ε
413 return (C, [W ′, C′

−1, �
′])

Fig. 6. Defining DCBC-CS in terms of DCBC. The notation [x1, . . . , xn] denotes an unambiguous non-
compressing encoding of the items x1, . . . , xn; used on the left-hand side of an assignment, it implies a decoding
operation.

Proof. We use a different description of DCBC-CS, shown in Fig. 6, now writing the algorithm
in terms of DCBC. The state vector consists of three components: a state W for DCBC, which is
not interpreted; an additional delayed ciphertext block C−1, which corresponds to C−1 in Fig. 5;
and a length 0 ≤ 	 < b, which keeps track of the amount of unprocessed plaintext maintained
in W , so that 	 = |P0|.

The theorem will follow from three observations about this new description of DCBC. First,
DCBC-CS is functionally identical to DCBC-CS. Second, if the call to function DCBC at line 404
were to instead call a function that returned a random strings of the appropriate length, then
so too would DCBC-CS. This observation is immediate, since the strings returned DCBC-CS′

are derived from those returned by DCBCV, δ
K by discarding and reordering particular fixed bits.
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Third, DCBC-CS can be implemented using only oracle access to the DCBC function: it doesn’t
need to inspect or interpret the DCBC state vector W , nor examine the key K, and it uses the
state only in the “single-threaded” way permitted by the online IND$ oracle.

Consequently, for any adversary A attacking DCBC-CS, we can construct an adversary B
attacking DCBC: B will run A against a simulated oracle built from B’s (real or fake) DCBC
oracle using DCBC-CS and, in the end, output A’s guess as its own. We have

AdvIND$
DCBC-CS(A) = Pr[AReal⇒ 1]− Pr[AFake⇒ 1]

= Pr[ADCBC-CS[Real]⇒ 1]− Pr[ADCBC-CS[Fake]⇒ 1]

= Pr[BReal⇒ 1]− Pr[BFake⇒ 1]

= AdvIND$
E (B) ≤ σ2/2b

appealing to Theorem 2 for the final inequality.

As before, one can immediately conclude the corresponding complexity-theoretic statement,
which would read as follows.

Corollary 2. Let E: K× {0, 1}b → {0, 1}b be a blockcipher and let E be any of the encryption
schemes DCBC-CS1[E], DCBC-CS2[E], or DCBC-CS3[E]. Suppose A asks queries that total σ
blocks, runs in time t, and achieves advantage δ = AdvIND$

E (A). Then there is an adversary B,
explicitly known and constructed from A in a blackbox manner, that asks at most σ queries,
runs in time t + λbσ, and achieves advantage Advprp

E (B) ≥ δ − σ2/2b. Here λ is an absolute
constant depending only on details of the model of computation.

6 Insecurity of the Meyer-Matyas CBC-CS

The CBC ciphertext-stealing construction by Meyer and Matyas, what we will call CBC-CSX,
is defined in Fig. 7. This well-known scheme—it has been used since the early 1980’s under the
IBM CUSP architecture—is susceptible to a simple chosen-plaintext attack, a fact that appears
not to have been pointed out before. Thus NIST did well in choosing not to standardize this
form of ciphertext stealing, but the alternative, “correct” variant.

Here is an attack on the ind$-security of CBC-CSX. The adversary makes two encryption
queries: M = 1b0b−1 and M ′ = 1b0b−1. As the IV is randomized, asking the same plaintext twice
is not without purpose. The oracle returns C = C0C1C2 and C ′ = C ′

0C
′
1C

′
2 where C0 and C ′

0 are
randomly chosen IV s and |C1| = |C ′

1| = b− 1. If C2 = C ′
2 the adversary returns 1; otherwise, it

returns 0. Now if the adversary is given a CBC-CSX oracle, the probability that C2 = C ′
2 is at

least 1/2; otherwise, it’s about 1/2b. Thus we have a trivial but effective ind$-attack.
We remark that, not surprisingly, CBC-CSX is not secure under conventional, weaker notions

of security, like left-or-right indistinguishability [3]; a similar attack can easily be described. It is
not that the definition is too strong; from a modern point of view, the scheme is simply wrong.
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Abstract. On-Line Authenticated Encryption (OAE) combines privacy with data integrity and
is on-line computable. Most block cipher-based schemes for Authenticated Encryption can be run
on-line and are provably secure against nonce-respecting adversaries. But they fail badly for more
general adversaries. This is not a theoretical observation only – in practice, the reuse of nonces is a
frequent issue1.
In recent years, cryptographers developed misuse-resistant schemes for Authenticated Encryption.
These guarantee excellent security even against general adversaries which are allowed to reuse
nonces. Their disadvantage is that encryption can be performed in an off-line way, only.
This paper considers OAE schemes dealing both with nonce-respecting and with general adversaries.
It introduces McOE, an efficient design for OAE schemes. For this we present in detail one of the
family members, McOE-X, which is a design solely based on a standard block cipher. As all the
other member of the McOE family, it provably guarantees reasonable security against general
adversaries as well as standard security against nonce-respecting adversaries.

Keywords: authenticated encryption, on-line encryption, provable security, misuse resistant

1 Introduction

On-Line Authenticated Encryption (OAE). Application software often requires a network chan-
nel that guarantees the privacy and authenticity of data being communicated between two
parties. Cryptographic schemes able to meet both of these goals are commonly referred to as
Authenticated Encryption (AE) schemes. The ISO/IEC 19772:2009 standard for AE [21] de-
fines generic composition (Encrypt-then-MAC [4]) and five dedicated AE schemes: OCB2 [38],
SIV [41] (denoted as “Key Wrap” in [21]), CCM [13], EAX [6], and GCM [34]. To integrate
an AE-secure channel most seamlessly into a typical software architecture, application develop-
ers expect it to encrypt in an on-line manner meaning that the i-th ciphertext block can be
written before the (i+ 1)-th plaintext block has to be read. A restriction to off-line encryption,
where usually the entire plaintext must be known in advance (or read more than once) is an
encumbrance to software architects.

Nonces and their reuse. Goldwasser and Micali [18] formalized encryption schemes as stateful
or probabilistic, because otherwise important security properties are lost. Rogaway [37, 39, 40]
proposed an unified point of view, by always defining a cryptographic scheme as a deterministic
algorithm that takes an user supplied nonce (a number used once). So the application program-
mer – and not the encryption scheme – is responsible for flipping coins or maintaining state. This
reflects cryptographic practice since the algorithm itself is often implemented by a multi-purpose
cryptographic library which is more or less application-agnostic.

In theory, the concept of a nonce is simple. In practice, it is challenging to ensure that a nonce
is never reused. Flawed implementations of nonces are ubiquitous [9, 20, 28, 44, 45]. Apart from
implementation failures, there are fundamental reasons why software developers can’t always

1 A prominent example is the PlayStation 3 ’jailbreak’ [20], where application developers used a constant that
was actually supposed to be a nonce for a digital signature scheme.



secure ... against nonce-respecting adversaries ag. nonce-reusing adversaries

on-line CCFB[33] CHM[22] CIP[23] CWC[29] EAX[6] McOE (this paper)

GCM[34] IACBC[26] IAPM[26] McOE OCB1-3[40, 38, 30]

RPC[10] TAE[31] XCBC[17]

off-line BTM[24] CCM[13] HBS[25] SIV[41] SSH-CTR[36] BTM[24] HBS[25] SIV[41]

Table 1. Classification of provably secure block cipher-based AE Schemes. CCM and SSH-CTR are considered off-
line because encryption requires prior knowledge of the message length. Note that the family of McOE schemes,
because of being on-line, satisfies a slightly weaker security definition against nonce-reusing adversaries than SIV,
HBS, and BTM.

prevent nonce reuse. A persistently stored counter, which is increased and written back each
time a new nonce is needed, may be reseted by a backup – usually after some previous data loss.
Similarly, the internal and persistent state of an application may be duplicated when a virtual
machine is cloned, etc.

Related Work and Our Contribution. We aim to achieve both simultaneously : security against
nonce-reusing adversaries (sometimes also called nonce-misusing adversaries) and support for
on-line-encryption in terms of an AE scheme. Apart from generic composition (Encrypt-then-
Mac, EtM), none of the ISO/IEC 19772:2009 schemes – in fact, no previously published AE
scheme at all – achieves both of these goals, cf. Table 1. In this table, we classify a vast variety
of provably secure block cipher-based AE scheme with respect to their on-line-ability and against
which adversaries (nonce-respecting versus -reusing) they are proven secure.

Since EtM is not a concrete scheme but merely a generic construction technique, there are
some challenges left in order to make it full on-line secure: First, an appropriate on-line cipher
has to be chosen. Second, a suitable, on-line computable, secure deterministic MAC must be
selected. And, third, the EtM scheme requires at least two independent keys to be secure. Since
two schemes are used in parallel, is likely to squander resources in terms of run time and –
important for hardware designers – in terms of space. Since EtM first has to be turned into an
OAE scheme by making the appropriate choices, we don’t include it in our analysis.

As it turned out, we actually found nonce-reuse attacks for all of those schemes, cf. Table 2
and Appendix A. In this paper we present a new construction method for efficient AE schemes,
called McOE-X, that is actually able to fill the apparent gap in the upper-right. It belongs to
the family of McOE schemes [14]. We argue that closing this gap is both practically relevant
and theoretically interesting.

Initial Value (IV) based AE schemes maximally forgiving of repeated IV’s have been ad-
dressed in [41], coining the notion of “misuse resistance” and proposing SIV as a solution. SIV
and related schemes (HBS [25] and BTM [24]) actually provide excellent security against nonce-
reusing adversaries, though there are other potential misuse cases, cf. Appendix A.2. Their main
disadvantage is that they are inherently off-line: For encryption, one must either keep the entire
plaintext in memory, or read the plaintext twice.

Ideally, an adversary seeing the encryptions of two (equal-length) plaintexts P1 and P2 can’t
even decide if P1 = P2 or not. When using a nonce more than once, deciding about P1 = P2 is
easy. SIV and its relatives ensure that nothing else is feasible for nonce-reusing adversaries. In
the case of on-line encryption, where the first few bits of the encryption of a lengthy message
must not depend on the last few bits of that message, there is unavoidably something beyond
P1 = P2. The adversary can compare any two ciphertexts for their longest common prefix, and
then conclude about common prefixes of the secret plaintexts. Our notion of misuse resistance
means that this is all the adversary can gain. Even in the case of a nonce-reuse, the adversary

2



privacy authenticity
attack workload attack workload

CCFB [33] O(1) O(1)

CCM [13] O(1) ≪ 2(n/2) [15]

CHM [22] O(1) O(1)

CIP [23] O(1) O(1)

CWC [29] O(1) O(1)

EAX [6] O(1) O(1)

GCM [34] O(1) O(1)

IACBC [26] O(1) O(1)

privacy authenticity
attack workload attack workload

IAPM [26] O(1) O(1)

OCB1 [40] O(1) O(1)

OCB2 [38] O(1) O(1)

OCB3 [30] O(1) O(1)

RPC [10] O(1) O(1)

TAE [31] O(1) O(1)

XCBC [17] O(2n/4) ?

Table 2. Overview of our nonce-reuse attacks on published AE schemes, excluding SIV, HBS and BTM, which
have been explicitly designed to resist nonce-reuse. Almost all attacks achieve an advantage close to 1. An “attack
workload” of X means that the adversary is restricted to at most X units of time and at most X chosen texts.
Details are given in Appendix A.

1. can’t do anything beyond determining the length of common plaintext prefixes and

2. the scheme still provides the usual level of authenticity for AE (INT-CTXT).

The first property is common for on-line ciphers/permutations (OPRP) [1]. Recently, [43] stud-
ied the design of on-line ciphers from tweakable block ciphers bearing some similarities to our
approach, especially to TC3. In contrast to the McOE family, the constructions from [43] pro-
vide no authentication. The McOE schemes are, e.g., based on a normal block cipher or a
tweakable block cipher.

Design Principles for AE Schemes. The question how to provide authenticated encryption
(without stating that name) when given a secure on-line cipher is studied in [3], the revised and
full version of [1]. The first idea in [3] only provides security if all messages are of the same
length. The second idea repairs that by prepending the message’s length to the message, at the
cost of being off-line, since the message length must be known at the beginning of the encryption
process. The third idea is to prepend and append a random W to a message M and then to
perform the on-line encryption of (W ||M ||W ). This looks promising, but the same W is used
for two different purposes, putting different constraints on the generation of W . For privacy, it
suffices that W behaves like a nonce, not requiring secrecy or unpredictability. Even if W is not
a nonce, but the same W is used for the encryption of several messages, all the adversary can
determine are the lengths of common plaintexts prefixes, as we required for nonce-reuse. On the
other hand, authenticity actually assumes a secret or unpredictable W , rather than a nonce. If
the adversary can guess W before choosing a message, she asks for the authenticated encryption
of (M ||W ). Then she can predict the authenticated encryption of M without actually asking for
it.

The McOE family replaces the “random” W by a proper nonce and a value τ which is
key-dependent, performing a nonce-dependent on-line encryption of (M ||τ). The encryption can
also depend on some associated data, which turns McOE into a family of schemes for OAEAD
(On-Line Authenticated Encryption with Associated Data).

Roadmap. In this paper we focus on one member of the McOE [14] family of schemes called
McOE-X. In Section 2 we describe a concrete block cipher based OAE scheme – called McOE-
X– and provide performance data when McOE-X is instantiated with either AES-128 or
Threefish-512 as the underlying block cipher. Section 3 deals with general notions and def-
initions, and Section 4 defines the security of OAE. The main result of the paper, the full
McOE-X scheme and its analysis, is presented in Section 5. The discussion in Section 6 con-
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Fig. 1. The McOE-X-AES/McOE-X-Threefish encryption process. If, after the last complete message block has
been encrypted, there is some incomplete block left, McOE-X performs tag-splitting (upper variant), Else, the
tag can be computed without splitting (lower variant). The key used for the block cipher E is computed by the
injective function K ⊕W which is given the secret key K and the chaining value input W . The tag returned is
the n-bit value T . The n− l-bit value Z is discarded. The decryption process works in a similar way from ’left to
right’ only the block cipher component E is replaced by its counterpart E−1 apart from one exception: the first
call computing τ .

cludes the paper. The appendix deals with misuse attacks against published AE schemes, and
provides some proof supplements.

2 Practical On-Line Authenticated Encryption using AES and Threefish

We start with the fruits of our analysis by giving two concrete instances of OAE schemes
(illustrated in Figure 1) including performance data and reference source code2. One instance,
McOE-X-AES uses AES-128 as the core component while McOE-X-Threefish uses the block
cipher Threefish-512, a cipher with 512-bit block size and key size, which is the core working
component inside the SHA-3 finalist Skein[35].

We also introduce the tag-splitting (TS) method for processing messages whose length is
not a multiple of the block length. Without TS, we would have to pad such messages and then
encrypt the padded messages – resulting in an expanded ciphertext. The effect of TS is similar
to the well-known length preserving method called ciphertext stealing (CTS), e.g. [12]. But the
technique itself is quite different since CTS requires to process the last block before the last but
one, which is not possible for McOE-X.

Let EK be a block cipher taking a k-bit key K and a plaintext/ciphertext of size n-bit. Note
that for our chosen instances, AES-128 and Threefish-512, we have n = k. The pseudo code for
these two McOE-X instances is given in Table 3 – on the upper side without TS, on the lower
side with TS.

The algorithms without TS, EncryptAuthenticate and DecryptAuthenticate, are sim-
plified algorithms for messages that are aligned on n-bit boundaries, i.e. M = (M1, . . . ,ML) ∈
({0, 1}n)L for some integer L. The TS-variants EncryptAuthenticateSplitTag and Decrypt-
AuthenticateSplitTag, can handle arbitrarily sized messages, i.e., M = (M1, . . . ,ML) ∈
({0, 1}n)L−1||{0, 1}l

∗
where L and l∗ are integers with 0 < l∗ < n and ′||′ denotes the string

concatenation operator. See Figure 1 and Table 3.

2 The reference source code is available on request; it will be published as open source.
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EncryptAuthenticate(V,M)
1. τ ← EK(V )
2. U ← V ⊕ τ ⊕K

3. for i = 1, . . . , L loop

Ci ← EU (Mi)
U ←Mi ⊕ Ci ⊕K

4. T ← EU (τ)
5. return (C1, . . . , CL, T )

EncryptAuthenticateSplitTag(V,M)
1. τ ← EK(V )
2. U ← V ⊕ τ ⊕K

3. for i = 1, . . . , L− 1 loop

Ci ← EU (Mi)
U ←Mi ⊕ Ci ⊕K

4. M∗ ← (ML||τ [0 . . . n− l∗ − 1])
5. M∗ ←M∗ ⊕ EK⊕1n(|ML|)
6. C∗ ← EU (M

∗)
7. Parse CL||T [0 . . . n− l∗ − 1]← C∗

8. U ←M∗ ⊕ C∗ ⊕K

9. C∗∗ ← EU (τ)
10. T [n− l∗ . . . n− 1]← C∗∗[0 . . . l∗ − 1]
11. return (C1, . . . , CL−1, C

∗
L, T )

DecryptAuthenticate(V,C, T )
1. τ ← EK(V )
2. U ← V ⊕ τ ⊕K

3. for i = 1, . . . , L loop

Mi ← E−1
U (Ci)

U ←Mi ⊕ Ci ⊕K

4. if T = EU (τ) then
return (M1, . . . ,ML)
else return ⊥

DecryptAuthenticateSplitTag(V,C, T )
1. τ ← EK(V )
2. U ← V ⊕ τ ⊕K

3. for i = 1, . . . , L− 1 loop

Mi ← E−1
U (Ci)

U ←Mi ⊕ Ci ⊕K

4. C∗ ← CL||T [0 . . . n− l∗ − 1]
5. M∗ ← E−1

U (C∗)
6. U ←M∗ ⊕ C∗ ⊕K

7. M∗ ←M∗ ⊕ EK⊕1n(|CL|)
8. Parse ML||τ

′[0 . . . n− l∗ − 1]←M∗

9. T ′ ← EU (τ)
10. if τ ′[0 . . . n− l∗ − 1] = τ [0 . . . n− l∗ − 1]

and T ′[0 . . . l∗ − 1] = T [n− l∗ . . . n− 1]
then return (M1, . . . ,ML) else return ⊥

Table 3. Instances of McOE-X: upper side is for messages whose size is evenly divisible by the block size n;
Lower side is for arbitrarily sized messages (TS-variant); see text for details

In addition to McOE-X, we introduce two further authenticated encryption schemes follow-
ing the McOE design principles. The first one is called McOE-D and is based on the THC-CBC
construction [7]. The ratio of this scheme is 2-1, i.e. the block cipher is invoked twice to enci-
pher resp. decipher one message block. The second one is called McOE-G and is based on the
HCBC-2 construction [2]. This scheme updates the chaining value by invoking a universal hash
function, i.e., a n-bit Galois-Field multiplication.

Remarks. For McOE-X we actually do need related key resistance for the block cipher E since
the adversary can ’partially control’ some relations among keys used in the computation. This
is not true for the other mentioned constructions.

All McOE schemes are easily extended to smoothly handle associated data, i.e. data that
is not encrypted but only authenticated. This is discussed in more detail in Section 5.

3 On-Line Authenticated Encryption and Related Notions

3.1 Definitions

Length of Longest Common Prefix (LLCPn). The length of a string x ∈ {0, 1}n is
denoted by |x| := n. For integers n, ℓ, d ≥ 1, set Dd

n = ({0, 1}n)d, and D∗n :=
⋃

d≥0D
d
n, and

Dℓ,n =
⋃

0≤d≤ℓD
d
n. Note that D0

n only contains the empty string. For M ∈ Dd
n; we write

M = (M1, . . . ,Md) with M1, . . . ,Md ∈ Dn. For P,R ∈ D∗n, say, P ∈ Dp
n and R ∈ Dr

n, we define
the length of the longest common n-prefix of P and R as

LLCPn(P,R) = max
i
{P1 = R1, . . . , Pi = Ri} .
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Block cipher Impl.
Message length in Bytes

64 128 256 512 1024 2048 4096 8192 16384 32768

McOE-X-AES software 31.2 26.3 23.9 22.7 22 21.7 21.6 21.5 21.5 21.5
McOE-X-AES AES-NI 14.2 12.2 11.2 10.7 10.5 10.4 10.4 10.3 10.3 10.3
McOE-X-Threefish software 19.5 13.1 9.9 8.3 7.5 7.1 6.9 6.8 6.8 6.7

McOE-D-AES software 40.1 33 29.4 27.6 26.7 26.3 26.1 25.9 25.9 25.9
McOE-D-AES AES-NI 11.6 9.9 8.3 7.2 6.7 6.4 6.3 6.3 6.2 6.2

McOE-G-AES software 33 27.9 25.4 24.1 23.5 23.2 23 22.9 22.8 22.8
McOE-G-AES GF-NI/AES-NI 12.5 10.6 9.7 9.3 9 8.9 8.9 8.8 8.8 8.8

AES-CBC encryption software 38.3 35.9 13.5 13.3 13.2 13.2 13.1 13.1 13.1 13.1
AES-CBC encryption AES-NI 4 3.7 3.6 3.5 3.5 3.5 3.5 3.5 3.5 3.5

Table 4. Performance values (cycles-per-byte, single core), measured on an Core i5 540M for AES-128 and
Threefish-512. McOE-X is the main contribution in the current paper, McOE-D invokes the underlying block
cipher twice and McOE-G uses Galois field arithmetic. For a comparsion, we also provide the performance of
unauthenticated AES-CBC. The AES software implementation is based on Gladman [16], whereas the hardware
implementation is based on the Intel AES-NI Sample Library[11]. The Threefish implementation is based on the
NIST/SHA-3 reference source as provided by the Skein authors [35]. Finally, the implementation of Galois field
NI multiplication (GF-NI) is based on the example-code from [19].

For a non-empty set Q of strings in D∗n we define LLCPn(Q, P ) as max
q∈Q
{LLCPn(q, P )}. For

example, if P ∈ Q, then LLCPn(Q, P ) = |P |/n.

For convenience, we introduce a notation for a restriction on a set. If Q = {0, 1}a × {0, 1}b ×
{0, 1}c, we write Q|b,c = {(B,C) | ∃A : (A,B,C) ∈ Q}. This generalizes in the obvious way.

3.2 Block Ciphers and On-Line Permutations

Block Ciphers. An (k, n) block cipher is a keyed family of permutations consisting of two paired
algorithms E : {0, 1}k ×Dn → Dn and E−1 : {0, 1}k ×Dn → Dn, accepting a k-bit key and an
input from Dn for some k, n > 0. For n > 0, Block(k, n) is the set of all (k, n) block ciphers.
For any E ∈ Block(k, n) and a fixed key K ∈ {0, 1}k, the decryption E−1K (Y ) := E−1(K,Y ) is
the inverse function of encryption EK(X) := E(K,X), so that E−1K (EK(X)) = X holds for any
X ∈ Dn.

We follow the usual convention to write oracles, that are provided to an algorithm, as super-
scripts. We define the related key PRP-security of a block cipher E by the success probability
of an adversary trying to differentiate between the block cipher and a random permutation.

Definition 1. Let E ∈ Block(k, n) and denote by E−1 the corresponding inverse. Let ϕ :
{0, 1}k × {0, 1}n → {0, 1}k. A fixed related key adversary A has access to an E oracle with
two parameters such that she can query either Eϕ(K,·)(·) or its inverse. Let Perm(n, n) be the
set of n-bit permutations such that the first parameter models the permutation and the second
parameter the value that is to be permuted, i.e. for π ∈ Perm(n, n) it holds that π(Z, ·) is a
random permutation for any given value of Z. The related-key (RK) advantage [32] of A in
breaking E is then defined as

AdvRK-CPA-PRP
E (A) = |Pr[K

$
← {0, 1}k : AEϕ(K,·)(·) ⇒ 1]− Pr[π

$
← Perm(n,n) : Aπ(·,·) ⇒ 1]|

AdvRK-CCA-PRP
E,E−1 (A) = |Pr[K

$
← {0, 1}k : A

Eϕ(K,·)(·),E
−1
ϕ(K,·)

(·)
⇒ 1]

− Pr[π
$
← Perm(n,n) : Aπ(·,·),π−1(·,·) ⇒ 1]|.
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On-Line Permutations. We aim for larger permutations that not only permute single blocks
but can handle multiple/variable block messages. Such a permutation, from D∗n to D∗n, is
(n-)on-line if the i-th block of the output is determined completely by the first i blocks of
the input.

Definition 2. Let n, k ≥ 0, K ∈ {0, 1}k, V ∈ Dn. A function Π : {0, 1}k × D∗n → D∗n is an
(n-)on-line permutation if for any fixed K,V the function Π(K,V, ·) is a permutation and there
exists for any message M = (M1,M2, . . . ,Mm) a family of functions π̃i : {0, 1}k×{0, 1}n×Di

n →
Dn, i = 1, . . . ,m such that

Π(K,V,M) = π̃1
K(V,M1)||π̃

2
K(V,M [1..2])

|| . . . ||

π̃m−1
K (V,M [1..m− 1])||π̃m

K(V,M [1..m]),

where M [a . . . b] := Ma||Ma+1|| . . . ||Mb with “||” being the concatenation of strings, holds.

An encryption scheme is (n-)on-line if the encryption function is (n-)on-line. A thorough dis-
cussion of on-line encryption and its properties can be found in [1].

3.3 Authenticated Encryption (With Associated Data)

An authenticated encryption scheme is a tuple Π = (K, E ,D). Its aim is to provide privacy and
data integrity. The key generation function K takes no input and returns a randomly chosen
key K from the key space, e.g. from {0, 1}k. The encryption algorithm E and the decryption
algorithm D are deterministic algorithms that map values from {0, 1}k×H×D∗n to a string or –
if the input is invalid – the value ⊥. The header H consists either only of the initial value/nonce
V ∈ Dn (if no data is to be authenticated/checked in the encryption/decryption process) or is
a combination of V and a value from D∗n. So H ⊂ D+

n in either case. For sake of convenience,
we usually write EHK (M) for E(K,H,M) and DH

K(M) for D(K,H,M), where the message M
is chosen from D∗n, H ∈ H and a key from the key space. We require DHK(EHK (M)) = M for
any possible K,M,H, and define the tag size for a message M ∈ D∗n and header H ∈ H
as tag(H,M) := |EHK (M)| − |M |. We denote an authenticated encryption scheme with the
requirement that the initial vector V is only used once in a nonce based scheme. Otherwise,
we call such a scheme deterministic. Similarly, we call an adversary nonce-respecting (nr) if no
nonce is used twice for any query. Otherwise, the adversary is called nonce-ignoring (ni).

4 Security Notions for On-Line Authenticated Encryption

Authenticated (On-Line) Encryption tries to achieve privacy and authenticity at the same time.
Therefore we need security notions to handle this twofold goal. For AE, there have been notions
and their relations introduced for deterministic [42] and nonce based [4, 5, 27, 37, 40] AE schemes.
In order to have one convenient toolset of notions, we adopt the notion of CCA3 security
suggested in [42] as a natural strengthening of CCA2 security.

We parameterize our definition in order to define different – but closely related – notions by
explicitly stating whether we mean an on-line or off-line scheme, ω ∈ {ae,oae} and stating the
adversary behavior as either nonce-respecting or nonce-ignoring, ν ∈ {nr,ni}.

Definition 3 (CCA3(ω, ν)). Let Π = (K, E ,D) be an authenticated encryption scheme with
header space H and message space D∗n, and fix an adversary A. The advantage of A breaking Π
is defined as

Adv
CCA3(ω,ν)
Π (A) = |Pr

[
K

$
← K : AEK(·,·),DK(·,·) ⇒ 1

]
− Pr

[
A$ω(·,·),⊥(·,·) ⇒ 1

]
|.
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Game GCPA, GCCA3

1 In i t i a l i z e (ω, ν)

2 b
$
← {0, 1} ;

3 i f (b=1) then

4 K ← K() ;

5 Finalize(d)
6 return (b = d) ;

10 Encrypt(H,M)
11 i f (ν = nr and V ∈ B) then

12 return ⊥ ;
13 i f (b=1) then

14 C ← EK (H,M) ;
15 else

16 C ← $ω(H,M) ;
17 B ← B ∪ {V } ;

18 Q ← Q∪ {(H,C)};

19 return C;

20 Decrypt (H,C)
21 i f ((H,C) ∈ Q) then

22 return ⊥ ;
23 i f (b=1) then

24 M ← DK (H,C) ;
25 else

26 M ← ⊥(H,C) ;
27 return M;

Fig. 2. GCPA(ω, ν) is the CPA
(ω,ν)
Π -Game and GCCA3(ω, ν) the CCA3

(ω,ν)
Π -Game where Π = (K, E ,D). Game

GCCA3 contains the code in the box while GCPA does not. The oracle $ae(H,M) returns a string of length |M |+
tag(H,M), this string is on-line compatible if ω = oae. V denotes the last block of the header representing the
nonce/initial value.

The adversary’s random-bits oracle, $ae(·, ·) or $oae(·, ·), returns on a query with header H ∈
H and plaintext X ∈ D∗n a random string of length |EK(M)| which is either on-line or not,
depending on the variable ω. The ⊥(·, ·) oracle returns ⊥ on every input. We assume wlog. that
the adversary A never ask a query which answer is already known. It is easy to see that we can
rewrite the term given in Definition 3 as

Adv
CCA3(ω,ν)
Π (A) = |Pr

[
K

$
← K : AEK(·,·),DK(·,·) ⇒ 1

]
− Pr

[
K

$
← K : AEK(·,·),⊥(·,·) ⇒ 1

]
(1)

+ Pr
[
K

$
← K : AEK(·,·),⊥(·,·) ⇒ 1

]
− Pr

[
A$ω(·,·),⊥(·,·) ⇒ 1

]
|. (2)

One can interpret (1) as the advantage that an adversary has on the integrity of the ciphertext
and (2) as the advantage that an CPA adversary has on the privacy. Using this decomposition
as a motivational starting point, we now define ciphertext integrity and what we mean by a
CPA adversary on authenticated encryption schemes. From now on, our definitions are based on
the game playing methodology. For example, we can restate Definition 3 using the game GCCA3

given in Figure 2 as

Adv
CCA3(ω,ν)
Π (A) = 2|Pr[AGCCA3(ω,ν) ⇒ 1]− 0.5|.

We denote Adv
CCA3(ω,ν)
Π (q, t, ℓ) as the maximum advantage over all CCA3(ω, ν) adversaries

run in time at most t, ask a total maximum of q queries to E and D, and whose total query
length is not more than ℓ blocks.

4.1 Privacy and Integrity Notions for Authenticated Encryption Schemes.

Similarly, we define the privacy and integrity of an authenticated (on-line) encryption scheme
Π = (K, E ,D) with header space D+

n , message space D∗n and tag-size function tag(H,M) as
follows.

Definition 4. Let GCPA(ω, ν) be the CPAω,ν
Π game given in Figure 2. Fix an adversary A. The

advantage of A breaking Π is defined as

Adv
CPA(ω,ν)
Π (A) ≤ 2|Pr[AGCPA(ω,ν) ⇒ 1]− 0.5|.

Definition 5. Let GINT-CTXT(ν) be the INT-CTXTν
Π game given in Figure 3. Fix an adversary

A. The advantage of A breaking Π is defined as

Adv
INT-CTXT(ν)
Π (A) ≤ Pr[AGINT-CTXT(ν) ⇒ 1].

We denote Adv
CPA(ω,ν)
Π (q, t, ℓ) and Adv

INT-CTXT(ν)
Π (q, t, ℓ) as the maximum advantage over all

CPA(ω, ν) resp. INT-CTXT(ν) adversaries run in time at most t, ask a total maximum of q
queries to E and D, and whose total query length is not more than ℓ blocks.
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Game GINT−CTXT

1 In i t i a l i z e (ν)
2 K ← K();

3 Finalize ( )
4 return win ;

10 Encrypt (H,M)
11 i f (ν = nr and V ∈ B) then

12 return ⊥ ;
13 C ← EK (H,M) ;
14 B ← B ∪ {V } ;
15 Q ← Q∪ {(H,C)} ;
16 return C ;

20 Verify (H,C)
21 M ← DK (H,C) ;
22 i f ((H,C) 6∈ Q and M 6= ⊥) then

23 win ← true ;
24 return (M 6= ⊥) ;

Fig. 3. Game GINT−CTXT (ν) is the INT-CTXTω,ν
Π game where Π = (K, E ,D). V denotes the last block of the

header representing the nonce/initial value.
.

4.2 CCA3 is equal to INT-CTXT plus CPA.

We now give a generalization of Theorem 3.2 from Bellare and Namprempre [4]. It simply states
the equivalence of a scheme being CCA3 secure and both INT-CTXT and CPA secure. These
statements hold in the on-line and offline case.

Theorem 1. Let Π = (K, E ,D) be an authenticated encryption scheme. Fix ω ∈ {ae,oae}
and ν ∈ {nr,ni}. Let A be an CCA3(ω, ν)Π-adversary running in time t, making q queries
with a total length of at most ℓ blocks. Then there are a CPA(ω, ν)-adversary Ap and an
INT-CTXT(ω, ν)-adversary Ac such that

Adv
CCA3(ω,ν)
Π (A) ≤ Adv

CPA(ω,ν)
Π (Ap) +Adv

INT-CTXT(ω,ν)
Π (Ac).

Furthermore, Ac and Ap run in time O(t) and both make at most q queries in each case.

The proof is given in Appendix B.

5 The On-Line Authenticated Encryption Scheme McOE-X

In this section, we present McOE-X, a construction for an OAE scheme. We prove that McOE-
X achieves our two-fold goal. First, it guarantees a certain minimum, well defined, security
against a nonce-ignoring adversary. And, second, we show – in the full version of the paper [14]
– that the complete McOE family of OAE schemes (including McOE-X) is fully secure against
a nonce-respecting adversary.

Since we already have presented two McOE-X instances in Section 2, we proceed by for-
mally defining McOE-X and giving its pseudocode. Indeed this is very similar to the results
presented in Section 2, but here our definitions are slightly more general. Instead of fixing the
key computation function to K ⊕ V , where R is the chaining value and K the secret key, we
here use a key derivation function ϕ(K,R). By this we make sure that our proof also works for
tweakable block ciphers - with K as key and R as tweak - leading to more efficient design.

Definition 6 (McOE-X). Let k, n ∈ N with k ≥ n, E ∈ Block(k, n), and ϕ : {0, 1}k ×
{0, 1}v → {0, 1}k such that ϕ(K, ·) is injective. The encryption function takes a header H ∈ DLH

n ,
a message M and returns a ciphertext C and a tag T ∈ Dn. The decryption function takes a
header H ∈ DLH

n , a ciphertext C and a tag T ∈ Dn and returns either a plaintext M or the fail
symbol ⊥.

(i) ’Non-TS’. Let M,C ∈ DL
N for some integer L, then McOE-X is defined by the algorithms

EncryptAuthenticate and DecryptAuthenticate given in Table 5.
(ii) ’TS’. Let M,C ∈ DL

N ||{0, 1}
l∗ for some integers L and l∗, 0 < l∗ < n, then McOE-X/TS

is defined by the algorithms EncryptAuthenticateSplitTag and DecryptAuthenticate-

SplitTag given in Table 5.
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EncryptAuthenticate(H,M)
1. U ← ϕ(K, 0n)
2. for i = 1, . . . , LH − 1 do

U ← ϕ(K,Hi ⊕ EU (Hi))
3. τ ← EU (HLH

)
4. U ← ϕ(K,HLH

⊕ τ)
5. for i = 1, . . . , L do

Ci ← EU (Mi)
U ← ϕ(K,Mi ⊕ Ci)

6. T ← EU (τ)
7. return (C1, . . . , CL, T )

EncryptAuthenticate(H,C, T )
1. U ← ϕ(K, 0n)
2. for i = 1, . . . , LH − 1 do

U ← ϕ(K,Hi ⊕ EU (Hi))
3. τ ← EU (HLH

)
4. U ← ϕ(K,HLH

⊕ τ)
5. for i = 1, . . . , L− 1 do

Ci ← EU (Mi)
U ← ϕ(K,Mi ⊕ Ci)

6. M∗ ←ML||τ [0 . . . n− l∗ − 1]
7. M∗ ←M∗ ⊕ EK⊕1n(|ML|)
8. C∗ ← EU (M

∗)
9. Parse CL||T [0 . . . n− l∗ − 1]← C∗

10. U ← ϕ(K,M∗ ⊕ C∗)
11. C∗∗ ← EU (τ)
12. T [n− l∗ . . . n− 1]← C∗∗[0 . . . l∗ − 1]
13. return (C1, . . . , CL, T )

DecryptAuthenticate(H,C, T )
1. U ← ϕ(K, 0n)
2. for i = 1, . . . , LH − 1 do

U ← ϕ(K,Hi ⊕ EU (Hi))
3. τ ← EU (HLH

)
4. U ← ϕ(K,HLH

⊕ τ)
5. for i = 1, . . . , L do

Mi ← E−1
U (Ci)

U ← ϕ(K,Mi ⊕ Ci)
6. if T = EU (τ) then

return (M1, . . . ,ML) else return ⊥

DecryptAuthenticateSplitTag(H,C, T )
1. U ← ϕ(K, 0n)
2. for i = 1, . . . , LH − 1 do

U ← ϕ(K,Hi ⊕ EU (Hi))
3. τ ← EU (HLH

)
4. U ← ϕ(K,HLH

⊕ τ)
5. for i = 1, . . . , L do

Mi ← E−1
U (Ci)

U ← ϕ(K,Mi ⊕ Ci)
6. C∗ ← CL+1||T [0 . . . n− l∗ − 1]
7. M∗ ← E−1

U (C∗)
8. U ← ϕ(K,M∗ ⊕ C∗)
9. M∗ ←M∗ ⊕ EK⊕1n(|CL|)

10. Parse ML||τ
′[0 . . . n− l∗ − 1]←M∗

11. T ′ ← EU (τ)
12. if τ ′[0 . . . n− l∗ − 1] = τ [0 . . . n− l∗ − 1]

and T ′[0 . . . l∗ − 1] = T [n− l∗ . . . n− 1]
then return (M1, ...,ML) else return ⊥

Table 5. Instances of McOE-X: Left side is for messages whose size is evenly divisible by the block size n; Right
side is for arbitrarily sized messages (TS-variant); see text for details

We now proceed to show the security of McOE-X. For this we use the results of Theorem
1 and show the INT-CTXT and RK-CPA-PRP security separately.

Theorem 2.

(i) Let Π = (K, E ,D) be a McOE-X scheme as in Definition 6 (i), i.e. K is the key deriva-
tion function, E = EncryptAuthenticate and D = DecryptAuthenticate. We further
assume that the block cipher E is secure against related key attacks. Then

Adv
CCA3(oae,ni)
Π (q, ℓ, t) ≤

2(q + ℓ)(q + ℓ+ 1) + 3q + 2ℓ

2n − (q + ℓ)
+ 3AdvRK-CCA-PRP

E,E−1 (q + ℓ).

(ii) Let Π = (K, E ,D) be a McOE-X scheme as in Definition 6 (ii), i.e. K is the key derivation
function, E = EncryptAuthenticateSplitTag and D = DecryptAuthenticateSplitTag.
We further assume that the block cipher E is secure against related key attacks. Then

Adv
CCA3(oae,ni)
Π (q, ℓ, t) ≤

4(q + ℓ+ 2)(q + ℓ+ 3) + 6(2q + ℓ)

2n − (q + ℓ)
+

3q(q + 1)

2n − q

+
q

2n/2 − q
+ 3AdvRK-CCA-PRP

E,E−1 (2q + ℓ).

10



Proof. The proof of (i) follows from Theorem 1 together with Lemmas 1 and 2. Due to the lack
of of space the proof of (ii) it is skipped here and is available in the full version of the paper [14].

Lemma 1. Let Π = (K, E ,D) be a McOE-X scheme as in Definition 6 (i). Let q be the number
of total queries an adversary A is allowed to ask and ℓ be an integer representing the total length
in blocks of the queries to E and D. Then,

Adv
INT-CTXT(ni)
Π (q, ℓ, t) ≤

(q + ℓ)(q + ℓ+ 1)

2n − (q + ℓ)
+

2q + ℓ

2n − (q + ℓ)
+AdvRK-CCA-PRP

E,E−1 (q + ℓ).

1 In i t i a l i z e ( )

2 K
$
← K() ;

3 B ← {ϕ(K, 0n} ;

4 Finalize ( )
5 return win ;

100 Encrypt(H,M) Game G1

101 LH ← |H|/n ; L← |M |/n ;
102 U ← ϕ(K, 0n) ;
103 for i = 1, ..., LH do

104 τ ← EU (Hi) ;
105 U ← ϕ(K,Hi ⊕ τ) ;
106 for i = 1, ..., L do

107 Ci ← EU (Mi) ;
108 U ← ϕ(K,Ci ⊕Mi) ;
109 T ← EU (τ) ;
110 Q ← (H,M,C, T ) ;
111 return (C1, . . . , CL, T ) ;

112 Verify(H,C, T ) Game G1

113 LH ← |H|/n ; L← |C|/n ;
114 U ← ϕ(K, 0n) ;
115 for i = 1, ..., LH do

116 τ ← EU (Hi) ;
117 U ← ϕ(K,Hi ⊕ τ) ;
118 for i = 1, ..., L do

119 Mi ← E−1
U (Ci) ;

120 U ← ϕ(K,Ci ⊕Mi) ;
121 i f (T = EU (τ) and (H,C) 6∈ Q|H,C) then

122 win ← true ;
123 Q ← (H,⊥, C,⊥) ;
124 return (T = EU (τ))

200 Encrypt(H,M) Game G2, G3

201 LH ← |H|/n ; L← |M |/n ;
202 A← A ∪H ;
203 p← LLCPn(Q|H,M , (H,M)) ;

204 U ← ϕ(K, 0n) ;
205 for i = 1, . . . , LH do

206 τ ← EU (Hi) ;
207 U ← ϕ(K,Hi ⊕ τ) ;
208 i f (U ∈ B and i > p) then

209 bad ← true ; U
$
← {0, 1}n \B;

210 B ← B ∪ U ;
211 for i = 1, . . . , L do

212 Ci ← EU (Mi) ;
213 U ← ϕ(K,Ci ⊕Mi) ;
214 i f (U ∈ B and i+ LH > p) then

215 bad ← true ; U
$
← {0, 1}n \B;

216 B ← B ∪ U ;
217 T ← EU (τ) ;
218 Q ← (H,M,C, T ) ;
219 return (C1, . . . , CL, T ) ;

220 Verify(H,C, T ) Game G2, G3

221 LH ← |H|/n ; L← |C|/n ;
222 p← LLCPn(Q|H,M , (H,M)) ;

223 U ← ϕ(K, 0n) ;
224 for i = 1, . . . , LH do

225 τ ← EU (Hi) ;
226 U ← ϕ(K,Hi ⊕ τ) ;
227 i f (U ∈ B and i > p) then

228 bad ← true ; U
$
← {0, 1}n \B;

229 B ← B ∪ U ;
230 for i = 1, . . . , L− 1 do

231 Mi ← E−1
U (Ci) ;

232 U ← ϕ(K,Ci ⊕Mi) ;
233 i f (U ∈ B and i+ LH > p) then

234 bad ← true ; U
$
← {0, 1}n \B;

235 B ← B ∪ U ;

236 ML ← E−1
U (CL) ;

237 U ← ϕ(K,CL ⊕ML) ;
238 i f (U ∈ B and H 6∈ A) then

239 bad ← true ; U
$
← {0, 1}n \B;

240 i f (T = EU (τ) and (H,C, T ) 6∈ Q|H,C,T ) then

241 win ← true ;
242 Q ← (H,⊥, C,⊥) ;
243 B ← B ∪ U ;
244 return (T = EU (τ)) ;

Fig. 4. Games G1-G3 for the proof of Lemma 1. Game G3 contains the code in the box while G2 does not.

Proof (Lemma 1). Our bound is derived by game playing arguments. Consider games G1-G3 of
Figure 4 and a fixed adversary A asking at most q queries with a total length of at most ℓ blocks.
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The functions Initialize and Finalize are identical for all games in this proof. Lets denote G0

as the Game INT-CTXT(ni) as defined in Figure 3. Definition 5 states that

Adv
INT-CTXT(ni)
Π (A) ≤ Pr[AG0 ⇒ 1].

In G1, the encryption and verify placeholders are replaced by their specific McOE-X counter-
parts as of Definition 6. Clearly, Pr[AG0 ⇒ 1] = Pr[AG1 ⇒ 1]. We now discuss the differences
between G1 and G2. The set B is initialized to {ϕ(K, 0n)} and then collects new key-input values
U which are computed during the encryption or verification process (in lines 204, 207, 213, 223,
226, 232 and 237). We note that, since ϕ is injective, a collision for the chaining values follows
if there is a collision in the U values.

In lines 203 and 222, the LLCPn oracle is inquired. Finally, the variable bad is set to true if
one of the if-conditions in lines 208, 214, 227, 233, or 238 is true. None of these modifications
affect the values returned to the adversary and therefore

Pr[AG1 ⇒ 1] = Pr[AG2 ⇒ 1].

For our further discussion we require another game G4 which is explained in more detail later
in this proof3. It follows that

Pr[AG2 ⇒ 1] = Pr[AG3 ⇒ 1] + |Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1|

≤ Pr[AG3 ⇒ 1] + Pr[AG3sets bad]

≤ Pr[AG4 ⇒ 1] + |Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1]|+ Pr[AG3sets bad]. (3)

We now proceed to upper bound any of the three terms contained in (3) – in right to left order.
The success probability of game G3 does not differ from the success probability of G2 unless a
chaining value U occurs twice. In this case, the adversary must (i) either have ’found’ a collision
for Eϕ(K,X)(Y ) ⊕ Y , i.e. she stumbles over (X,Y ) and (X ′, Y ′) such that Eϕ(K,X)(Y ) ⊕ Y =
Eϕ(K,X′)(Y

′)⊕ Y ′ or, (ii), must have found a preimage of ϕ(K, 0n), which is always the starting
point of our chain. Note that that value ϕ(K, 0n) is initially stored in the set B. In both cases,
the variable bad would have been set to true, and it follows [8] that

Pr[AG3sets bad] ≤
(q + ℓ)(q + ℓ+ 1)

2n − (q + ℓ)
+

q + ℓ

2n − (q + ℓ)
.

We now describe the new game G4. It is equal to G3 except that the block cipher E and its
inverse E−1 are replaced by randomly chosen functions EncryptBlock and DecryptBlock,
which are modeled as pseudo random permutations. We assume that they are implemented
via lazy sampling. More precisely, the call EK(A) is replaced by an invocation of Encrypt-
BlockK(A) and the call E−1K (A) is replaced by an invocation of DecryptBlockK(A). We now
upper bound the difference between G3 and G4.

So, by definition of G4, we have

|Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1]| ≤ AdvRK-CCA-PRP
E,E−1 (q + ℓ).

Finally, we have to upper bound the advantage for the adversary A to win the game G4. A
can only win this game if the condition in line 238 (resp. 438 for game G4) is true. As usual, we
assume wlog. that A doesn’t ask a question if the answer is already known which implies that
(H,C, T ) 6∈ Q|H,C,T . For our analysis we distinguish between three cases. So we formally adjust
line 240 (i.e. choose as the tag computation operation either E or E−1) such that we always
have enough randomness left for our result.

3 Since the difference is very minor, we do not provide an extra figure.
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Case 1: H has already been used in an Encrypt or Verify query before and U ∈ B. Since
we already have computed τ in the past, the chance of success is upper bounded by the
probability Pr[E−1U (T ) = τ ] which can be upper bounded by 1/(2n − (q + ℓ)).

Case 2: H has never been used before, also U has never been used as a chaining value. Then
the tagging operation uses a ’new key’ – essentially due since ϕ is injective – and therefore
the output of EU (τ) is uniformly distributed and the success probability is ≤ 1/2n.

Case 3: H ∈ A but U has never been used as a chaining value. The chance of success is upper
bounded by Pr[E−1U (T ) = τ ] which can be upper bounded by 1/2n.

Note that the ’missing’ fourth case has been explicitly excluded by line 240 (resp. 440). Since
these three cases are mutually exclusive, we can upper bound the success probability for q queries
as

Pr[AG4 ⇒ 1]| ≤
q

2n − (q + ℓ)
.

Our claim follows by adding up the individual bounds. ⊓⊔

Lemma 2. Let Π = (K, E ,D) be a McOE-X scheme as in Definition 6 (i). Let q be the number
of total queries an adversary A is allowed to ask and ℓ be an integer representing the total length
of the queries to E and D. Then,

Adv
CPA(aoe,ni)
Π (q, ℓ, t) ≤ 2

(
(q + ℓ)(q + ℓ+ 1)

2n − (q + ℓ)
+

q + ℓ

2n − (q + ℓ)
+AdvRK-CPA-PRP

E (q + ℓ)

)
.

The proof is given in Appendix C.

6 Discussion

New Challenges for Research. At the this point of time, cryptographic research has developed an
inpressive number of good schemes for encryption, authentication, and authenticated encryption.
Many of these schemes have been proven secure under standard assumptions on the underlying
primitives. In practice, however, such schemes are often used in a way that undermines security.
Trying to design cryptosystems as “misuse resistant” as possible still stands as a challenge for
cryptographers.

Furthermore, our research seems to pose new challenges for the design of symmetric prim-
itives. Ideally, we would like to implement McOE using a tweakable n-bit block cipher with
n-bit tweaks, supporting fast random tweak changes. Due to the current lack of such a primi-
tive, we designed McOE-X, which requires an ordindary n-bit block cipher being secure against
XOR-related key attacks, and supporting fast random key changes. Much beyond McOE, cryp-
tosystem designers could benefit from new tweak-agile tweakable block ciphers and new key-agile
ordinary block ciphers.

It is mentionable that McOE-X, when using Threefish-512 in software, performs consider-
ably better as when using software or even hardware AES-128. (Note that Threefish-512 actually
is a tweakable block cipher, but the 128-bit tweak is too short for McOE.) As an alternative,
we developed further variants of McOE using double encryption and Galois field arithmetic.
These two variants also don’t expose the underlying block cipher to related-key attacks.

Conclusion. Originally, this research has been inspired by the search for a default authenticated
encryption mode of operation for a general-purpose cryptographic library. It should offer, by
default, a huge failure tolerance for practical software developers and still allow being used in
an on-line manner.
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Since the well-known schemes as, such as OCB and SIV, did not fit our requirements, we
searched for other ways to achieve the security and functionality we were looking for. Apart from
McOE, generic composition (Encrypt-then-Mac) of a secure on-line cipher for encryption and
a secure deterministic MAC for authentication, using two independent keys might be another
solution. As it turned out, using McOE, one can save the additional key and the time to generate
the MAC by using a slightly tweaked on-line cipher for both encryption and authentication.
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CCM Encryption Mode and of a Slight Variant. In ACNS, pages 411–428, 2008.

16. Brian Gladman. Brian Gladman’s AES Implementation, 19th June 2006. http://gladman.plushost.co.uk/
oldsite/AES/index.php.

17. Virgil D. Gligor and Pompiliu Donescu. Fast Encryption and Authentication: XCBC Encryption and XECB
Authentication Modes. In FSE, pages 92–108, 2001.

18. Shafi Goldwasser and Silvio Micali. Probabilistic Encryption. J. Comput. Syst. Sci., 28(2):270–299, 1984.
19. Shay Gueron and Michael E. Kounavis. Efficient implementation of the Galois Counter Mode using a carry-less

multiplier and a fast reduction algorithm, journal = Inf. Process. Lett. 110(14-15):549–553, 2010.
20. George Hotz. Console Hacking 2010 - PS3 Epic Fail. 27th Chaos Communications Congress, 2010. http:

//events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf.
21. ISO/IEC. 19772:2009, Information technology – Security techniques – Authenticated Encryption, 2009.

14



22. Tetsu Iwata. New Blockcipher Modes of Operation with Beyond the Birthday Bound Security. In FSE, pages
310–327, 2006.

23. Tetsu Iwata. Authenticated Encryption Mode for Beyond the Birthday Bound Security. In AFRICACRYPT,
pages 125–142, 2008.

24. Tetsu Iwata and Kan Yasuda. BTM: A Single-Key, Inverse-Cipher-Free Mode for Deterministic Authenticated
Encryption. In Selected Areas in Cryptography, pages 313–330, 2009.

25. Tetsu Iwata and Kan Yasuda. HBS: A Single-Key Mode of Operation for Deterministic Authenticated
Encryption. In FSE, pages 394–415, 2009.

26. Charanjit S. Jutla. Encryption Modes with Almost Free Message Integrity. J. Cryptology, 21(4):547–578,
2008.

27. Jonathan Katz and Moti Yung. Unforgeable Encryption and Chosen Ciphertext Secure Modes of Operation.
In FSE, pages 284–299, 2000.

28. Tadayoshi Kohno. Attacking and Repairing the WinZip Encryption Scheme. In ACM Conference on Computer

and Communications Security, pages 72–81, 2004.
29. Tadayoshi Kohno, John Viega, and Doug Whiting. CWC: A High-Performance Conventional Authenticated

Encryption Mode. In FSE, pages 408–426, 2004.
30. Ted Krovetz and Phillip Rogaway. New Blockcipher Modes of Operation with Beyond the Birthday Bound

Security. In FSE, pages 310–327, 2006.
31. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable Block Ciphers. In CRYPTO, pages 31–46,

2002.
32. Stefan Lucks. Ciphers secure against related-key attacks. In Bimal K. Roy and Willi Meier, editors, FSE,

volume 3017 of Lecture Notes in Computer Science, pages 359–370. Springer, 2004.
33. Stefan Lucks. Two-Pass Authenticated Encryption Faster Than Generic Composition. In FSE, pages 284–298,

2005.
34. David A. McGrew and John Viega. The Security and Performance of the Galois/Counter Mode (GCM) of

Operation. In In INDOCRYPT, volume 3348 of LNCS, pages 343–355. Springer, 2004.
35. Niels Ferguson and Stefan Lucks and Bruce Schneier and Doug Whiting and Mihir Bellare and Tadayoshi

Kohno and Jon Callas and Jesse Walker. Skein source code and test vectors. http://www.skein-hash.info/
downloads.

36. Kenneth G. Paterson and Gaven J. Watson. Plaintext-dependent decryption: A formal security treatment of
ssh-ctr. In Henri Gilbert, editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages
345–361. Springer, 2010.

37. Phillip Rogaway. Authenticated-Encryption with Associated-Data. In ACM Conference on Computer and

Communications Security, pages 98–107, 2002.
38. Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB and

PMAC. In ASIACRYPT, pages 16–31, 2004.
39. Phillip Rogaway. Nonce-Based Symmetric Encryption. In FSE, pages 348–359, 2004.
40. Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: a block-cipher mode of operation for

efficient authenticated encryption. In ACM Conference on Computer and Communications Security, pages
196–205, 2001.

41. Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of the Key-Wrap Problem. In
EUROCRYPT, pages 373–390, 2006.

42. Phillip Rogaway and Thomas Shrimpton. Deterministic Authenticated-Encryption: A Provable-Security
Treatment of the Key-Wrap Problem. Cryptology ePrint Archive, Report 2006/221; full version of [41],
2006. http://eprint.iacr.org/.

43. Phillip Rogaway and Haibin Zhang. Online Ciphers from Tweakable Blockciphers. In CT-RSA, pages 237–249,
2011.

44. Todd Sabin. Vulnerability in Windows NT’s SYSKEY encryption. BindView Security Advisory, 1999. Avail-
able at http://marc.info/?l=ntbugtraq&m=94537191024690&w=4.

45. Hongjun Wu. The Misuse of RC4 in Microsoft Word and Excel. Cryptology ePrint Archive, Report 2005/007,
2005. http://eprint.iacr.org/.

A Misuse-Attacks: The weak point of current Authenticated Encryption
(AE) Schemes.

A.1 Attacking Schemes without Claimed Resistance Against Nonce Reuse

Cipher-block-chaining (CBC) is an unauthenticated encryption mode which is sometimes used
as the encryption component of an AE scheme. But one can easily distinguish CBC encryption
from a good on-line cipher, if the nonce (or the IV) is constant. The attack from [1] only needs
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three chosen plaintexts. Counter mode, which has been very popular among the designers of
AE schemes, fails terribly in nonce reuse settings, since it generates exactly the same keystream
twice when the nonce is reused. It was to be expected that a scheme using counter mode or CBC
inherits the nonce reuse issue from that mode. But, as it turned out, common AE schemes also
fail at the authenticity frontier, see Table 2 for an overview. This is an unpleasant surprise, since
the cryptographic community has known well deterministic MACs for a long time – so why is
the authenticity provided by most authenticated encryption schemes so much more fragile than
the authenticity provided by well-known MACs?

The following two attack patterns will be used in most of our attacks.

Repeated Keystream. Many AE schemes generate a keystream S = FK(V ) of length |M |, de-
pending on the secret key K and the nonce V , and encrypt the message M by computing the
ciphertext C = S ⊕M , typically by applying a block cipher in counter mode. If the same nonce
is used more than once, the following attack straightforwardly breaks the privacy:

– Encrypt a plaintext M under the nonce V to a ciphertext C with tag T .

– Encrypt a plaintext M ′ 6= M under the same V to a ciphertext C ′ and a tag T ′.

– It turns out that C ′ = C ⊕M ⊕M ′ holds.

Linear Tag. Many AE schemes, which generate a keystream S = FK(V ) as above, apply the
encrypt-then-authenticate paradigm and allow to rewrite the authentication tag T as

T = f(V )⊕ g(C),

where V is the nonce, C is the ciphertext, and f and g are some key-dependent functions. This
enables the adversary to mount the following attack:

– Encrypt the plaintext M under the nonce V to (C, T ) with T = f(V )⊕ g(C).

– Encrypt the plaintext M ′ 6= M with |M ′| = |M | under the nonce V ′ 6= V to (C ′, T ′) with
the tag T ′ = f(V ′)⊕ g(C ′).

– Set M ′′ := M ′⊕C ′⊕C. Encrypt M ′′ under the nonce V ′ to (C ′′, T ′′). Observe C ′′ = C, thus
T ′′ = f(V ′)⊕ g(C).

– Set T ∗ = T ⊕ T ′ ⊕ T ′′ = f(V )⊕ g(C ′), The adversary accepts (C ′, T ∗) under V .

Two-Pass AE(AD) Modes: CWC [29], GCM [34], CCM [13], EAX [6], CHM [22] . All the
common two-pass AE(AD) modes, CHM,CWC, GCM, CCM and EAX, use the counter mode
as the underlying encryption operation and are thus vulnerable to the repeated keystream attack
pattern. Four of them, CHM, CWC, GCM, and EAX, are designed according to the encrypt-then-
authenticate paradigm, and are thus vulnerable to the linear tag attack pattern. The designers of
CCM followed authenticate-then-encrypt, which seems to defend against the linear tag pattern.
Forgery attacks against CCM have been presented in [15], though.

Mixed AE(AD) Modes: RPC [10] and CCFB [33]. RPC combines counter mode and electronic
codebook mode. Given an n-bit block cipher E under a key K and a c-bit counter cnt, RPC takes
an (n−c)-bit plaintext block Mi and computes the ciphertext block Ci := EK(Mi||(cnt+ i) mod
2c). Authentication is performed locally for each ciphertext block: During decryption, RPC
computes (Mi||Xi) = E−1K (Ci) and accepts Mi as authentic if and only if Xi = (cnt+ i) mod 2c.
The nonce defines cnt.

Under nonce reuse, the same sequence (cnt+ i) mod 2c of counter values is used for different
messages. This makes it easy to attack the privacy – essentially, when encrypting messages
of m (n − c)-bit blocks, RPC degrades into m independent electronic codebooks. Also, given
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two authentic ciphertexts, (C0
1 , . . . , C

0
L) and (C1

1 , . . . , C
1
L), any ciphertext (C

σ(1)
1 , . . . , C

σ(L)
L ) with

σ(i) ∈ {0, 1} is valid, since authenticity is verified locally for each C
σ(i)
i .

Similarly to RPC, CCFB is a combination of Counter and CFB mode. Unlike RPC, CCFB
generates a single “global” authentication tag. Variants of the repeated keystream pattern applies
and the linear tag pattern apply to CCFB.

One-Pass AE(AD) Modes: IAPM [26], OCB1[40], OCB2[38], OCB3[30], TAE [31]. Given a
nonce V and a secret key K, IAPM [26] encrypts a plaintext (M1, . . . ,Mm) to a ciphertext
(C1, . . . Cm) and an authentication tag T as follows.

Initial step: Generate m + 2 values s0, s1, . . . sm+1 depending on V and K, but not on the
plaintext (M1, . . . ,Mm).

Encryption: x0 := V ; For i ∈ {1, . . . ,m}: Ci := EK(Mi ⊕ si)⊕ si.
Authentication tag: T := EK(sm+1 ⊕

∑
1≤i≤mMi)⊕ s0.

Similarly to RPC, IAPM behaves like a set of m independent electronic codebooks and is vul-
nerable to the same distinguishing attack. A forgery can exploit the fact that two different
same-length messages (M1, . . . ,Mm) and (M ′1, . . . ,M

′
m), encrypted under the same nonce, have

the same authentication tag T = EK(sm+1 ⊕
∑

1≤i≤mMi)⊕ s0 = EK(sm+1 ⊕
∑

1≤i≤mM ′i)⊕ s0
if
∑

1≤i≤mMi =
∑

1≤i≤mM ′i .
As much as our attacks are concerned, OCB1–3 and TAE are quite similar to IAPM, and

the attacks are the same.

More One-Pass Modes: IACBC [26] and XCBC [17]. Given a nonce V and a secret key K,
IACBC [26] encrypts (M1, . . . ,Mm) to (C1, . . . Cm) and an authentication tag T as follows.

Initial step: Generate m+1 values s0, s1, . . . sm depending on V and K, but not on the plain-
text (M1, . . . ,Mm).

Encryption: x0 := V ; For i ∈ {1, . . . ,m}: xi := EK(Mi ⊕ xi−1), Ci := xi ⊕ si.
Authentication tag: T := EK(xm ⊕

∑
1≤i≤mMi)⊕ s0.

The following nonce-reuse attack distinguishes IACBC encryption from an online permuta-
tion and also provides an existential forgery. For simplicity, we only consider 1-block messages
V 6= W , which we also use as nonces: Encrypt W under V to (C1, T ). Encrypt V under W to
(C ′1, T

′). Encrypt V under V to (C ′′1 , T
′′). Set C ′′′1 := C1 ⊕ C ′1 ⊕ C ′′1 and T ′′′ := T ⊕ T ′ ⊕ T ′′.

(C ′′′1 , T ) is a valid encryption of W under W .
Given a nonce V and secret keys K and K ′, XCBC encrypts a plaintext (M1, . . . ,Mm) to a

ciphertext (C1, . . . Cm) and an authentication tag T as follows.

Initial step: Generatem+1 values s1, . . . sm+1 depending on V andK, but not on the plaintext
(M1, . . . ,Mm).

Encryption:
1. C0 := EK(V ); x0 := EK′(V );
2. Generate an additional message word Mm+1 := x0 ⊕M1 ⊕ · · · ⊕Mm for authentication.
3. For i ∈ {1, . . . ,m+ 1}: xi := EK(Mi ⊕ xi−1), Ci := (xi + si) mod 2n.

The best attack we have found for XCBC is not quite as damaging as the attacks on the other
schemes, as the attack workload is at O(2n/4), and the attack only provides a distinguisher, not a
forger. For this reuse-nonce chosen-plaintext attack, we ignore the authentication tag: Generate
2n/4 encryptions of messages M i

1 under a nonce V to Ci
1. Statistically, expect one pair i 6= j

such that the least significant n/2 bits of Ci
1 are identical to the least significant n/2 bits of

Cj
1 . Generate 2n/4 encryptions of messages (M i

1,M
k
2 ) and (M j

1 ,M
ℓ
2) under V to (Ci

1, C
k
2 ) and

(Cj
1 , C

ℓ
2), where the least significant n/2 bits of Mk

2 and M ℓ
2 are the same. (Statistically, expect

one pair k 6= ℓ such that Ck
2 = Cℓ

2 holds.) Choose an arbitrary M3. Encrypt (M
i
1,M

k
2 ,M3) and

(M j
1 ,M

ℓ
2 ,M3) under V to (Ci

1, C
k
2 , C

i,k
3 ) and (Cj

1 , C
ℓ
2, C3j, ℓ). Observe Ci,k

3 = Cj,ℓ
3 .
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A.2 Offline Schemes, Defeating Nonce-Reuse (SIV [41], HBS [25], BTM [24])

Given a nonce N , a message M and associated Data H, these schemes perform two steps:

1. Generate the authentication tag T from H, M , and N .

2. Encrypt M in counter mode, using T as the nonce.

This is inherently offline, because one must finish step 1 before one can start step 2. All of
SIV, HBS, and BTM perform counter mode encryption, but employ different MACs schemes to
generate the tag T .

This usage of the counter mode is vulnerable in an online decryption misuse case, where,
during decryption, a would-be plaintext is compromised before the tag has been verified. A
chosen-ciphertext adversary can exploit that to determine an unknown keystream and then to
decrypt an unknown message.

Another misuse case may apply when nonce-reuse is possible and the sender reads the mes-
sage twice, once for each of the two steps – if there is any chance that the message has been
modified between the two read operations.

Note that both misuse cases become quite harmless if one replaces the counter mode encryp-
tion by the application of an online permutation.

B Proof of Theorem 1

Consider games G0, G1, G2 of Figure 5. For a fixed CCA3(ω, ν) adversary A on the scheme Π
it holds that

Pr[A
CCA3(ω,ν)
Π ⇒ 1] = Pr[AG0 ⇒ 1]

= Pr[AG1 ⇒ 1] + (Pr[AG0 ⇒ 1]− Pr[AG1 ⇒ true])

≤ Pr[AG1 ⇒ 1] + Pr[AG1sets bad].

Since the Decrypt oracles of G1 and G2 always return ⊥,

Pr[AG1 ⇒ 1] = Pr[AG2 ⇒ 1].

Now, we design two adversaries Ac and Ap so that

Pr[AG1sets bad] ≤ Pr[Ac
INT-CTXT(ω,ν)
Π ⇒ 1] and

Pr[AG2 ⇒ 1] ≤ Pr[Ap
CPA(ω,ν)
Π ⇒ 1].

Ap: Adversary Ap simply runs A answering A’s Encrypt queries using its own Encrypt oracle,
and answers Decrypt queries with ⊥. Ap outputs whatever A outputs.

Ac: Adversary Ac runs A answering A’s Encrypt queries using its own Encrypt oracle. It
submits A’s Decrypt queries to it’s Verify oracle (cf. Figure 3) and, regardless of the response,
returns ⊥. Note that the Verify oracle sets win to true if and only if a fresh Decrypt query is
valid. Just such a query would set the variable bad to true. ⊓⊔
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1 In i t i a l i z e (ω, ν )

2 b
$
← {0, 1} ;

3 i f (b=1) then

4 K ← K();

5 Finalize (d)
6 return (d=b ) ;

7 Encrypt (H,M)
8 i f (ν = nr and V ∈ B) then

9 return ⊥ ;
10 else

11 B ← B ∪ {V } ;
12 i f (b=1) then

13 C ← EK (H,M) ;
14 else

15 C ← $ω (H,M) ;
16 Q ← Q∪ {(H,C)} ;
17 return C;

100 Decrypt (H,C) Game G0, G1

101 M ← ⊥ ;
102 i f ((H,C) 6∈ Q and b=1) then

103 M ← DK (H,C) ;
104 i f (M6= ⊥) then

105 bad ← true ; M ← ⊥;

106 return M;

200 Decrypt (H,C) Game G2

201 return ⊥ ;

Fig. 5. Games G0, G1 and G2 for the proof of Theorem 1. Game G1 contains the code in the box while G0 does
not. H0 denotes the first block of the header representing the nonce/initial value.

C Proof of Lemma 2

Proof (of Lemma 2). Our bound is derived by game playing arguments. Consider games G1 and
G2 of Figure 6. The functions Initialize and Finalize are identical for any of those games.

At first we investigate the differences between the CPA(aoe,ni) game from Figure 2 and
G1 from Figure 6. In G1 we have replaced E by its definition of McOE-X, and $w by an on-line
encryption oracle OnlinePermutation (line 102) that just models a ’perfect’ OPRP, i.e. for
two plaintexts with an equal prefix it returns two ciphertexts that also share a prefix of the same
length. We again assume this oracle to be implemented by lazy sampling. Then, set B collects
all chaining values (lines 113 and 119) in order to intercept the occurrence of two equal chaining
values which do lead – due to the injectivity of ϕ – to two equal keys for the encryption of a
block.

In line 105, the oracle LLCPn is invoked returning the length of the longest common prefix
of (H,M) and Q|H,M . Finally, the variable bad is set to true if (one of) the conditions of lines
111/211 or 117/217 holds. These changes do not affect the success probability of an adversary,
because the output of the oracle remains unchanged. More precisely, the distribution of the
output does not change. This means that – using a new game G3 described shortly –

Adv
CPA(aoe, ni)
Π (A) = 2 · |Pr[AG1 ⇒ 1]− 0.5|.

Therefore, by common game playing arguments,

Pr[AG1 ⇒ 1] = Pr[AG2 ⇒ 1] + |Pr[AG1 ⇒ 1]− Pr[AG2 ⇒ 1|

≤ Pr[AG2 ⇒ 1] + Pr[AG2sets bad]

≤ Pr[AG3 ⇒ 1] + |Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1]|+ Pr[AG2sets bad].

The success probability of game G2 does not differ from the success probability of G1 unless
a chaining value U occurs twice. In this case, the adversary must either have found a colli-
sion for Eϕ(K,X)(Y ) ⊕ Y , i.e. she has found (X,Y ) and (X ′, Y ′) such that Eϕ(K,X)(Y ) ⊕ Y =
Eϕ(K,X′)(Y

′) ⊕ Y ′ or must have found a preimage of ϕ(K, 0n). In both cases, the variable bad

would have been set to true, and it follows again by [8] that

Pr[AG2sets bad] ≤
(q + ℓ)(q + ℓ+ 1)

2n − (q + ℓ)
+

q + ℓ

2n − (q + ℓ)

The aforementioned new game G3 is equal to the game G2 except that the block cipher E and
its inverse E−1 are replaced by randomly chosen functions EncryptBlock and DecryptBlock,
which are modeled as a pseudo random permutations. We assume that they are implemented
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1 In i t i a l i z e ( )

2 b
$
← {0, 1}; K

$
← K() ; B ← {ϕ(K, 0n)};

3 Finalize (d)
4 return (b=d ) ;

100 Encrypt(H,M) Game G1, G2

101 i f (b = 0) then

102 C ← OnlinePermutation(H,M) ;
103 else

104 LH ← |H|/n ; L← |M |/n ;
105 p← LLCPn(Q, (H,M)) ;
106 Q ← Q∪ (H,M) ;
107 U ← ϕ(K, 0n);
108 for i = 1, . . . , LH do

109 τ ← EU (Hi);
110 U ← ϕ(K,Hi ⊕ τ) ;

111 i f (U ∈ B and i > p) then

112 bad ← true ; U
$
← {0, 1}n \B;

113 B ← B ∪ U ;
114 for i = 1, . . . , L do

115 Ci ← EU (Mi) ;
116 U ← ϕ(K,Ci ⊕Mi) ;
117 i f (U ∈ B and i+ LH > p) then

118 bad ← true ; U
$
← {0, 1}n \B;

119 B ← B ∪ U ;
120 return C ;

Fig. 6. Games G1 and G2 for the proof of Lemma 2. Game G2 contains the code in the box while G1 does not.

via lazy sampling. More precisely, the call EK(A) is replaced by an invocation of Encrypt-
BlockK(A) and the call E−1K (A) is replaced by an invocation of DecryptBlockK(A). We now
upper bound the difference between G2 and G3. So, by definition of G4, we have

|Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1]| ≤ AdvRK-CPA-PRP
E (q + ℓ).

Finally, we have to upper bound the advantage for an adversary A to win the game G3. Since
the U cannot collide and it is not possible to compute a preimage for any query, the algorithm
for b = 0 is an OPRP, and therefore the success probability to win G3 for any adversary is 0.5,
i.e. she has no advantage in winning this game.

Our claim follows by adding up the individual bounds. ⊓⊔
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Abstract. The Galois/Counter Mode (GCM) of operation has been standardized by NIST to provide single-
pass authenticated encryption. The GHASH authentication component of GCM belongs to a class of Wegman-
Carter polynomial hashes that operate in the field GF(2128). We present message forgery attacks that are made
possible by its extremely smooth-order multiplicative group which splits into 512 subgroups. GCM uses the
same block cipher key K to both encrypt data and to derive the generator H of the authentication polynomial
for GHASH. In present literature, only the trivial weak key H = 0 has been considered. We show that GHASH
has much wider classes of weak keys in its 512 multiplicative subgroups, analyze some of their properties, and
give experimental results on AES-GCM weak key search. Our attacks can be used not only to bypass message
authentication with garbage but also to target specific plaintext bits if a polynomial MAC is used in conjunction
with a stream cipher. These attacks can also be applied with varying efficiency to other polynomial hashes
and MACs, depending on their field properties. Our findings show that especially the use of short polynomial-
evaluation MACs should be avoided if the underlying field has a smooth multiplicative order.

Keywords: Cryptanalysis, Galois/Counter Mode, AES-GCM, Cycling Attacks, Weak Keys.

1 Introduction

Authenticated encryption modes and algorithms provide confidentiality and integrity protection in a sin-
gle processing step. This results in performance and cost advantages as data paths can be shared.

The Galois/Counter Mode (GCM) has been standardized by NIST [14] to be used in conjunction
with a 128-bit block cipher for providing authenticated encryption functionality. When paired with the
AES [13] algorithm, the resulting AES-GCM combination has been used as a replacement to dedicated
hash-based HMAC [1] in popular cryptographic protocols such as SSH [9], IPSec [11] and TLS [16].

In AES-GCM, data is encrypted using the Counter Mode (CTR). A single AES key K is used to
both encrypt data and to derive authentication secrets. The component that is used by GCM to produce
a message authentication code is called GHASH. GCM also supports Additional Authenticated Data
(AAD) which is authenticated using GHASH but transmitted as plaintext.

The GHASH algorithm belongs to a widely studied class of Wegman-Carter [19, 20] polynomial
MACs. These were originally proposed in context of polynomial evaluation independently by three au-
thors [6, 18, 5]. A good overview of their genealogy and evolution is by Bernstein [3, 2]. The security
bounds known for these algorithms indicate that a n-bit tag will give 2−

n
2 security against forgery [3,

17].
In this paper we give further evidence that this is not only the security lower bound but an upper bound

as well. It can be argued that universal hashes sacrifice communication bandwidth for convenience as
traditional hash-based MACs are designed to reach the information theoretic 2−n bound against message
forgery and are therefore technically somewhat inferior, especially for short MACs. The security against
cycling attacks depends very sharply on the properties of the underlying field.

This paper is structured as follows. We give a description of GHASH in Section 2, followed by a key
observation regarding collisions derived from cycles in Section 3. Section 4 contains an analysis of cycle
lengths and group orders. In Section 5 we discuss the probability of successful forgery. Section 6 briefly
considers targeted attacks against underlying protocols. Section 7 contains a test and experimental results



related to cycle lengths. We discuss the security of other polynomial mac constructions in Section 8 and
conclude in Section 9.

2 Description of GHASH

Let X be a concatenation of unencrypted authenticated data, CTR-encrypted ciphertext, and padding.
This data is split into m 128-bit blocks Xi:

X = X1 || X2 || · · · || Xm.

AES is used to derive the root authentication key H = EK(0). The same AES key K is also used as
the data encryption key. In the present work we assume that H is unknown to the attacker as the scheme
would be otherwise trivially breakable.

GHASH is based on operations in the finite field GF(2128). Horner’s rule is used in this field to
evaluate the polynomial Y .

Ym =

m∑
i=1

Xi ×Hm−i+1. (1)

Figure 1 illustrates how this value is usually computed (together with the CTR mode). The authen-
tication tag is finalized with T = Ym + EK(IV || 031 || 1), assuming that a 96-bit Initialization Vector
(IV) is used. The IV value must never be reused as that would lead to the “forbidden attack” discussed
by Joux in [10].

AES AES AES AES

P1 P2 P3 P4

C1 C2 C3 C4

AES

H

Y

K K K K

K

1 1 1

0

1

IV || 03010

Fig. 1. Basic operation of first four rounds of GCM-CTR (without unencrypted authenticated data or padding). Here � denotes
regular modular addition, ⊕ bitwise XOR operation, and � multiplication in GF(2128). The counter is initialized with IV
and incremented by 1 for each block. This is used to to produce a keystream that is XORed over plaintext blocks Pi to
produce ciphertext blocks Ci (or vice versa). The lower half of the diagram shows how the authentication tag is processed; each
authenticated block is XORed over the state Y and multiplied with H = EK(0). The final processing of the authentication tag
Y is omitted from this picture.



3 Collisions from Weak Keys

It has been observed that if EK(0) = H = 0, the polynomial Y evaluates to zero and the security of
GHASH breaks down. In fact, some sources assume that this pathological case is the only weak key [8].
AES keys K that produce this fixed point are not known.1 However, It is easy to see why such keys
should exist for AES, especially when the size of K is more than 128 bits.

Our main observation is that sometimes the powers of H will repeat in a relatively short cycle. A
trivial example occurs when H is equal to the identity element 1, which will lead to all powers being
equal. Due to the commutativity of addition in Equation 1, a GHASH collision can be achieved by
swapping any two ciphertext blocks Xi and Xj . This amounts to message forgery.

More generally, if we know that Hm−i+1 = Hm−j+1 with i 6= j, we may simply swap ciphertext
blocks Xi and Xj and the resulting authentication tag stays unmodified which amounts to message
forgery. This can be easily observed from Equation 1. Elementary group theory tells us that the powers
of H will repeat in cycles which are determined by n = ord(H), the multiplicative order of H . Hence
we may produce collisions by swapping Xi and Xi+nm for arbitrary i and m.

4 Cycle Lengths and Group Orders

From Lagrange’s theorem in group theory we know that all subgroups divide the group of order 2128−1.
Numbers of this type factor into Fermat numbers

22
n − 1 =

n∏
i=1

22
i−1

+ 1. (2)

We can easily obtain the full factorization of 2128 − 1:

3 ∗ 5 ∗ 17 ∗ 257 ∗ 641 ∗ 65537 ∗ 274177 ∗ 6700417 ∗ 67280421310721. (3)

As this is a “smooth number”, we can see that there are classes of H and therefore K values that produce
cycles of length n = 1, 3, 5, 15, 17, 51, . . .; any one of the 29 = 512 subset products of the primes in
Equation 3 is a valid group order.2

4.1 Illustrating Multiplicative Subgroup Cycles

Due to the peculiar way finite field arithmetic is defined in the GCM standard [14], the identity element
with ord(H) = 1 is:

H = 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Apparently this was considered as the “first bit” by those who originally implemented GCM. Otherwise
standard polynomial arithmetic is used with the field representation defined by the reducing polynomial
x128 + x7 + x2 + x+ 1.

The following two elements will produce a cycle of length ord(H) = 3 (the cycle obviously goes
through the identity as well):

H = 10 D0 4D 25 F9 35 56 E6 9F 58 CE 2F 8D 03 5A 94
H = 90 D0 4D 25 F9 35 56 E6 9F 58 CE 2F 8D 03 5A 94

These four elements have ord(H) = 5:

1 Some block ciphers such as GOST allow such fixed-point keys to be very easily found.
2 The term smooth number comes from factorization theory and indicates that a number factors into a large number of small

primes.



H = 46 36 BD BD 1C 76 43 D3 4E E4 BB 1B F9 CA 08 4F
H = 92 17 8D 40 26 DA 1D CA 42 96 77 87 30 EB 9A 9E
H = 82 C7 C0 65 DF EF 4B 2C DD CE B9 A8 BD E8 C0 0A
H = D6 E6 F0 98 E5 43 15 35 D1 BC 75 34 74 C9 52 DB

We do not know which actual AES keys produce these H values, nor do we recommend testing against
these particular values as the probability of hitting them is exceedingly small.

Note that a cycle of length such as 15 = 3 ∗ 5 also contains the beforementioned component groups
of order 1, 3 and 5, in addition to the 8 unique elements that can act as a generator of the cycle of order
15. This is entirely analogous to arithmetic in the addition group of integers modulo 15; 0 will generate
a "cycle" of one element when repeatedly added to itself, 5 and 10 will generate a cycles of order 3, the
four elements { 3, 6, 9, 12 } cycles of order 5 and the rest of the numbers will have order 15. This is
illustrated in Figure 2.
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Fig. 2. The cycle of length 15 generated by the element H = C4 F1 7D D8 C3 99 08 FF 93 2A 02 B3 44 22 C8 45. This is one
of eight elements that generate a multiplicative subgroup in GCM’s GF(2128) which is isomorphic to the additive group Z15.
The identity element and subgroups of sizes 3 and 5 are also demonstrated. There are 512 multiplicative subgroups of different
sizes in this particular field.



5 Message Forgery

We know that the field GF(2128) offers a generous serving of 29 = 512 different multiplicative sub-
groups. Figure 3 shows that these are quite evenly distributed in the range due to the nearly log-uniform
progression of the factors.

In our attack the adversary does not know H but will simply attempt a blind forgery by swapping
two (or more) message blocks in transit as discussed in Section 3.

It is easy to show that it is sufficient that the group order divides the distance between swapped
elements. Since each subgroup of size n has exactly n elements, we arrive at the following observation:

Theorem 1. Let n be a number satisfying gcd(2128 − 1, n) = n. Blindly swapping blocks Xi and Xj ,
where i ≡ j ( mod n) will result in a successful forgery with probability of at least n+1

2128
for some random

H .

Proof. The distance congruence implies that the distance between Xi and Xj is a multiple of n. The
gcd(2128 − 1, n) = n condition implies that n is one of the 29 = 512 possible multiplicative subgroup
sizes in GF(2128). If indeed ord(H) | n then H i = Hj and the forgery is successful due to commutativity
of equation 1. We observe that the cycles are unique; there are n members in a subgroup of size n and
the set of n elements is unique to each subgroup size. Hence the probability of hitting one of these cycle
elements is n

2128
. In addition there is the pathological case H = 0 which completes the proof. ut

If the gcd condition given in Theorem 1 does not hold, we have no reason to expect that the forgery
is successful with a probability higher than 1

2128
.

Assuming that an oracle has indicated a successful message forgery, any number of consecutive
forgeries can be produced with probability 1 if the key remains unchanged (IV may change).
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Fig. 3. GCM / GHASH: probability of hitting a multiplicative subgroup (cycle) of given (or smaller) size with a random
authentication generator H in GF(2128). For comparison we also graph the security for GF(2127), which is entirely contained
in the lower and right borders of the graph due to the fact that its multiplicative group order 2127 − 1 is a prime.



6 Targeted Multiple Bit Forgeries

Our attacks enable elaborate message forgeries against authenticated encryption hybrids such as GCM
due to the fact that the CTR encryption mode behaves like a stream cipher; flipping a ciphertext bit will
result the corresponding plaintext bit to be flipped. This is especially true for lightweight protocols that
combine a short binary polynomial MAC with a stream cipher.

If ord(H)|(i− j) the authentication tag will remain valid as long as the equation

Xi ×Hm−i+1 +Xj ×Hm−j+1 = c (4)

holds for some (unknown) constant c related to the authentication tag. If we write Hm−i+1 = Hm−j+1 =
Hc, this can be simplified to

Xi +Xj = c×H−1
c . (5)

We see that the authentication tag will be valid if the sum of ciphertext blocks on the left side of Equa-
tion 5 remains constant. One may therefore flip individual bits in block Xi if the corresponding bit in
Xj is also flipped. Any number of such modifications can be done to a message without affecting the
probability of success (assuming that the same distance is used) indicated by Theorem 1.

7 Testing for AES-GCM Weak Keys

We know that finding weak H values is easy, so a natural question arises on how to determine weak AES
keys K that produce these weak H roots.

To determine group order, we use a simple algorithm which is related to the Silver-Pohlig-Hellman
algorithm for discrete logarithms [15]. Our algorithm is based on the following elementary observation:

Theorem 2. Let p be one of the prime divisors given in Equation 3. If and only if p divides ord(H) we
have

H
2128−1

p 6= 1. (6)

Proof. Let g be a generator of the full multiplicative group; ord(g) = 2128 − 1. Then each element
H 6= 0 can be expressed as a power H = gh for some h, 0 ≤ h < 2128 − 1. Raising an element to
power q, where q | 2128 − 1, sets the index modulo q to zero: (gh)q = gqh. Since 2128−1

p is divisible with
all prime divisors qi of the group order except p, we see that the condition of Equation 6 only holds if
h 6= 0 (mod p), which is equivalent to the condition p | ord(H). ut

By performing the exponentiation test of Theorem 2 for each one of the nine prime divisors of 2128−1
in Equation 3, we may completely determine the multiplicative order of H .

7.1 An Efficient Algorithm for Subgroup Size

Raising a finite field element to a Fermat Fn = 22
n
+ 1 power can be done efficiently. It is well known

that squaring operation is “linear” in GF(2n) [7]. For GF(2128), a unique 128×128 bit matrix M0 exists
that satisfies

X2 = M0X (7)

for all X . In the following M0X denotes a matrix multiplication where X is interpreted as a vector of
128 bits and X × X = X2 is a multiplication where X is interpreted as a (polynomial) member of
GF(2128).

By squaring M0, we obtain M1 = M2
0 which satisfies X4 = M1X for all X . By repeating this

process we can rapidly compute M0,M1, . . . ,M6 that satisfy

X22
i

= MiX. (8)



Once the matrices (table lookups) Mi have been initialized, raising the authentication key H to a
Fermat number power can be achieved with:

HFn = MnH ×H. (9)

Therefore this operation can be made with a table lookup (multiplication with Mn) and a single Galois
Field multiplication. The matrices need to be computed only once as they are independent from particular
H .

Since 2128−1 =
∏6

i=0 Fi, checking whether the group order is of H is divisible with Fermat number
Fi involves raising H to all Fermat powers Fj except Fi. For example, to check whether or not group
order is divisible with F3 = 257, we may see if this equation holds:

M6(M5(M4(M2(M1(M0H ×H)×H)×H)×H)×H)×H = 1. (10)

The Fermat numbers F5 and F6 are not primes (unlike F0, F1, F2, F3 and F4 which are indeed the
only known Fermat primes). Here the technique involves first powering H to all Fermat powers except
F5 = 641 ∗ 6700417 or F6 = 274177 ∗ 67280421310721. Then then we use a conventional square-
multiply exponentiation method to individually check these two subfactors.

In practice the matrix Mi multiplication is implemented as byte-based table lookups with seven
16× 256× 128 - bit tables. The initialization of these tables is very fast as Mi+1 can be developed from
Mi with a loop of 16 ∗ 256 table lookups. Significant speedups are achieved by reusing partial results.

7.2 Experimental Results

Using the techniques outlined in the previous subsection, we have developed a reasonably efficient cycle
determination code specifically for GCM’s GF(2128), together with an AES-128 key setup and encryp-
tion function for deriving H values from K values.

Our implementation is currently able to fully determine the order of 25000 AES keys per second on
a low-end Linux laptop that has a single 1.7 gHz AMD V140 processor.

Over couple of days we tested 232 AES-128 keys and found progressively smaller subgroups:

n ≈ 2126.4 K = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02

n ≈ 2125.6 K = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 03

· · ·
n ≈ 296.52 K = 00 00 00 00 00 00 00 00 00 00 00 00 24 3E 8B 40

n ≈ 296.00 K = 00 00 00 00 00 00 00 00 00 00 00 00 37 48 CF CE

n ≈ 293.93 K = 00 00 00 00 00 00 00 00 00 00 00 00 42 87 3C C8

n ≈ 293.41 K = 00 00 00 00 00 00 00 00 00 00 00 00 EC 69 7A A8

As indicated by Figure 3, a significantly smaller group than 2128−32 = 296 was found with 232 effort,
due to the large number of multiplicative subgroup sizes available in GF(2128).

There is clearly room for improvement. The search is fully parallelizable, and hence a massively
parallel FPGA or GPU-based search could be performed to find subgroups of magnitude n ≈ 264 or less.

8 Other Polynomial-Evaluation MACs

The security of Polynomial-evaluation MACs against attacks of this type can be determined from the fac-
torization of the group size in straightforward fashion. Trivial changes can introduce radical differences.

One may consider this difference by comparing the binary field GF (2127) and the prime field
GF(2127 − 1). Here the binary field is perfectly secure due to the fact that 2127 − 1 is indeed a prime



(if the message is processed in 127-bit blocks). However, the latter prime field has a multiplicative order
2127 − 2 which factors spectacularly into 15 pieces and is exceptionally weak against a cycling attack!
We note that the HASH127 MAC is based on the latter [4]. This is illustrated in Figure 3.

If a prime field is to be used, we recommend Sophie Germain primes where q = (p − 1)/2 is also
a prime. Such a field has well-understood cycle properties which may be easily determined using the
Legendre symbol from elementary number theory. A practical alternative to GCM would use a Sophie
Germain prime such as GF (2128+12451), which is slightly larger than the 2128 to deter trivial collisions.

It is clear that risks rise quadratically when GCM is used with a 64-bit block cipher as suggested in
Appendix A of [12]. There is a substantial risk of hitting a bad long-term key and therefore we recom-
mend against using the 64-bit GCM.

9 Conclusions and Future Work

We have shown that the GHASH algorithm has other weak key classes besides the trivial H = 0 case
considered in current literature [8]. This is a result of the multiplicative group of GF(2128) having a
particularly smooth order.

Our attacks allow specific plaintext bits to be targeted by modifying ciphertext bits, which can have
a devastating effect when a short polynomial MAC over a binary field is combined with a stream cipher
in a (lightweight) communication protocol. The probability of randomly hitting an exploitable weak key
with a AES-GCM cryptographic protocol such as SSH [9], IPSec [11] or TLS [16] is very small.

However, malicious players may exploit subtle weaknesses in cryptographic protocols in surprising
ways. One feature of cycle attacks is that an attacker may first test for short cycles and then force a
re-keying event if the test fails; once a long-term key with a short cycle is found, she may exploit it any
number of times.

We have also described a straightforward method of detecting GHASH weak keys. We performed an
exhaustive experiment that found many AES-128 keys that produce H with order below n ≈ 296.

We suggest that binary fields GF(2n) with prime 2n − 1 or Sophie Germain prime fields are used
in constructions of this type as this minimizes the total number of weak keys. This was illustrated with
the surprising observation that GF(2127) is perfectly secure against this type of attack while GCM’s
GF(2128) is not.

One interesting future research direction and open question is the feasibility of mapping the weak H
values to K symmetric keys with various block ciphers other than AES.
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Abstract. In this paper, we analyze the security of RIPEMD-128 against collision attacks. The
ISO/IEC standard RIPEMD-128 was proposed 15 years ago and may be used as a drop-in replace-
ment for 128-bit hash functions like MD5. Only few results have been published for RIPEMD-128,
the best being a preimage attack for the first 33 steps of the hash function with complexity 2124.5. In
this work, we provide a new assessment of the security margin of RIPEMD-128 by showing attacks
on up to 48 (out of 64) steps of the hash function. We present a collision attack reduced to 38 steps
and a near-collisions attack for 44 steps, both with practical complexity. Furthermore, we show
non-random properties for 48 steps of the RIPEMD-128 hash function, and provide an example for
a collision on the compression function for 48 steps.

For all attacks we use complex nonlinear differential characteristics. Due to the more complicated
dual-stream structure of RIPEMD-128 compared to its predecessor, finding high-probability charac-
teristics as well as conforming message pairs is nontrivial. Doing any of these steps by hand is almost
impossible or at least, very time consuming. We present a general strategy to analyze dual-stream
hash functions and use an automatic search tool for the two main steps of the attack. Our tool is
able to find differential characteristics and perform advanced message modification simultaneously
in the two streams.

Keywords: hash functions, RIPEMD-128, collisions, near-collisions, differential characteristic, mes-
sage modification, automatic tool

1 Introduction

In the last few years, the cryptanalysis of hash functions has become an important topic within
the cryptographic community. Especially the collision attacks on the MD4 family of hash func-
tions have weakened the security assumptions of many commonly used hash functions. Still,
most of the existing cryptanalytic work has been published for this particular family of hash
functions [17,19,20]. In fact, practical collisions have been shown for MD4, MD5, RIPEMD and
SHA-0. For SHA-1, a collision attack has been proposed with a complexity of about 263 [18].
However, some members of this family including the ISO/IEC standard RIPEMD-128 (the suc-
cessor of RIPEMD) seems to be more resistant against these attacks. In this paper, we analyze
the security of RIPEMD-128 against collision attacks and show that the security margin is less
than expected.

Related Work. Since its proposal 15 years ago only a few results have been published for
RIPEMD-128. Most published results are concerning the preimage resistance of the hash function
[13,16]. The best currently known attack is a preimage attack for 33 steps and 36 intermediate
steps of the hash function with a complexity only slightly faster than the generic complexity of
2128 [16]. The only work regarding the collision resistance of RIPEMD-128 has been published by
Mendel et al. [11], where the application of the differential attacks on RIPEMD by Dobbertin [5]
and Wang et al. [17] is studied. However, due to the increased number of steps and the fact that
the two streams are more different than in RIPEMD, they concluded that RIPEMD-128 is secure
against this type of attacks.



Our Contribution. In this paper, we first provide a general strategy to analyze dual-stream
hash functions in Sect. 2. We analyze different methods to find high-probability differential char-
acteristics which work for both streams. Similar as in the attack on RIPEMD [17], characteristics
in two streams are impossible with a high probability. Therefore, in our attacks an automatic
search tool is essential for finding valid differential characteristics [4, 10]. This is especially im-
portant in the first round of a hash function where characteristics are usually quite dense. In
this first round, one usually assumes that conditions imposed by the characteristic can be ful-
filled efficiently using message modification techniques. However, message modification is much
more difficult in the dual-stream case since two state words are updated using a single mes-
sage word. This reduced freedom could in general be compensated with hand-tuned advanced
message modification techniques [8, 9, 15, 20]. However, another contribution of our work is to
provide a fully automatic tool which can be used to find conforming message pairs in the first
round of a dual-stream hash function.

Table 1. Summary of our new and previous results on RIPEMD-128.

component attack steps complexity generic reference

hash collision 38 example, 214 264 Sect. 4

hash near-collision 44 example, 232 247.8 Sect. 5.1

hash non-randomness 48 270 276 Sect. 5.2

compression collision 48 example, 240 264 Sect. 5.3

hash preimage 33 2124.5 2128 [13]

hash preimage interm. 35 2121 2128 [13]

hash preimage interm. 36 2126.5 2128 [16]

We apply our attack strategy and tools to the ISO/IEC standard RIPEMD-128 which we
describe in Sect. 3. Using our automatic tools, we are able to construct the first practical collisions
for up to 38 steps of RIPEMD-128 with a complexity of 214. We describe the collision attack in
details in Sect. 4. The attack can be extended (Sect. 5) to practical near-collisions on 44 steps
with complexity 232. Furthermore, we provide a theoretical distinguisher of the hash function for
48 steps (3 out of 4 rounds) and show that 3 rounds of the RIPEMD-128 compression function
are not collision free. Our results are summarized in Table 1, together with all known previous
results. Finally, we conclude in Sect. 6 and discuss directions of future work on hash functions
with parallel state update transformation.

2 Cryptanalysis of Dual-Stream Hash Functions

In this section, we describe our attack strategy for the cryptanalysis of dual-stream hash func-
tions. The general attack strategy is based on the recent results in cryptanalysis of the MD4-
family of hash functions [17, 20]. However, the application of this strategy is nontrivial in the
case of dual stream hash functions. Since in each step, one message word is used to update two
state words, the freedom of an attacker in finding valid differential characteristics and perform-
ing message modification is limited. Hence, a more careful analysis is required to overcome this
problem.

2.1 Collision Attacks on Hash Functions

In the following, we first give a brief overview of the attack strategy used in the recent collision
attacks on the MD4-family of hash functions [17,20]. All attacks basically use the same strategy
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which we adopt for dual-stream hash functions. The high-level strategy can be summarized as
follows:

1. Find a characteristic for the hash function that holds with high probability after the first
round of the hash function.

2. Find a characteristic (not necessary with high probability) for the first round of the hash
function.

3. Use message modification techniques to fulfill conditions imposed by the characteristic in the
first round. This increases the probability of the characteristic.

4. Use random trials to find values for the remaining free message bits such that the message
follows the characteristic.

The most difficult and important part of the attack is to find a good differential characteristic for
both the first round and the remaining rounds of the hash function, since this defines the final
attack complexity. There are several methods to find good differential characteristics. The second
important part of the attack is to find conforming inputs for the complex nonlinear differential
characteristic in the first round of the hash function using message modification techniques.

2.2 Collision Attacks on Dual-Stream Hash Functions

In the following, we will describe our approach to construct good differential characteristics and
find colliding message pairs for dual-stream hash functions. We focus on hash functions like
RIPEMD-128, but the general idea is applicable to any hash function with two or more streams.

Finding suitable differential characteristics. If the two streams of the hash function are
the same except for constant additions, the same differential characteristic can be used in both
streams. For instance, in the case of RIPEMD, the permutation and rotation values are indeed
equal for both streams. Hence, it is sufficient to find a collision-producing characteristic for
only one stream (3 rounds) and apply it simultaneously to both streams [17]. Nevertheless,
the number of necessary conditions increases for two streams. Hence, it is more likely to have
contradicting conditions. In fact, Wang et al. reported that among 30 selected collision-producing
characteristics only one can produce a real collision.

If the two streams are more different, we first need to find a differential characteristic for the
hash function after round 1, which holds with a high probability in both streams. One approach
is to find such characteristics is to use a linearized model of the hash function and algorithms
from coding theory [2, 7, 14]. This works quite well for hash functions with a regular message
expansion and step update transformation (like SHA-1), and can be applied to dual-stream hash
functions in a straight-forward way.

However, the linearization approach does not work well for hash functions with a permutation
of words in the message expansion and different rotation values in the state update transforma-
tion (RIPEMD-128 and RIPEMD-160). One usually gets linear differential characteristics with
high Hamming weight and hence, a high complexity. However, for such hash functions, we can
still make use of the approach of Wang et al. in the attacks on MD4, RIPEMD and MD5 [17,20].
The idea is to use differences in one or more message words to find local (or inner) collisions
within a few steps in the last round(s) of the hash function. Then a suitable characteristic for
the remaining steps, preferably also using short local collisions, has to be constructed. Although
this is obviously more difficult for dual-stream hash functions, we were able to construct such
high-probability differential characteristics for reduced RIPEMD-128 (see Sect. 4.1).

Once, the characteristic after round 1 is fixed we need to find a characteristic (not necessary
with high probability) for the first round of the hash function for both streams. Note that
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in the previous part of the attack it might still be possible to construct inner collisions with
hand by choosing the differences carefully. However, to construct a valid nonlinear differential
characteristic for both streams in the first round, an automatic search tool is needed. While one
can use complex differential characteristics in both streams, we aim for differential characteristics
that are sparse in at least one of the two streams, since such sparse characteristics will then also
reduce the complexity of the message modification step.

Using message modification techniques. Once we have fixed the differential characteristic
for both streams we start with the message search. In the first round, the freedom of the whole
message block can be used to get a conforming message pair for the first 16 steps. For single-
stream hash function, basic message modification techniques simply choose conforming state
words and invert each step update transformation to get the message word [20]. However, as
already noted by Wang et al. [17], message modification is more complicated for two streams
since the conditions on two state words need to be fulfilled using a single message word. While in
RIPEMD the same message word is used in the same step of the left and right stream, this is not
the case in RIPEMD-128, which significantly increases the complexity of message modification.

In the attack on RIPEMD, two techniques have been proposed exploiting the freedom of other
message bits using carry effects, the Boolean function and previous message words. The same
rotation values in RIPEMD allow an easier application of this idea since it is still possible to fulfill
conditions from LSB to MSB. However, for streams with different rotation values, previously
corrected conditions may become invalid again. In general, conditions on two state words using
a single message word can be fulfilled using advanced message modification techniques. Many
dedicated techniques have been proposed in recent years [8, 9, 15, 20], which could also be used
to fulfill conditions in the first round of dual-stream hash functions.

To simplify the message modification we use a more general approach. Instead of complicated,
dedicated techniques, we use an automated tool for the message modification in the first round.
To be more precise, we use the same tool as for the differential path search in the first round.
Instead of searching for valid differential characteristics in both streams, we search for valid
bit-wise assignments of 0’s and 1’s to the message and state bits in the first round. Since we
solve for conforming message words bit-wise, a different message word permutation, different
rotation values and carry effects are handled automatically, similar as in the search for differential
characteristics. Moreover, this approach can be generalized to any ARX based design.

The disadvantage of our automated bit-wise approach is a slightly higher complexity, com-
pared to a hand-tuned word-wise approach. However, this increased costs can be amortized
by randomizing message words at the end of round 1 to find solutions efficiently for the high-
probability characteristic of the remaining rounds.

2.3 Automatic Search Tool

The application of the above strategies is far from being trivial and requires an advanced set
of techniques and tools to be successful. Due to the increased complexity of dual-stream hash
functions with different streams, finding good differential characteristics by hand is almost im-
possible. Therefore, we have developed an automatic tool which can be used for finding complex
nonlinear differential characteristics as well as for solving nonlinear equations involving condi-
tions on state words and free message bits, i.e. to find confirming message pairs. Our tool is based
on the approach of Mendel et al. [10] to find both complex nonlinear differential characteristics
and conforming message pairs for SHA-2.

The basic idea is to consider differential characteristics which impose arbitrary conditions on
pairs of bits using generalized conditions [4]. Generalized conditions are inspired by signed-bit

4



differences and take all 16 possible conditions on a pair of bits into account. Table 2 lists all
these possible conditions and introduces the notation for the various cases.

Table 2. Notation for possible generalized conditions on a pair of bits [4].

(Xi, Xi
∗) (0, 0) (1, 0) (0, 1) (1, 1)

? X X X X
- X - - X
x - X X -
0 X - - -
u - X - -
n - - X -
1 - - - X
# - - - -

(Xi, X
∗
i ) (0, 0) (1, 0) (0, 1) (1, 1)

3 X X - -
5 X - X -
7 X X X -
A - X - X
B X X - X
C - - X X
D X - X X
E - X X X

Using these generalized conditions and propagating them in a bitsliced manner, we can
construct complex differential characteristics in an efficient way. The basic idea of the search
algorithm is to randomly pick a bit from a set of bit positions with predefined conditions, impose
a more restricted condition and compute how this new condition propagates. This is repeated
until an inconsistency is found or all unrestricted bits from the set are eliminated. Note that
this general approach can be used for both, finding differential characteristics and conforming
message pairs.

For example, the search strategy for finding nonlinear characteristics works as follows (for a
more detailed description of the search algorithm or how the conditions are propagated we refer
to [4, 10]):

1. Define a set of unrestricted bits (?) and unsigned differences (x).
2. Pick a random bit from the set.
3. Impose a zero-difference (-) on unrestricted bits (?), or randomly choose a sign (u or n) for

unsigned differences (x).
4. Check how the new conditions propagate.
5. If an inconsistency occurs, remember the last bit and jump back until this bit can be restricted

without leading to a contradiction.
6. Repeat from step 2 until all bits from the set have been restricted.

We use the same strategy to find conforming input pairs for a given differential characteristic.
Instead of picking an unrestricted bit (?) we pick an undetermined bit without difference (-)
and assign randomly a value (0 or 1) until a solution is found:

1. Define a set of undetermined bits without difference (-).
2. Pick a random bit from the set.
3. Randomly choose the value of the bit (0 or 1).
4. Check how the new conditions propagate.
5. If an inconsistency occurs, remember the last bit and jump back until this bit can be restricted

without leading to a contradiction.
6. Repeat from step 2 until all bits from the set have been restricted.

Note that the efficiency of finding a conforming message pair can be increased if the unde-
termined bits without difference (-) are picked in a specific order. The order strongly depends
on the specific hash function. In general, fully determining word after word turns out to be a
good approach for word-wise defined ARX-based hash functions. Using this approach, we can
instantly (milliseconds) find solutions for the first round of dual-stream hash functions without
the need for hand-tuned advanced message modification techniques.
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3 Description of RIPEMD-128

RIPEMD-128 was designed by Dobbertin, Bosselaers and Preneel in [6] as a replacement for
RIPEMD. It is an iterative hash functions based on the Merkle-Damg̊ard design principle [3,12]
and processes 512-bit input message blocks and produces a 128-bit hash value. To guarantee
that the message length is a multiple of 512 bits, an unambiguous padding method is applied.
For the description of the padding method we refer to [6].
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Fig. 1. Structure of the RIPEMD-128 compression function.

Like its predecessor, the function of RIPEMD-128 consists of two parallel streams. In each
stream the state variables are updated corresponding to the message block and combined with
the previous chaining value after the last step, depicted in Figure 1. While RIPEMD consists of
two parallel streams of MD4, the two streams are designed differently in the case of RIPEMD-128.
In the following, we describe the compression function in detail.

Each stream of the compression function of RIPEMD-128 basically consists of two parts: the
state update transformation and the message expansion. Furthermore, RIPEMD-128 consists
of a feed-forward where the input and output state words are added in a different order. For a
detailed description we refer to [6].

State Update Transformation. The state update transformation of each stream starts from a
(fixed) initial value IV of four 32-bit words B−4, B−3, B−2, B−1. and updates them in 4 rounds
of 16 steps each. In each step one message word is used to update the four state variables.
Figure 2 shows one step of the state update transformation of each stream of RIPEMD-128.

The function f is different in each round. fr is used for the r-th round in the left stream,
and f5−r is used for the r-th round in the right stream (r = 1, . . . , 4):

f1(x, y, z) = x⊕ y ⊕ z,
f2(x, y, z) = (x ∧ y) ∨ (¬x ∧ z),
f3(x, y, z) = (x ∨ ¬y)⊕ z,
f4(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z).

A step constant Kr is added in every step; the constant is different for each round and for each
stream. For the actual values of the constants we refer to [6], since we do not need them in the
analysis. For both streams the following rotation values s given in Table 3 are used.
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Fig. 2. The step update transformation of RIPEMD-128.

Table 3. The rotation values s for each step and each stream of RIPEMD-128.

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

left
Round 1 11 14 15 12 5 8 7 9 11 13 14 15 6 7 9 8

stream
Round 2 7 6 8 13 11 9 7 15 7 12 15 9 11 7 13 12
Round 3 11 13 6 7 14 9 13 15 14 8 13 6 5 12 7 5
Round 4 11 12 14 15 14 15 9 8 9 14 5 6 8 6 5 12

right
Round 1 8 9 9 11 13 15 15 5 7 7 8 11 14 14 12 6

stream
Round 2 9 13 15 7 12 8 9 11 7 7 12 7 6 15 13 11
Round 3 9 7 15 11 8 6 6 14 12 13 5 14 13 13 7 5
Round 4 15 5 8 11 14 14 6 14 6 9 12 9 12 5 15 8

Message Expansion. The message expansion of RIPEMD-128 is a permutation of the 16
message words in each round. Different permutations are used for the left and the right stream.
For both streams the message words are permuted according to Table 4.

Table 4. The index of the message words mi which are used as the expanded message words Wi in each step and
each stream of RIPEMD-128.

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

left
Round 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

stream
Round 2 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8
Round 3 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12
Round 4 1 9 11 10 0 8 12 4 13 3 7 15 14 5 6 2

right
Round 1 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12

stream
Round 2 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2
Round 3 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13
Round 4 8 6 4 1 3 11 15 0 5 12 2 13 9 7 10 14

Feed-Forward. After the last step of the state update transformation, the initial values
B−4, . . . , B−1 and the output values of the last step of the left stream B63, . . . , B60 and the
last step of the right stream B′63, . . . , B

′
60 are combined, resulting in the final value of one iter-

ation (feed-forward). The result is the final hash value or the initial value for the next message
block:

B−1 �B62 �B′61
B−4 �B63 �B′62
B−3 �B60 �B′63
B−2 �B61 �B′60
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4 Collision Attacks on RIPEMD-128

To find collisions in reduced RIPEMD-128 we use the strategy proposed in Sect. 2.2. The attack
consists of 3 major parts given as follows:

1. Starting Point: Find a good start setting, i.e. differences in only a few specific message
words that may lead in a differential characteristic with high probability after step 15.

2. Differential Characteristic: Search for a high-probability differential characteristic for the
whole hash function where at most one stream has a low probability in step 0-15.

3. Message Pair: Find a colliding message pair using automated message modification and
random trials.

4.1 Finding a Starting Point

In MD4-like hash functions, differences are introduced and canceled using differences in the
expanded message words. Since RIPEMD-128 has two streams with different permutation of
message words, the first step in the attack is to determine those message words which may
contain differences. We have several constraints such that the whole attack can be carried out
efficiently.

First of all, we aim for a high probability differential characteristics after step 15 in both
streams. Such high probability differential characteristics can be constructed if the differences
introduced by the message words are canceled immediately using local collisions spanning over
only a few steps. The shortest local collision in the MD4 step update goes over 4 steps. However,
due to the different message permutation used in each stream, it is difficult to achieve short
local collisions in both streams simultaneously.

Another possibility is to cancel all differences in each stream as early as possible in round
2 and find message words, such that new differences are introduced late in round 3. A further
constraint is to have a short local collision and hence sparse differential characteristic in one
stream between step 0-15 such that the message modification part can be carried out more
efficiently (see Sect. 2.2).

A single message word which seems to be a good choice is m13. In this case, we get one
short local collision between round 1 and round 2 in the left stream and one slightly longer local
collision between round 1 and round 2 in the right stream. Both local collisions end in the first
few steps of round 2. Furthermore, the message word m13 introduces differences very late in the
last few steps of round 3 (see Fig. 3). Note that a similar approach was used by Dobbertin in
the attack on RIPEMD [5]. Unfortunately, no local collision spanning over 5 steps in the left
stream between round 1 and 2 can be constructed which renders the attack impossible.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12

5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13

left

right

impossible

Fig. 3. Using only message word m13.

A better choice is to use differences in two message words, like it was done by Wang et al.
in the attack on RIPEMD [17]. If we choose differences in m0 and m6 then we get for the left
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stream one local collision over 6 steps in round 1, and another local collision over 4 steps in
round 2. Note that in the right stream a short local collision over 4 steps (step 16-20) is actually
impossible. This is due to the fact that for f3 (ONX-function), a local collision over 4 steps with
differences in only two message does not exist. Hence, we combine in the right stream the two
local collisions resulting in one long local collision between step 3 and 20. In round 3, the first
difference is added in step 38. Hence, using this starting point we can get a collision for 38 steps
of RIPEMD-128.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12

5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13

left

right

Fig. 4. Using message words m0 and m6.

4.2 Finding a Differential Characteristic

Once we have fixed the starting point, i.e. the message words which may contain differences,
we use an automated tool to find high-probability differential characteristics. The 38-step start
characteristic given in Table 8 is the starting point for almost all our attacks. Note that we do
not fix the message difference prior to the search to allow the tool to find an optimal solution.

In order to get a differential characteristics resulting in a low attack complexity, we aim for
a low Hamming weight difference in state word B21. The best we could find is a differential
characteristic with 2 differences in B21 (see Table 9). Furthermore, the Boolean function XOR
in the first round of the left stream provides less freedom in constructing local collisions than
the non-linear functions. Hence, we first search for a differential characteristic in the left stream.

Once the characteristic in the left stream is fixed, we use an arbitrary first message block to
fulfill the conditions on the chaining value. Since we have 14 conditions on the chaining value
(see Table 9), finding the 1st block has a complexity of about 214.

Next, we search for a differential characteristic in the right stream. To get a low complexity
for the message search in round 2, we search for characteristics with only a few differences in
state words B′14 and B′15. Using our search tool, we can find many differential characteristic for
the left and right stream within only a few minutes on an ordinary PC. A colliding differential
characteristic for 38 steps of RIPEMD-128 is given in Table 10.

4.3 Finding a Confirming Message Pair

To fulfill all conditions imposed by the differential characteristic in the first round, we need
to apply message modification techniques. Since we have many conditions in the first 6 steps
of the left stream and the first 15 steps of the right stream this may not be an easy task.
However, using our tool and generalized conditions, we can do message modification for the first
16 steps efficiently and immediately within milliseconds on a PC. Of course, by hand-tuning
basic message modification the complexity might be improved, but using our tool this phase
of the message search can be fully automated. Furthermore, the cost of message modification
is fully amortized by randomizing e.g. message word m12 to find a solution also for the high-
probability characteristic in round 2 (and 3). Using the approximately 230 possible value for m12,
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we can find a solution for the differential characteristic (complexity 214 after round 1) including
message modification in less than a second on our PC. The resulting message pair for a collision
on 38 steps of RIPEMD-128 is given in Table 5.

Table 5. Collision for 38 steps of RIPEMD-128.

M1
9431bddf 7b9827d6 f54a64a9 df41a58a fd707a50 dad10eb6 48b0cc76 be66cb8c

ab3b7afa 084ba98e ab0a4798 2a4b0d06 a79bf8b7 3fd6008a 4da2112d 849c5b9c

M2
952bc70f d0840848 eafffa57 0ca3c38a 45383ffb ddc6a9a1 796f1e20 0b9ff55f

ddb80113 f0ffe1b5 b7d75dc0 82c7298f f2c442f4 96cbf293 c441d662 06e9eec2

M∗2
952bc50e d0840848 eafffa57 0ca3c38a 45383ffb ddc6a9a1 79ef1e21 0b9ff55f

ddb80113 f0ffe1b5 b7d75dc0 82c7298f f2c442f4 96cbf293 c441d662 06e9eec2

∆M2
00000201 00000000 00000000 00000000 00000000 00000000 00800001 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

H2 a0a00507 fd4c7274 ba230d53 87a0d10a

H∗2 a0a00507 fd4c7274 ba230d53 87a0d10a

∆H2 00000000 00000000 00000000 00000000

5 Extending the Attack to More Steps

In this section, we will show how the collision attack on 38 steps can be extended to more steps of
the hash function by using a weaker attack setting, i.e. near-collisions and subspace distinguisher.
Furthermore, we present a free-start collision for 48 steps of RIPEMD-128 compression function.

5.1 Near-Collisions for the Hash Function

It is easy to see that by appending 6 steps to the characteristic for 38 steps (see Table 11) one
gets a near-collision for 44 steps of the hash function with only 6 differences in the hash value.
However, note that while in the collision attack one can always append a message block with
the correct padding this can not be done for a near-collision. Hence, in order to construct a
near-collision for the hash function the padding has to be fixed on beforehand. Luckily, we have
such a high amount of freedom in our attack the we can easily fix m15,m14 and parts of m13 in
the attack to guarantee that the padding is correct. The result is a practical near-collision (see
Table 6) for 44 steps of RIPEMD-128 with complexity of 232. Note that the generic attack to
find a near-collision with only 6 differences in the hash value has a complexity of about 247.8.

Table 6. Near-collision for 44 steps of RIPEMD-128.

M1
2ca95052 425a8f73 08be4537 c790e019 0dcc7d4e 29075123 75327262 8d0d4803

1e57a6a4 73550688 59263eb1 98c6f6ce f03b8b4b 62d3fdf7 638db196 68c0b7b3

M2
aa1437ef f3646663 c339343a 52c43a1a 779995d5 7b6bd784 e927bb74 5e7cb217

7af2ac15 93392ccf 07e847cf 86318b70 d9d33105 809693dd 000003b8 00000000

M∗2
aa1435ee f3646663 c339343a 52c43a1a 779995d5 7b6bd784 e9a7bb75 5e7cb217

7af2ac15 93392ccf 07e847cf 86318b70 d9d33105 809693dd 000003b8 00000000

∆M2
00000201 00000000 00000000 00000000 00000000 00000000 00800001 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

H2 92dd7ef7 b1f15ee4 b3e6a250 9db2131b

H∗2 929d5ef7 b1f15ee4 b3e6a250 bdb21b5f

∆H2 00402000 00000000 00000000 20000844
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5.2 Non-Randomness for the Hash Function

In this section, we show non-random properties for 48 steps (3 rounds) of the hash function. It
is based on the differential q-multicollision distinguisher introduced by Biryukov et al. [1] and
the characteristic for 44 steps which is extended to 48 steps (see Table 11).

Differential q-multicollisions were introduced by Biryukov et al. in the cryptanalysis of the
block cipher AES-256 [1]. Note that in [1] the attack is described for a block cipher. However,
it can be easily adapted for a hash function. Below we repeat the basic definition and lemma,
we need for the attack on RIPEMD-128.

Definition 1. A set of one difference and q inputs

{∆M ; (M1), (M2), · · · , (M q)}

is called a differential q-multicollision for h(·) if

h(M1)� h(M1 �∆M) = h(M2)� h(M2 �∆M)

= · · · = h(M q)� h(M q �∆M).

The complexity of the generic attack is measured in the number of queries.

Lemma 1. To construct a differential q-multicollision for an ideal has function with an n-bit
output an adversary needs at least

O(q · 2
q−1
q+1 ·n)

queries on the average for small q.

The proof for Lemma 1 works similar as in [1] for an ideal cipher. Finally, based on the character-
istic given in Table 11 we construct a differential q-multicollision to show non-random properties
for RIPEMD-128 reduced to 48 steps. The attack has a complexity of about 4 · 268 while the
generic attack has a complexity of about 276.

5.3 Collisions for the Compression Function

When attacking the compression function an adversary has additional the possibility to inject
difference in the chaining input. Using this additional freedom and the same techniques as for the
collision attack on the RIPEMD-128 hash function (see Section 4), we can construct a collision
for the compression function of RIPEMD-128 reduced to 48 steps. In Table 12 the differential
characteristic is shown, resulting in a practical collision for 48 steps of the compression function
with a complexity of 240. The example is given in Table 7.

6 Conclusions and Future Work

In this work, we have presented new results on the ISO/IEC standard RIPEMD-128, a dual-
stream hash function where the message permutation and rotation values are different in the
two streams. More specifically, we have presented a collision attack on reduced RIPEMD-128
and get practical collisions for 38 steps of the hash function with a complexity of about 214.
Furthermore, our attack can be extended to near-collisions on 44 steps with complexity 232 and
a theoretical distinguisher on the hash function for 48 steps (3 out of 4 rounds) with complexity
270. Furthermore, we present practical collisions for the RIPEMD-128 compression function, also
reduced to 48 steps with complexity 240.

Apart from these new results, we have outlined a strategy to analyze ARX-based dual-
stream hash functions more efficiently. More precisely, we have shown how to automate the most
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Table 7. Free-start collision for 48 steps of RIPEMD-128.

H0 5a1d2fbd cd6d40c7 128dd546 900e0e65

H∗0 5a1927bd edad5cc7 128dd542 900e0e65

∆H0 00040800 20c01c00 00000004 00000000

M1
06083719 9ae0b19b 7ffae1ec 637041ad 28d722d7 fa0082c3 5e78f84e 416ee5e7

faf2b4fc 56738a9f 363c6155 cc7d7ae3 0cb5fc95 b362a16f 6cac81a9 cc11fedd

M∗1
06083719 9ae0b19b 7ffae1ec 637041ad 28d722d7 fa0082c3 5e78f84e 416ee5e7

faf2b4fc 56738a9f 363c6155 cc7d7ae3 0cb5fc95 b362a16f 6cac81a9 cc11fedd

∆M1
00000200 00000000 00000000 00000000 00000000 00000000 00000001 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

H1 e6428c57 a9f1f589 fc045baf a9cdbc1f

H∗1 e6428c57 a9f1f589 fc045baf a9cdbc1f

∆H1 00000000 00000000 00000000 00000000

difficult parts of an attack involving more than one stream: finding a differential characteristic
and performing message modification in the first round. In particular, message modification
had to be hand-tuned or was omitted in previous attacks on ARX-based hash functions. What
remains for an attacker is to determine a good starting point (possibly using tools from coding
theory) and to assist the tools in the order of guessing words or parts of the state, to improve
the overall complexity.

Ideally, these tools can immediately be applied to more complicated hash functions. However,
the obtained results depend mainly on the choice of the starting point for the nonlinear tool. If
no good starting point can be found or the search space is too large, no attack can be obtained.
Future work is to analyze also other, stronger dual-stream hash functions like RIPEMD-160.
Furthermore, the tools and techniques used in this paper can also be applied to other ARX-
based hash functions, where more than one state word is updated using a single message word.
Examples are SHA-2 or the SHA-3 candidates Blake and Skein.
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A Differential Characteristics and Conditions

Table 8. Starting point for a collision on 38 steps of RIPEMD-128.

i ∇Bi ∇B′i ∇mi

-4 --------------------------------

-3 --------------------------------

-2 --------------------------------

-1 --------------------------------

0 ???????????????????????????????? -------------------------------- ????????????????????????????????

1 ???????????????????????????????? -------------------------------- --------------------------------

2 ???????????????????????????????? -------------------------------- --------------------------------

3 -------------------------------- ???????????????????????????????? --------------------------------

4 -------------------------------- ???????????????????????????????? --------------------------------

5 -------------------------------- ???????????????????????????????? --------------------------------

6 -------------------------------- ???????????????????????????????? ????????????????????????????????

7 -------------------------------- ???????????????????????????????? --------------------------------

8 -------------------------------- ???????????????????????????????? --------------------------------

9 -------------------------------- ???????????????????????????????? --------------------------------

10 -------------------------------- ???????????????????????????????? --------------------------------

11 -------------------------------- ???????????????????????????????? --------------------------------

12 -------------------------------- ???????????????????????????????? --------------------------------

13 -------------------------------- ???????????????????????????????? --------------------------------

14 -------------------------------- ???????????????????????????????? --------------------------------

15 -------------------------------- ???????????????????????????????? --------------------------------

16 -------------------------------- ????????????????????????????????

17 -------------------------------- --------------------------------

18 -------------------------------- --------------------------------

19 -------------------------------- --------------------------------

20 -------------------------------- --------------------------------

21 ???????????????????????????????? --------------------------------

22 -------------------------------- --------------------------------

23 -------------------------------- --------------------------------

24 -------------------------------- --------------------------------

25 -------------------------------- --------------------------------

26 -------------------------------- --------------------------------

27 -------------------------------- --------------------------------

28 -------------------------------- --------------------------------

29 -------------------------------- --------------------------------

30 -------------------------------- --------------------------------

31 -------------------------------- --------------------------------

32 -------------------------------- --------------------------------

33 -------------------------------- --------------------------------

34 -------------------------------- --------------------------------

35 -------------------------------- --------------------------------

36 -------------------------------- --------------------------------

37 -------------------------------- --------------------------------
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Table 9. Starting point for a collision on 38 steps of RIPEMD-128 after characteristic for the left stream is fixed.
Bits with gray background have one additional conditions.

i ∇Bi ∇B′i ∇mi

-4 --------------------------------

-3 --------------------------------

-2 --------------------------------

-1 --------------------------------

0 -------unnnnunnnnnnnn----------- -------------------------------- ----------------------u--------u

1 ------n--------------nuuuunnnnnn -------------------------------- --------------------------------

2 ------unnunnnnnnnnnnnnnnnnnnnnnn -------------------------------- --------------------------------

3 -------------------------------- -----------u--------u----------- --------------------------------

4 -------------------------------- ????????-----------????????????? --------------------------------

5 -------------------------------- ???????????????????????????????? --------------------------------

6 -------------------------------- ???????????????????????????????? --------n----------------------n

7 -------------------------------- ???????????????????????????????? --------------------------------

8 -------------------------------- ???????????????????????????????? --------------------------------

9 -------------------------------- ???????????????????????????????? --------------------------------

10 -------------------------------- ???????????????????????????????? --------------------------------

11 -------------------------------- ???????????????????????????????? --------------------------------

12 -------------------------------- ???????????????????????????????? --------------------------------

13 -------------------------------- ???????????????????????????????? --------------------------------

14 -------------------------------- ???????????????????????????????? --------------------------------

15 -------------------------------- ----------------------x--------x --------------------------------

16 -------------------------------- ----------------------n--------n

17 -------------------------------- --------------------------------

18 -------------------------------- --------------------------------

19 -------------------------------- --------------------------------

20 -------------------------------- --------------------------------

21 ----------------------n--------n --------------------------------

22 ----------------------0--------0 --------------------------------

23 ----------------------1--------1 --------------------------------

24 -------------------------------- --------------------------------

25 -------------------------------- --------------------------------

26 -------------------------------- --------------------------------

27 -------------------------------- --------------------------------

28 -------------------------------- --------------------------------

29 -------------------------------- --------------------------------

30 -------------------------------- --------------------------------

31 -------------------------------- --------------------------------

32 -------------------------------- --------------------------------

33 -------------------------------- --------------------------------

34 -------------------------------- --------------------------------

35 -------------------------------- --------------------------------

36 -------------------------------- --------------------------------

37 -------------------------------- --------------------------------
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Table 10. Characteristic for a collision on 38 steps of RIPEMD-128. Bits with gray background have one additional
conditions.

i ∇Bi ∇B′i ∇mi

-4 --------------------------------

-3 --------------------------------

-2 --------------------------------

-1 --------------------------------

0 -------unnnnunnnnnnnn----------- -------------------------------- ----------------------u--------u

1 ------n--------------nuuuunnnnnn -----------0--------0----------- --0-----------------------------

2 ------unnunnnnnnnnnnnnnnnnnnnnnn -----------0--------0----------- --------------------------------

3 -------------------------------- --0100-----u--------u----0110--- --------------------------------

4 -------------------------------- --1101----1-1-------1----1111--- ---0----------------------------

5 -------------------------------- --unnn00--1-1-------1----unnn-00 --------------------------------

6 -------------------------------- --000010--n-u---00--n----0111-10 --------n----------------------n

7 -------------------------------- 001nuuuu--0-----11111----1001-nu --------------------------------

8 -------------------------------- 110100----1-----un11n-------u--- --------------------------------

9 -------------------------------- un1n00----------1-unn---1---1--- --------------------------------

10 -------------------------------- --n0u1----------0-10000-----1--- --------------------------------

11 -------------------------------- --0nuu------------01n11-----n--- --------------------------------

12 -------------------------------- --110--------------nuuu--------- --------------------------------

13 -------------------------------- ---01--------------11-1--------- --------------------------------

14 -------------------------------- -------------------00-1--------0 --------------------------------

15 -------------------------------- ----------------------n--------n --------------------------------

16 -------------------------------- ----------------------n--------n

17 -------------------------------- ----------------------0--------0

18 -------------------------------- --------------------------------

19 -------------------------------- --------------------------------

20 -------------------------------- --------------------------------

21 ----------------------n--------n --------------------------------

22 ----------------------0--------0 --------------------------------

23 ----------------------1--------1 --------------------------------

24 -------------------------------- --------------------------------

25 -------------------------------- --------------------------------

26 -------------------------------- --------------------------------

27 -------------------------------- --------------------------------

28 -------------------------------- --------------------------------

29 -------------------------------- --------------------------------

30 -------------------------------- --------------------------------

31 -------------------------------- --------------------------------

32 -------------------------------- --------------------------------

33 -------------------------------- --------------------------------

34 -------------------------------- --------------------------------

35 -------------------------------- --------------------------------

36 -------------------------------- --------------------------------

37 -------------------------------- --------------------------------
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Table 11. Starting point for all other attacks on the hash function after characteristic for the left stream is fixed.
Bits with gray background have one additional conditions.

i ∇Bi ∇B′i ∇mi

-4 --------------------------------

-3 --------------------------------

-2 --------------------------------

-1 --------------------------------

0 -------unnnnunnnnnnnn----------- -------------------------------- ----------------------u--------u

1 ------n--------------nuuuunnnnnn -------------------------------- --------------------------------

2 ------unnunnnnnnnnnnnnnnnnnnnnnn -------------------------------- --------------------------------

3 -------------------------------- -----------u--------u----------- --------------------------------

4 -------------------------------- ????????-----------????????????? --------------------------------

5 -------------------------------- ???????????????????????????????? --------------------------------

6 -------------------------------- ???????????????????????????????? --------n----------------------n

7 -------------------------------- ???????????????????????????????? --------------------------------

8 -------------------------------- ???????????????????????????????? --------------------------------

9 -------------------------------- ???????????????????????????????? --------------------------------

10 -------------------------------- ???????????????????????????????? --------------------------------

11 -------------------------------- ???????????????????????????????? --------------------------------

12 -------------------------------- ???????????????????????????????? --------------------------------

13 -------------------------------- ???????????????????????????????? 10000000------------------------

14 -------------------------------- ???????????????????????????????? 00000000000000000000001110111000

15 -------------------------------- ----------------------x--------x 00000000000000000000000000000000

16 -------------------------------- ----------------------n--------n

17 -------------------------------- --------------------------------

18 -------------------------------- --------------------------------

19 -------------------------------- --------------------------------

20 -------------------------------- --------------------------------

21 ----------------------n--------n --------------------------------

22 ----------------------0--------0 --------------------------------

23 ----------------------1--------1 --------------------------------

24 -------------------------------- --------------------------------

25 -------------------------------- --------------------------------

26 -------------------------------- --------------------------------

27 -------------------------------- --------------------------------

28 -------------------------------- --------------------------------

29 -------------------------------- --------------------------------

30 -------------------------------- --------------------------------

31 -------------------------------- --------------------------------

32 -------------------------------- --------------------------------

33 -------------------------------- --------------------------------

34 -------------------------------- --------------------------------

35 -------------------------------- --------------------------------

36 -------------------------------- --------------------------------

37 -------------------------------- --------------------------------

38 -------------------------------- --n----------------------n------

39 -------------------------------- --0----------------------0------

40 -------------------------------- --1----------------------1------

41 ---------0--------0------------- --------------------------------

42 --0------u--------u------0------ --------------------n--------n--

43 --n------1--------1------n------ --------------------0--------0--

44 --1---0------------------1---0-- --------------------1--------1--

45 --1---n----0------0--------0-n-- ---------u--------u-------------

46 --u---1----u------n--------u-1-- ---------0---n----0---n---------

47 --------------------n-------n--- --------------------------------
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Table 12. Characteristic for a free-start collision for 48 steps of RIPEMD-128 compression function. Bits with
gray background have one additional conditions.

i ∇Bi ∇B′i ∇mi

-4 -------------u------u-----------

-3 --0-----00---------011-------1--

-2 -00-00--10-011-----101---10--u--

-1 -1n-11--nu-011-----nnn---10--1-1

0 un1nnnnn00nu01---un101nuunnnn0n0 010-1u-----nuu--1-101101-010-1-1 -----------0----------u--------1

1 nnnnnnnnnnnnnnnnn--010---01--n-u 1nn-n1-----n00-01-110110-n11-00u -------------------100----------

2 --0-----10--unnnnnnnnnnnnnnnnnnn u1n--1000-1n10-0n-un-nnn-unu---1 -----------11--------0---1------

3 --1-----00---------110---10----0 0n0--n1111-01u-u---01uu--1---nu1 -------------------------------1

4 -------------------110---10----1 u11---unn0u11111---001---10--0nu ------------------------110--111

5 -------------------------------- u1----011uuun010-0-1nu----0-01u1 --------------------------------

6 -------------------------------- 0u----10u11uu0n--1-n----10u---0u -------------------------------n

7 -------------------------------- 00------n1n0101--n-0----111---11 -------------------0------------

8 -------------------------------- -1------0unnnnn0000u0000un1----0 --------------------------------

9 -------------------------------- --------110---n11u10111-10n00--- 0----------1---------0----------

10 -------------------------------- ---------01---0unnnnnnnn1u011--- --------------------------------

11 -------------------------------- --------------1011-----nuuuuu--- -------0------------------------

12 -------------------------------- ---------------100-----010------ --------------------------------

13 -------------------------------- -----------------------101------ ------------------------------11

14 -------------------------------- ----------------------0--------- --------------------------------

15 -------------------------------- ----------------------n--------- ------------------------1-------

16 -------------------------------- ----------------------n---------

17 -------------------------------- ----------------------0---------

18 -------------------------------- --------------------------------

19 -------------------------------- --------------------------------

20 -------------------------------- --------------------------------

21 ----------------------n--------- --------------------------------

22 ----------------------0--------- --------------------------------

23 ----------------------1--------- --------------------------------

24 -------------------------------- --------------------------------

25 -------------------------------- --------------------------------

26 -------------------------------- --------------------------------

27 -------------------------------- --------------------------------

28 -------------------------------- --------------------------------

29 -------------------------------- --------------------------------

30 -------------------------------- --------------------------------

31 -------------------------------- --------------------------------

32 -------------------------------- --------------------------------

33 -------------------------------- --------------------------------

34 -------------------------------- --------------------------------

35 -------------------------------- --------------------------------

36 -------------------------------- --------------------------------

37 -------------------------------- --------------------------------

38 -------------------------------- -------------------------n------

39 -------------------------------- -------------------------0------

40 -------------------------------- -------------------------1------

41 ---------0---------------------- --------------------------------

42 ---------u---------------0------ --------------------n-----------

43 ---------1---------------n--0--- --------------------0-----------

44 ---------1---------------1--10-- --------------------1-----------

45 --0---------------0--0---1--nu-- ---------u----------------------

46 --u---------------u--n------11-- ---------0---n------------------

47 -------------------nu----------- --------------------------------
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Abstract. We present a new concept of biclique as a tool for preimage attacks, which employs
many powerful techniques from differential cryptanalysis of block ciphers and hash functions.
The new tool has proved to be widely applicable by inspiring many authors to publish new results
of the full versions of AES, KASUMI, IDEA, and Square. In this paper, we demonstrate how our
concept results in the first cryptanalysis of the round-reduced Skein hash function, and describe an
attack on the SHA-2 hash function with more rounds than before.
Keywords: SHA-2, SHA-256, SHA-512, Skein, SHA-3, hash function, meet-in-the-middle attack,
splice-and-cut, preimage attack, initial structure, biclique.

1 Introduction

In recent years, tremendous progress has been made in developing preimage attacks on hash
functions. Major breakthrough happened in 2008 when the so-called splice-and-cut framework
was introduced. Its applications to MD4 and MD5 [2, 25], and later to Tiger [11] brought amaz-
ing results. Internal properties of message schedule appeared to be limiting application of this
framework to SHA-x family [1, 3]. However, the new concept of biclique that we are going to
introduce in this paper allows to mitigate such obstacles as demonstrated by recent results on
preimage attacks and, surprisingly, key recovery attacks on block ciphers.

This paper presents the first work on the concept of biclique cryptanalysis. We concentrate
on the hash function setting alone, and focus on new definitions and algorithms. As applications,
we present an attack on the Skein hash function (the only one existing so far) and briefly describe
attacks on SHA-2 hash functions.

Splice-and-cut framework and its progress. Both splice-and-cut and meet-in-the-middle attacks
exploit the property that a part of a primitive does not make use of particular key/message bits.
If the property holds, the computation of this part remains the same if we flip those bits in the
other part of a primitive. Assume the property is mutual, i.e. such bits can be found for both
parts (also called chunks). Then a cryptanalyst prepares a set of independent computations for
all possible values of those bits (called neutral bits) and subsequently checks for the match in
the middle. The gain of the attack is proportional to the number of neutral bits.

Sasaki and Aoki observed [2, 25] that compression functions with permutation-based message
schedule are vulnerable to this kind of attack as chunks can be long. They also proposed various
improvements. For example, since the number of computations to match decreases together with
the number of neutral bits, the match can be performed on a small part of the state. In turn,
the matching bits depend on fewer message bits, which in fact leads to an even larger number
of neutral bits and a reduction in complexity.

The most interesting trick, however, is a so called initial structure [3, 26]. The initial structure
can be informally defined as an overlapping of chunks, where neutral bits, although formally
belonging to both chunks, are involved in the computation of the proper chunk only. Concrete
examples of the initial structure are much more sophisticated and hard to generalize. While the



other improvements of splice-and-cut framework seem exhausted already, the concept of initial
structure has a large potential and few boundaries.

Our contributions. We replace the idea of the initial structure with a more formal and general
concept of biclique, which provides us with several layers of understanding and applications. We
derive a system of functional equations linking internal states several rounds apart. Then we
show that it is equivalent to a system of differentials, so the full structure of states can be built
out of a structure of trails. These structures are two sets of internal states with each state having
a relation with all states in another set. In terms of graph theory, these structures are referred to
as bicliques. A differential view, that builds up on this formalism, allows us to apply numerous
tools from collision search and enhanced differential attacks, from message modifications to
local collisions. We propose several algorithms constructing these bicliques, which are generic
and flexible.

Our first and simple example of biclique application is the hash function and the SHA-3
finalist Skein-512, which lacks any attacks in the hash setting. We develop an attack on 22
rounds of Skein-512, which is comparable to the best attacks on the compression function that
survived the last tweak. Our attack on the compression function of Skein-512 utilizes many more
degrees of freedom as we control the full input, and thus results in a 37-round attack.

Our second group of applications is the SHA-2 family. Enhanced with the differential analysis,
we heavily use differential trails in SHA-2, message modification techniques from SHA-1 and
SHA-0, and trail backtracking techniques from RadioGatun, Grindahl, SHA-1, and many others.
As a result, we build attacks on 45-round SHA-256 and 50-round SHA-512, both the best attacks
in the hash mode. Regarding the compression functions, we penetrate up to seven more rounds,
thus reaching 52 rounds and violating the security of about 80% of SHA-256. We summarize
and compare our findings in Table 1.

Throughout the paper, and in line with most cryptanalytic work, we seek to obtain results
on as many rounds as possible. For the case of full 72-round Skein-512, we also study ways to
use the MITM approach to speed-up brute force search and mention the result in Table 1 as
well.

Reference Target Steps Complexity Memory (words)

Pseudo-preimage Second Preimage Preimage

Section 4 Skein-512 22 2508 2511 - 26

Section 6 Skein-512 37 2511.2 - - 264

Appendix E.1 Skein-512 72 - 2511.71 - negl.

[1, 11] SHA-256 43 2251.9 2254.9 2254.9 26

Section 5 SHA-256 45 2253 2255.5 2255.5 26

Section 6 SHA-256 52 2255 - - 26

[1, 11] SHA-512 46 2509 2511.5 2511.5 26

Section 5 SHA-512 50 2509 2511.5 2511.5 24

Section 6 SHA-512 57 2511 - - 26

Table 1. New (second) preimage attacks on Skein-512 and the SHA-2 family.

Other applications of biclique cryptanalysis

Soon after the initial circulation of this work, the idea of biclique cryptanalysis found other
applications. Among them we mention key recovery faster than brute force for AES-128, AES-
192, and AES-256 by Bogdanov et al. [8]. Cryptanalysis of AES employed algorithms for biclique



construction which are partly covered in Section 3. In this context we also mention new and
improved results on Kasumi by Jia et al. [14] and IDEA by Biham et al. [7] as well as more
results announced both publicly [12, 19, 30] and privately.

2 Bicliques

In this section we introduce splice-and-cut preimage attacks with bicliques. We consider hash
functions with block cipher based compression functions H = EN (X)⊕X, where E is the block

cipher keyed with parameter N (notation
N−→ and

N←− will be used for E computed in forward
and backward direction respectively). Depending on the design, parameters (N , X) will be: (M ,
CV ) for the most popular Davies-Meyer mode, (CV , M) for Matyas-Meyer-Oseas mode, where
CV is the chaining variable and M is the message.

Let f be a sub-cipher of E, and N = {N [i, j]} be a group of parameters for f . Then a
biclique of dimension d over f for N is a pair of sets {Qi} and {Pj} of 2d states each such that

Qi
N [i,j]−−−→
f

Pj . (1)

A biclique is used in the preimage search as follows (Figure 1). First, we note that if N [i, j]
is a preimage, then

E : X
N [i,j]−−−→ Qi

N [i,j]−−−→
f

Pj
N [i,j]−−−→ H.

An adversary selects a variable v outside of f (w.l.o.g. between Pj and H) and checks, for
appropriate choices of sub-ciphers g1 and g2, if

∃i, j : Pj
N [i,j]−−−→
g1

v
?
= v

N [i,j]←−−−
g2

Qi.

A positive answer yields a candidate preimage. Here, to compute v from Qi, the adversary first
computes X and then derives the output of E as X ⊕H.

To benefit from the meet-in-the-middle framework the variable v is chosen so that g1 and g2
are independent of i and j, respectively:

Pj
N [∗,j]−−−−→
g1

v
?
= v

N [i,∗]←−−−
g2

Qi.

Then the complexity of testing 22d messages for preimages is computed as follows:

C = 2d(Cg1 + Cg2) + Cbicl + Crecheck,

where Cbicl is the biclique construction cost, and Crecheck is the complexity of rechecking the
remaining candidates on the full state. We explain how to amortize the biclique construction in
the next section. Clearly, one needs 2n−2d bicliques of dimension d to test 2n parameters.

3 Biclique construction algorithms

Here we introduce several algorithms for the biclique construction. They differ in complexity
and requirements to the dimension of a biclique and properties of the mapping f .

For most algorithms we adopt a differential view on bicliques as it allows for numerous tools
from differential cryptanalysis to be employed. Consider a single mapping in Equation (1)

Q0
N [0,0]−−−−→
f

P0. (2)



Q0

Q2

P0

P1

message

CV

P2

Q1

M [3, 3]

M [0, 0]

M [i, ∗] M [∗, j]

Q3 P3

M [i, j]

M [∗, 3]

M [∗, 0]

M [3, ∗]

M [0, ∗]

H

M [i, ∗]

M [3, ∗]

M [0, ∗]

Fig. 1. Biclique of dimension 2 in the meet-in-the-middle attack on a Davies-Meyer compression function.

We call this a basic computation. Consider the other mappings as differentials to the basic
computation:

∇i
∆Ni,j−−→
f

∆j , (3)

so that
Qi = Q0 ⊕∇i, Pj = P0 ⊕∆j , N [i, j] = N [0, 0]⊕∆N

i,j .

Vice versa, if a computation (2) is a solution to 22d differentials in (3), then it is a basic compu-
tation for a biclique.

In the following algorithms we show how to reduce the number of differentials needed for a
biclique, and hence construct a biclique efficiently.

Algorithm 1. Let the differences in the set N be defined as the following linear function:

∆N
i,j = ∆N

j ⊕∇Ni (4)

Let us fix Q0 and construct Pj as follows:

Q0
N [0,j]−−−−→
f

Pj . (5)

As a result, we get a set of trails:

0
∆Nj−−→
f

∆j . (6)

Let us also construct Qi out of P0:

Qi
N [i,0]←−−−
f

P0, (7)

and get another set of trails:

∇i
∇Ni−−→
f

0. (8)

Suppose that the trails (8) do not affect active non-linear elements in the trails (6). Then Qi
are solutions to the trails (6), so we get the biclique equation:

Qi
N [i,j]−−−→
f

Pj . (9)



To estimate the complexity, assume that the computation (7) does not affect active non-linear
elements in the trails (6) with probability 2−t. Then the probability that 2d such computations

affect no condition is 2−t2
d
. Therefore, Equation (9) is satisfied with probability 2−t2

d
, so we need

2t2
d

solutions to Equation (6) to build a biclique (which is feasible for small d). This approach
is used in the preimage attack on the hash function Skein-512.

For non-ARX primitives with predictable diffusion this algorithm can be easily made deter-
ministic. For example, it is easy to construct the truncated differential trails for AES [8] and
Square that do not share active non-linear components with probability 1 (Figure 2). As a result,
an attack algorithm can be simply explained using a picture of trails. �

Trails
share no active elements

Biclique

Fig. 2. Biclique out of non-interleaving trails.

Algorithm 2. (Modification of Algorithm 1 for the case when the hash function operates in
Davies-Meyer mode, and we can control internal state and injections of message M within the
biclique). Assume that the mapping f uses several independent parts (blocks) of message M via
the message injections (like in SHA-2). Consider a message group with property (4) but do not
define the messages yet. Choose a state Q0 satisfying sufficient conditions to build sets of trails
(6) and (8) that do not share active non-linear components. Then find N [0, 0] - a message such
that the computation

Q0
N [0,0]−−−−→
f

P0

conforms to both sets of trails. Since the sets do not share active non-linear components, we get

Qi
N [i,j]−−−→
f

Pj ,

where Qi = Q0 ⊕∇i, Pj = P0 ⊕∆j .

Since we control message injections in f , we are able to define N [0, 0] block by block similarly
to the trail backtracking approach [5]. If the message schedule is non-linear, the differential trails
(6) and (8) may depend on N [0, 0]. Furthermore, parts of message N [0, 0] may remain undefined
as they are not used in f . A procedure that ensures that the message N [0, 0] is well-defined, and
the trails (6) and (8) do not contradict, was first proposed in [1] and is referred to as message
compensation. �

Algorithm 3. (for bicliques of dimension 1) We apply this rebound-style [20] algorithm if the
mapping f is too long for differential trails with reasonable number of sufficient conditions. Then
we split it into two parts f1 and f2 and consider two differential trails with probabilities p and
q, respectively:

0
∆N−−→
f1

∆, ∇ ∇N−−→
f2

0. (10)



We fix the state S between f1 and f2, and consider a quartet of states:

S, S ⊕∆, S ⊕∇, S ⊕∆⊕∇.

Suppose that a quartet of states is a quartet in the middle of the boomerang attack, which
happens with probability p2q2 for a random N under an approriate independency assumption.
Then we derive input states Q0, Q1 and output states P0, P1, which are linked as follows (see
also Figure 3):

Q0
N−→
f1

S
N−→
f2

P0;

Q0
N⊕∆N−−−−→
f1

S ⊕∆ N⊕∆N−−−−→
f2

P1;

Q1
N⊕∇N−−−−→
f1

S ⊕∇ N⊕∇N−−−−→
f2

P0;

Q1
N⊕∆N⊕∇N−−−−−−−−→

f1
S ⊕∆⊕∇ N⊕∆N⊕∇N−−−−−−−−→

f2
P1.

Therefore, we get a biclique, where the set of parameters N is defined as follows:

N [0, 0] = N ; N [0, 1] = N ⊕∆N ; N [1, 0] = N ⊕∇N ; N [1, 1] = N ⊕∆N ⊕∇N .�

We use Algorithm 2 in the attacks on SHA-256 and SHA-512, and Algorithm 3 is applied
in the preimage attack on the Skein compression function. In practice, we use freedom in the
internal state and in the message injection fulfill conditions in both trails with tools like message
modification and auxiliary paths.

??

? ?

N [0, 0] N [1, 1]

N [1, 0]

N [0, 1]

Guess
difference

in computations

Resolve
in the middle

Q0 Q1

P1P0

Construct
solutions

I II III

Fig. 3. Rebound-style algorithm for biclique construction.

4 Simple case: second preimage attack on Skein-512 hash

Skein [10] is a SHA-3 finalist, and hence gets a lot of cryptanalytic attention. Differential [4]
and rotational cryptanalysis [17] led the authors of Skein to tweak the design twice. As a result,
a rotational property, which allowed cryptanalyst to penetrate the highest number of rounds,
does not exist anymore in the final-round version of Skein. Hence the best known attack are



near-collisions on up to 24 rounds (rounds 20-43) of the compression function of Skein [4, 27].
Very recently near-collisions attacks on up to 32 rounds of Skein-256 were demonstrated [29].

The cryptanalysis of the Skein hash function, however, is very limited, and since the first
publication of this work there has been no advance in this direction. Rotational attacks did not
extend to the hash function setting, and the differential attacks were not applied in this model.
In fact there is no cryptanalytic attack known on any round-reduced version of Skein at all. We
subsequently give the first attack in this arguably much more relevant setting.

Since this is the first application of our method, we prefer to give the simplest example in
the strongest model rather than attack the highest number of rounds. We consider the Skein-
512 hash function reduced to rounds 3-24 (22-round version). In addition to using the biclique
concept, one of the interesting features of our attack is that we, apparently for the first time,
utilize a statistical hypothesis test to improve the matching phase instead of a direct or a
symbolic (indirect) matching. Without it, less rounds could be covered with basically the same
computational complexity.

4.1 Description of Skein-512

Skein-512 is based on the block cipher Threefish-512 — a 512-bit block cipher with a 512-bit
key parametrized by a 128-bit tweak. Both the internal state I and the key K consist of eight
64-bit words, and the tweak T is two 64-bit words. The compression function F (CV, T,M) of
Skein is defined as:

F (CV, T,M) = ECV,T (M)⊕M,

where EK,T (P ) is the Threefish cipher, CV is the previous chaining value, T is the tweak, and
M is the message block. The tweak value is a function of parameters of message block M .

Threefish-512 transforms the plaintext P in 72 rounds as follows:

P → Add subkey K0 → 4 rounds → Add K1 → . . . → 4 rounds → Add K18 → C.

The subkey Ks = (Ks
0 ,K

s
1 , . . . ,K

s
7) is produced out of the key K = (K[0],K[1], . . . ,K[7]) as

follows:

Ks
j = K[(s+ j) mod 9], 0 ≤ j ≤ 4; Ks

5 = K[(s+ 5) mod 9] + T [s mod 3];

Ks
6 = K[(s+ 6) mod 9] + T [(s+ 1) mod 3]; Ks

7 = K[(s+ 7) mod 9] + s,

where s is a round counter, T [0] and T [1] are tweak words, T [2] = T [0] + T [1], and K[8] =
C240 ⊕

⊕7
j=0K[j] with constant C240 optimized against rotation attacks.

One round transforms the internal state as follows. The eight words I0, I1, . . . , I7 are grouped
into pairs and each pair is processed by a simple 128-bit function MIX. Then all the words are
permuted by the operation PERM. The details of these operations are irrelevant for the high-
level description, for completeness they can be found in Appendix A. We use the following
notation for the internal states in round r:

Sr−A
MIX−−−→ Sr−M

PERM−−−−−→ Sr−P

4.2 Second preimage attack on the reduced Skein-512

We consider Skein-512 reduced to rounds 3–24. In the hash function setting we are given the
message M and the tweak value T , and have to find a second preimage. We produce several
pseudo-preimages (CV,M ′) to a call of the compression function that uses 512 bits of M and then
find a valid prefix that maps the original IV to one of the chaining values that we generated.
Let f map the state after round 11 to the state before round 16. We construct a biclique of
dimension 3 for f following Algorithm 1 (Section 3):



1. Define ∆N
j = (0, j � 58, j � 58, 0, 0, 0, 0, 0) and ∇Ni = (0, 0, 0, i� 55, i� 55, 0, 0, 0).

2. Generate Q0 and compute P0, P1, . . . , P7. If the trails 0
∆Nj−−→
f

∆j are not based on the linear

difference propagation, repeat the step.

3. Compute Qi and check if the condition on active non-linear elements is fulfilled. If so, output
a biclique.

We use a differential trail that follows a linear approximation that is a variant of the 4-round
differential trail, which can be obtained in a similar way to the one presented in the paper [4]. The
number of active bits is given in Table 2, with further details of the trail provided Appendix A in
Table 3. For the trails based on the 3-bit difference ∆N

j we have 206 sufficient conditions in total.

A computation of Qi out of P0 do not affect those conditions with probability 2−0.3 (verified
experimentally). Therefore, for the eight states Pj the probability is 2−0.3·8 ≈ 2−3. We construct
a 4-round biclique with complexity at most 2206+3 = 2209. Note that we have 1024− 209 = 815
degrees of freedom left.

I0 I1 I2 I3 I4 I5 I6 I7 Conditions in the round

S12−A 3 3

S13−A 6 3 9

S14−A 6 3 3 12 24

S15−A 3 6 3 24 12 6 6 3 63

S15−P 21 9 12 4 3 18 3 37 107(messageaddition)

Table 2. Number of active bits in the most dense ∆-trail in 4 rounds of Skein-512.

Probabilistic matching. The matching variable v consists of bits 30, 31, 53 of the word 1 after
round 24. Due to carry effects, there is a small probability that those bits require the knowledge
of the full message to be computed in both directions. This probability has been computed
experimentally and equals 0.09. Therefore, a matching pair of computations yields a pseudo-
preimage with probability 2−509 · 0.09 ≈ 2−509.1, and we need to use 2506.1 bicliques for this
purpose.

1. Build a biclique of dimension 3 in rounds 12-15 with key additions (key addition + 4 rounds
+ key addition).

2. Compute forward chunk in rounds 16-19, backward chunks in rounds 8-11, and bits I130,31,53
of the the state S24−P in both directions in the partial matching procedure.

3. Check for the match in these bits, produce 23 key candidates, which get reduced to 22.9 due
to the type-I error [22], i.e. a false positive. Check them for the match on the full state.

4. Generate a new biclique out of the first one by change of key bits.

5. Repeat steps 2-5 2507.5 times and generate 2507.5−509+2.9 = 21.6 full pseudo-preimages.

6. Match one of the pseudo-preimages with the real CV0.

On step 3. We have checked experimentally that the matching bits can be computed from both
chunks independently with probability 0.91, so with probability 2−0.1 we have a type-I error,
and the candidate is discarded. Insisting on probability 1, as done in earlier work, would have
lead to a redesign of the attack for a smaller number of rounds.

Complexity. The biclique construction cost can be made negligible, since many bicliques can
be produced out of one. Indeed, we are able to flip most of the bits in the message so that the



biclique computation between the message injections remain unaffected, and only output states
are changed. Every new biclique needs half of rounds 8-11 and 16-19 recomputing, and half of
rounds 3-5 and 21-24 computing to derive the value of the matching variable. Hence each biclique
tests 26 preimage candidates at cost of (2 + 2 + 1.5) · 8 + (2 + 2 + 2) · 8 = 92 rounds of 22-round
Skein, or 22.3 calls of the compression function, taking a recheck into account. As a result, a full
pseudo-preimage is found with complexity 2508.4. We need 21.6 ≈ 3 pseudo-preimages to match
one of 2510.4 prefixes, so the total complexity is 2511.2.

5 Preimage attacks on the SHA-2 hash functions

The SHA-2 family is the object of very intensive cryptanalysis in the world of hash functions.
In contrast to its predecessors, collision attacks are no longer the major threat with the best
attack on 24 rounds of the hash function [13, 24]. So far the best attacks on the SHA-2 family
are preimage attacks on the hash function in the splice-and-cut framework [1] and a boomerang
distinguisher that is only applicable for the compression function [18]. We demonstrate that our
concept of biclique adds two rounds to the attack on SHA-256, four rounds to the attack on
SHA-512, and many more when attacking the compression functions. The number of rounds
we obtain for the compression function setting is in both cases comparable to [18], the later
however does not allow extension to the hash function nor does it violate any “traditional”
security requirement.

Details of SHA-2 hash functions specification [23] can be found in Appendix B. Since message
schedule is nonlinear, the number of attacked rounds depends significantly on the position of
the biclique. We apply the following reasoning:

– The message injections in rounds 14-15 are partially determined by the padding rules;

– Freedom in the message reduces the biclique amortized cost;

– Chunks do not bypass the feedforward operation due to high nonlinearity of the message
schedule;

– There exists a 6-round trail with few conditions easy to use as a ∇-differential.

– Chunks do not have maximal length, otherwise the biclique trail becomes too dense.

SHA-256. Taking these issues into account, we base our attack on a 6-round biclique in rounds
17-22. The full layout is provided in Table 5. The biclique is constructed with Algorithm 2,
Section 3.

SHA-512. Our attack on SHA-512 does not fix all the 129 padding bits of the last block. This
approach still allows to generated short second preimages by using the first preimage to invest
the last block that includes the padding and perform the preimage attack in the last chaining
input as the target.

For a preimage attack without a first preimage, expandable messages as e.g. described in [16]
can be used. This adds no noticeable cost as the effort for this is only slightly above the birthday
bound. In addition, the compression function attack needs to fulfill the following two properties:

Firstly, the end of the message (before the length encoding, i.e., the LSB of W 13) has to be
’1’. Secondly, the length needs to be an exact multiple of the block length, i.e., fix the last nine
bits of W 15 to ”1101111111” (895). In total eleven bits would need to be fixed for this. In the
further text we show how to fulfill these conditions.

The biclique is constructed by an algorithm similar to the attack on SHA-256 (Algorithm 2,
Section 3).



6 Attacks on the compression functions: SHA-2 and Skein

6.1 Preimage attacks on the Skein compression functions

In this section we provide an attack on the 37-round Skein-512 compression function. In the
compression function setting we control the tweak value, which gives us additional freedom both
in chunks and the construction of the biclique.

The attack parameters are listed in Table 4 in the Appendix. We build a biclique in rounds
24-31, and apply the attack to rounds 2-38, i.e., to the 37-round compression function.

Bicliques are constructed by Algorithm 3 (Section 3). We use two differential trails: based on
∆M (∆-trail) for rounds 16-19 (including key addition in round 19) and based on ∇M (∇-trail)
for rounds 20-23. The differential trails are based on the evolution of a single difference in the
linearized Skein. The ∆-trail has probability 2−52. The ∇-trail has probability 2−29.

The biclique is constructed as follows. First, we restrict to rounds 19-20, where the compres-
sion function can be split into two independent 256-bit transformations. A simple approach with
table lookups gives a solution to restricted trails with amortized cost 1 (more efficient methods
certainly exist). Then we extend this solution to an 8-round biclique by the bits of K5. We use
K5 in the messagemodification-like process and adjust the sufficient conditions in rounds 16-23.
We have 221 degrees of freedom for that (computed on a PC). As many as 96 bits of freedom do
not affect the biclique at all and are used to reduce the amortized cost to only a single round.

In the matching part we recompute 29 rounds per biclique. However, a single key bit flip
affects only half of rounds 12-15 and 24-27, and also we need to compute only a half of rounds
2-5 and 35-38. In total, we recompute 42 rounds, or 21.2 calls of the compression function per
structure, and get 2 candidates matching on one bit. The full preimage is found with complexity
2511.2.

6.2 Preimage attacks on the SHA-2 compression functions

In this section we provide short description of attacks on the SHA-2 compression functions. As
long as we do not attack the full hash function, the preimage attack on the compression function
is relevant if it is faster than 2n, though not all these attacks are convertible to the hash function
attacks. As a result, we can apply the splice-and-cut attack with the minimum gain to squeeze
out the maximum number of rounds. This implies that we consider bicliques of dimension 1.
In differential terms, we consider single bit differences ∆M

1 and ∇M1 . As a result, we get sparse
trails with few conditions, and may extend them for more rounds.

– Build 11-round biclique out of a 11-round ∇-trail in rounds 17-27 (SHA-256) and 21-31
(SHA-512). The trail is a variant of the trail in Table 6 that starts with one-bit difference.

– Construct message words in the biclique as follows. In SHA-256 fix all the message words
to constants, then apply the difference ∆M

1 to W 17, and assume the linear evolution of ∆M
1

when calculating ∆W 17+i from W 2, . . . ,W 17. Assume also the linear evolution of ∇M when
calculating ∇W 27−i from W 28, . . . ,W 42. Analogously for SHA-512.

– Build the biclique using internal message words as freedom, then spend the remaining 5
message words to ensure the ∆ and ∇-trails in the message schedule. As a result, we get the
longest possible chunks (2-16 and 28-42 in SHA-256).

Therefore, we gain 5 more rounds in the biclique, and two more rounds in the forward chunk.
This results in a 52-round attack on the SHA-256 compression function, and a 57-round attack
on the SHA-512 compression function.



7 Discussion and Conclusions

We reconsidered meet-in-the-middle attacks and introduced a new concept of bicliques. Bicliques
have large potential in attacks on narrow-pipe hash functions and block ciphers, as has been
demonstrated by recent attacks on the full versions of popular block ciphers.

To emphasize new ideas and methods behind the new concept, we focused on clear definitions
and a variety of construction algorithms. As for applications, in the main text we described basic
steps in the best attacks so far on SHA-256, SHA-512, and the SHA-3 finalist Skein, with more
details left for the Appendix. We can outline the following benefits of applying the biclique
concept:

– Use of differential trails in a biclique with a small number of sufficient conditions;
– Deterministic algorithms to build a biclique, which can be adapted for a particular primitive;
– Use of various tools from differential cryptanalysis like trail backtracking [5], message modifi-

cation and neutral bits [6, 15, 21, 28], condition propagation [9], and rebound techniques [20];
– Utilizing a statistical test for matching, instead of a direct or symbolic matching.

Overall, the differential view gives us much more freedom and flexibility compared to previous
attacks. Though all the functions in this paper are ARX-based, our technique can be as well
applied to other narrow-pipe designs.

Status of SHA-2 and Skein-512. For SHA-256, SHA-512, and Skein-512, we considered both
the hash function and the compression function setting. In all settings we obtained cryptanalytic
results on more rounds than any other known method. Using these data points, it seems safe
to conclude that Skein-512 is more resistant against splice-and-cut cryptanalysis than SHA-512.
An interesting problem to study would be possibilities for meaningful bounds on the length of
biclique structures.

For Skein-512 we also apply the meet-in-the-middle approach to obtain a computational-
complexity gain for its full 72-round version that goes beyond minimizing computations done
for the first and last rounds. It seems worthwhile to point out that this is the only hash function
in the SHA-3 finalist selection that allows for such an approach.

Future work. Apart from applying these techniques for other ciphers or hash functions, it will
be interesting to find applications for generalizations of the biclique technique, i.e. situations
were a graph is used that deviates from the biclique definition.

Acknowledgements

Part of this work was done while Christian Rechberger was with KU Leuven and visiting MSR
Redmond, and while Alexandra Savelieva was visiting MSR Redmond. This work was supported
by the European Commission under contract ICT-2007-216646 (ECRYPT II) and the Federal
Target Program “Scientific and scientific-pedagogical personnel of innovative Russia“ in 2009-
2013 under contract No. P965 from 27 May, 2010. The authors would like to thank Eik List for
useful comments on earlier versions of the paper.

References

1. Kazumaro Aoki, Jian Guo, Krystian Matusiewicz, Yu Sasaki, and Lei Wang. Preimages for step-reduced
SHA-2. In ASIACRYPT’09, volume 5912 of LNCS, pages 578–597. Springer, 2009.

2. Kazumaro Aoki and Yu Sasaki. Preimage attacks on one-block MD4, 63-step MD5 and more. In Selected
Areas in Cryptography’08, volume 5381 of LNCS, pages 103–119. Springer, 2008.



3. Kazumaro Aoki and Yu Sasaki. Meet-in-the-middle preimage attacks against reduced SHA-0 and SHA-1. In
CRYPTO’09, volume 5677 of LNCS, pages 70–89. Springer, 2009.
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A More details on Skein specification and differential trail design

The operation MIX has two inputs x0, x1 and produces two outputs y0, y1 with the following
transformation:

y0 = x0 + x1

y1 = (x1≪R(d mod 8)+1,j
)⊕ y0

The exact values of the rotation constants Ri,j as well the permutations π (which are different
for each version of Threefish) can be found in [10].

Round Active bits

Before Round 12 0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0001110000000000000000000000000000000000000000000000000000000000

After Round 12 0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0001110000000000000000000000000000000000000111000000000000000000

0001110000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

After Round 13 0001110000000000000000000000000000000000000111000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0001110000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0001110000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000

0001110000000000011100000000000000000000000111000000000001110000

After Round 14 0001110000000000000000000000000000000000000000000000000000000000

0001110000000000000000000000000000000000000111000000000000000000

0001110000000000000000000000000000000000000000000000000000000000

1111110000000011111100001110000000000011100111000000000001110000

0001110000000000011100000000000000000000000111000000000001110000

0001110000000000000000000000111000000000000000000000000000000000

0001110000000000000000000000000000000000000111000000000000000000

0001110000000000000000000000000000000000000000000000000000000000

After Round 15 1110000000000011111100001110000000000011100111000000000001110000

0000000000000000000000000000000000011100000111000000000000011100

0000000000000000011100000000111000000000000111000000000001110000

0000000000000000000000000000000000000000000110110000000000000000

0000000000000000000000000000000000000000000111000000000000000000

0000000000011100011100000000111000001110000111000000000001110000

0000000000000000000000000000000000000000000111000000000000000000

1111110011100011111100110110011111100011100000111000011101110000

Table 3. Details of the most dense ∆-trail for the result on the reduced Skein-512 hash function.

Local collision in Skein-512. If an attacker controls both the IV and the tweak he is able to
introduce difference in these inputs so that one of subkeys has zero difference. As a result, he
gets a differential which has no difference in internal state for 8 rounds. The lowest weight of
input and output differences is achieved in the following combination:

∆K[6] = ∆K[7] = ∆T [1] = δ,

which gives difference (0, 0, . . . , 0, δ) in the subkey K0 and (δ, 0, 0, . . . , 0) in K8, and zero dif-
ference in the subkey K4. The local collisions for further rounds are constructed analogously.



We use the following differences in the compression function attack to make a local collision in
rounds 8-15 and 24-31:

∆K[0] = ∆T [0] = ∆T [1] = 1� 63; ∆K[3] = ∆K[4] = ∆T [1] = 1� 63.

Biclique

Rounds Dimension ∆M bits ∇M bits Complexity Freedom used

16-23 1 K[0] K[4]63 2256 162

Chunks Matching

Forward Backward Partial matching Matching bit Matching pairs Complexity

8-15 24-31 32→ 39 = 2← 7 I325 22 21.1

Table 4. Parameters of the preimage attack on the Skein-512 compression function

B Specification of the SHA-2 Family of Hash Functions

We briefly review parts of the specification [23] needed for the cryptanalysis. The SHA-2 hash
functions are based on a compression function that updates the state of eight 32-bit state
variables A, . . . , H according to the values of 16 32-bit words M0, . . . , M15 of the message.
SHA-384 and SHA-512 operate on 64-bit words. For SHA-224 and SHA-256, the compression
function consists of 64 rounds, and for SHA-384 and SHA-512 — of 80 rounds. The full state in
round r is denoted by Sr.

The i-th step uses the i-th word W i of the expanded message. The message expansion works
as follows. An input message is split into 512-bit or 1024-bit message blocks (after padding).
The message expansion takes as input a vector M with 16 words and outputs a vector W with n
words. The words W i of the expanded vector are generated from the initial message M according
to the following equations (n is the number of steps of the compression function):

W i =

{
M i for 0 ≤ i < 15

σ1(W
i−2) +W i−7 + σ0(W

i−15) +W i−16 for 15 ≤ i < n
. (11)

where σ0(x) and σ1(x) are linear functions.

The round function of all the SHA-2 functions operates as follows:

T
(i)
1 = H i +Σ1(E

i) + Ch(Ei, F i, Gi) +Ki +W i,

T
(i)
2 = Σ0(Ai) + Maj(Ai, Bi, Ci),

Ai+1 = T
(i)
1 + T

(i)
2 , Bi+1 = Ai, Ci+1 = Bi, Di+1 = Ci,

Ei+1 = Di + T 1
(i), F

i+1 = Ei, Gi+1 = F i, H i+1 = Gi.

Here Ki is a round constant.The round function uses the bitwise boolean functions Maj and Ch,
and two GF(2)-linear functions Σ0(x) and Σ1(x). Functions Maj and Ch are defined identically
for all the SHA-2 functions:

Ch(x, y, z) = x ∧ y ⊕ x ∧ z (12)

Maj(x, y, z) = x ∧ y ⊕ x ∧ z ⊕ y ∧ z (13)



For SHA-224 and SHA-256, Σ0(x) and Σ1(x) are defined as follows:

Σ0(x) = (x≫ 2)⊕ (x≫ 13)⊕ (x≫ 22), Σ1(x) = (x≫ 6)⊕ (x≫ 11)⊕ (x≫ 25).

For SHA-384 and SHA-512, they are defined as follows:

Σ0(x) = (x≫ 28)⊕ (x≫ 34)⊕ (x≫ 39), Σ1(x) = (x≫ 14)⊕ (x≫ 18)⊕ (x≫ 41).

Operations ≫ and � denote bit-rotation and bit-shift of A by x positions to the right respec-
tively. The message schedule functions σ0(x) and σ1(x) are defined as follows for SHA-224 and
SHA-256:

σ0(x) = (x≫ 7)⊕ (x≫ 18)⊕ (x� 3), σ1(x) = (x≫ 17)⊕ (x≫ 19)⊕ (x� 10) .

and for SHA-384 and SHA-512:

σ0(x) = (x≫ 1)⊕ (x≫ 8)⊕ (x� 7) , σ1(x) = (x≫ 19)⊕ (x≫ 61)⊕ (x� 6) .

C Details on the 46-round SHA-256 attack

C.1 Biclique construction

Here we provide more details on the biclique construction algorithm:

1. Fix a group of 6-round differential trails (the one based on 3-bit difference is listed in Table 6)

∇i
∇Mi−−→ 0.

Derive the set of sufficient conditions on the internal states (Table 8).

2. Fix the message compensation equations with constants c1, c2, . . . , c9 (Section C.2).

3. Fix an arbitrary Q0 and modify it so that most of conditions in the computation Q0 → P0

are fulfilled. Derive Qi out of Q0 by applying ∇i.
4. Fix a group of 2-round trails (the one based on 3-bit difference is given in Table 7) (∆W 17 →
∆S19) as a ∆-trail (Equation (6)) in rounds 17-19.

5. Choose W 17,W 18, . . . ,W 22 and constants c8, c9 so that the conditions in the computations
Q0 → Pj , j = 0, . . . , 7 are fulfilled. Produce all Pj .

An algorithm for the biclique is detailed in Appendix, Section C.3. Finally, we produceQ0, . . . , Q7

and P0, . . . , P7 that conform to the biclique equations.

Biclique

Rounds Dimension ∆M bits ∇M bits Complexity Freedom used

17-22 3 W 17
25,26,27 W 22

22,23,31 232 416

Message compensation

Equations Constants used in the biclique

9 2

Chunks Matching

Forward Backward Partial matching Matching bits Complexity per match

2-16 23-36 37→ 38← 1 A38
0,1,2,3 23

Table 5. Parameters of the preimage attack on the 45-round SHA-256



The complexity of building a single biclique is estimated as 232. However, as many as 7
message words are left undefined in the message compensation equations, which gives us enough
freedom to reuse a single biclique up to 2256 times. The complexity to recalculate the chunks
is upper bounded by 22 calls of the compression function. The total amortized complexity of
running a single biclique and produced 22 matches on 4 bits is 23 calls of the compression
function (see details in Appendix). Since we need 2252 matches, the complexity of the pseudo-
preimage search is 2253. Therefore, a full preimage can be found with complexity approximately

21+(253+256)/2 ≈ 2255.5 by restarting the attack procedure 2
256−253

2 = 21.5 times. Memory require-
ments are approximately 21.5 × 24 words.

C.2 Message compensation.

Since any consecutive 16 message words in SHA-2 bijectively determine the rest of the message
block used at an iteration of compression function, we need to place the initial structure within
a 16-round block and define such restrictions on message dependencies that maximize the length
of chunks.

We use a heuristic algorithm to check how many steps forward and backward can be
calculated independently with a 6-step initial structure. We discovered that with W 17 and
W 22 selected as the words with neutral bits, it is possible to expand 16-round message block
{W 12, . . . ,W 27} by 10 steps backwards and 9 steps forwards, so that {W 2, . . . ,W 16} are calcu-
lated independently of W 17 , and {W 23, ...,W 36} are calculated independently of W 22. Below we
define the message compensation conditions that make such chunk separation possible (neutral
bit words are outlined in frames):

−σ1(W 25) +W 27 = c1; −W 19 − σ1(W 24) +W 26 = c2 −σ1(W 23) +W 25 = c3

− W 17 +W 24 = c4 − σ1(W 21) +W 23 = c5; −σ1(W 19) +W 21 = c6

−σ1( W 17 ) +W 19 = c7; W 12 + σ0(W
13) = c8; W 13 + W 22 = c9

(14)

Fig. 4 explains how the message compensation dependencies are constructed. Columns and
rows correspond to message words and equations respectively, where X at the intersection of
row i ad column j shows that W j is a part of ith equation. Colour of a column reflects whether
the appropriate message word is set independently of both words with neutral bits (white),
calculated using NW 1 (blue) or NW 2 (yellow). We start with {W 2, . . . ,W 11,W 22} colored
blue and {W 17,W 28, . . . ,W 36} colored yellow (Fig. 4, a) and aim to get rid of equations that
involve both ’blue’ and ’white’ message words. We split these equations and introduce constants
{c1, . . . , c8, c9} (in other words, we create additional dependencies between controlled messages
and words with neutral bits as shown in Fig. 4, b ).

It is easy to see that words W 14, . . . ,W 16,W 18, and W 20 can be chosen independently of
both W 17 and W 22, so we can assign W 14 and W 15 with 64-bit length of the message to satisfy
padding rules (additionally, 1 bit of W 13 needs to be fixed). W 18 and W 20 are additional freedom
for constructing the biclique.

C.3 Trails

The basic differential trail for the biclique is a 6-round trail in the backward direction (∆Q ←
∇M) that starts with the difference in bits 22, 23, and/or 31 in W22. The trail is briefly depicted
in Table 6 with references to the sufficient conditions (which work out for all the 7 possible
differences) in Table 8.
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Fig. 4. Message dependencies after message compensation in SHA-256

Round A B C D E F G H W Cond-s

17 - - 22,23,31 - - Λ′ - * - 1
18 - - - 22,23,31 - - Λ′ - - 3,4
19 - - - - 22,23,31 - - Λ′ - 7-11
20 - - - - - 22,23,31 - - - 12
21 - - - - - - 22,23,31 - - 13
22 - - - - - - - 22,23,31 -
23 - - - - - - - - 22,23,31

Table 6. Details for biclique in SHA-256. Differential ∇-trail (active bits). Λ′ = {6, 11, 12, 16, 17, 20, 23, 24, 29, 30}

We also use bits 25, 26, 27 as neutral in W17. To prevent this difference to interleave with the
backward trail difference in round 19, we restrict the behavior of the forward trail as specified
in Table 7. The aggregated conditions, which make each forward trail keep the backward ones
unaffected, are given in Table 8.

With three neutral bits we construct a biclique with 8 starting points for chunks in each
direction. First, we choose the initial state A17, . . . ,H17 so that the conditions 1 and 5 are
fulfilled. Then we proceed with a standard trail backtracking procedure modifying the starting
state if needed. Here we are free to use all the tools from the collision search like message
modification or tunnels. Next, in round 18 we further check whether the value of E stops carries
in the forward trail. If not, we change the value of D in the starting state accordingly. Then we
sequentially modify the initial state in order to fulfill the conditions 2-11.

The last two conditions are affected by the message words W19 and W20. We need to fulfill
three bit conditions for every W17, used in the attack. Therefore, we spend 3 · 8 · 2 = 48 de-
grees of freedom in message words W17,W18,W19,W20,W21. Note that there is a difference in
W19 determined by the difference in W17 due to the message compensation. We have fixed the
constants c6 and c7 from Eq. 14 while defining W19 and W21. In total, we construct the biclique
in about 232 time required to find proper W19 and W20.



Round A B C D E F G H Cond-s

18 * - - - 25,26,27 - - - 2
19 * * - - Φ 25,26,27 - - 5,6

Table 7. Details for biclique in SHA-256. Differential ∆-trail (active bits). Φ = Σ1{25, 26, 27} =
{0, 1, 2, 14, 15, 16, 19, 20, 21}, ∗ refers to an arbitrary difference.

Amount of freedom used. In total, we have 512 degrees of freedom in the message and 256
degrees of freedom in the state. The biclique is determined by the state in round 17 and message
words W17–W21. The choice of W19 and W21 is equivalent to the choice of constants c6, c7 in
Eq. 14. Therefore, we spend 256 + 5 · 32 = 416 degrees of freedom for the biclique fulfilling as
few as 47 + 42 (Table 8) conditions. We note that we have more than 300 degrees of freedom left
in the construction of a biclique. After the biclique is fixed, there are 768 − 416 = 352 degrees
of freedom left. We spend 32 + 32 + 2 = 66 for the padding, thus leaving with 286 degrees of
freedom. Therefore, one biclique is enough for the full attack.

Round Conditions Purpose F C DW

17 1: A22,23,31 = B22,23,31 Absorption (MAJ) IC 3 0

2 : (W⊕E18)25,26,27 = 0 Stop forw. carry SM 6 0

18 3 : EΛ
′

= 1, Absorption (IFF) SM 9 0

4 : (D ⊕ E19)22,23,31 = 0 Stop carry SM 3 0

5 : F 25,26,27 = G25,26,27, Absorption (IFF) IC 9 0

6 : (S1⊕ E19)Φ = 0 Stop forw. carry SM 2 0

19 7: F 22,31 = G22,31 Absorption (IFF) SM 2 0

8: F 23 6= G23 Pass (IFF) SM 1 0

9: CH25 6= S125 Force carry (H) SM 1 0

10: (S1⊕H)Λ = 1 Stop carry (H) SM 9 0

11: (CH ⊕H)24 = 0 Force carry (H) SM 1 0

11’: (CH ⊕H)23 = 0 Force carry (H) SM 1 0

20 12 : E22,23,31 = 0 Absorption (IFF) W 19 21 21

21 13 : E22,23,31 = 1 Absorption (IFF) W 20 21 21

Table 8. Sufficient conditions for the ∇-trails in SHA-256.

Ai – i-th bit of A. F – how the conditions are fulfilled (IC – initial configuration, SM – state modification).

C – total number of independent conditions. DW – conditions fulfilled by message words.

Λ = Σ1{22, 23, 31} = {6, 11, 12, 16, 17, 20, 25, 29, 30}

D Details on the 50-round SHA-512 attack

D.1 Biclique construction

Attack layout The basic parameters of the pseudo-preimage attack are given in Table 9. More
details:

1. Fix a group of 6-round differential trails (Table 10) for the differential

∇i ∇
M

−−→ 0.

Derive the set of sufficient conditions on the internal states.



2. Fix the message compensation equations with 9 constants (Appendix D.2).
3. Fix an arbitrary Q0 and modify it so that the most of conditions in the computation Q0 → P0

are fulfilled. Derive Qi out of Q0 by applying ∇i.
4. Fix a group of 3-round trails (Table 11) (∆W 21 → ∆S23) as ∆-trails (Equation (6)) in

rounds 21-23.
5. Choose W 21,W 22, . . . ,W 26 and constants c8, c9 so that the conditions in the computations
Q0 → Pj , j = 0, . . . , 7 are fulfilled. Produce all Pj .

Trail details for the biclique are detailed further. Finally, we produce Q0, . . . , Q7 and P0, . . . , P7

that conform to the biclique equations.

Biclique

Rounds Dimension ∆M bits ∇M bits Complexity Freedom used

21-26 3 W 21
60,61,62 W 26

53,54,55 232 96

Equations Message compensation Constants used in the biclique

9 2

Chunks Matching

Forward Backward Partial matching Matching bits Complexity per match

6-20 27-40 41→ 43← 5 A43
0,1,2 23

Table 9. Parameters of the preimage attack on the 50-round SHA-512

The complexity of building a single biclique is estimated to be 232 units. However, the
amortized cost is again negligible, since we have much freedom in unused message words. The
complexity of getting 23 matches on 3 bits is 23 calls of the compression function. Since we need
2509 matches, the complexity of the pseudo-preimage search is 2509. Therefore, a full preimage
can be found with complexity approximately 21+(509+512)/2 ≈ 2511.5 by restarting the attack

procedure 2
512−509

2 = 21.5 times. Memory requirements are approximately 21.5 × 24 words.

D.2 Message compensation

The system of compensation equations is defined similarly to the attack on SHA-256:

−σ1(W 29) +W 31 = c1; −W 23 − σ1(W 28) +W 30 = c2; −σ1(W 27) +W 29 = c3

− W 21 +W 28 = c4; − σ1(W 25) +W 27 = c5; −σ1(W 23) +W 25 = c6

−σ1( W 21 ) +W 23 = c7; W 16 + σ0(W
17) = c8; W 17 + W 26 = c9

To satisfy padding rules, we need to use 1 LSB of W 13 and 10 LSB of W 15.The choice of
constants c8, c9 and fixed lower 53 bits of W 26 provide us with sufficient freedom. Indeed, by
choosing c9 we define lower 53 bits of W 17. Having c8 chosen, we derive 45 lower bits of W 16

fixed due to σ0 in message schedule. Further, we get lower 37 bits of W 15, 29 bits of W 14 and
21 bit of W 13 fixed. As we need only one LSB of W 13 and 10 LSB of W 15 to be fixed, we use
only lower 33 bits of W 26, lower 33 bits of c9, and lower 25 bits of c8. For simplicity, details of
message compensation are depicted in Fig. 5.

D.3 Trails

The basic differential trail for the biclique is a 6-round trail in the backward direction (∆Q ←
∇M) that starts with the difference in bits 53, 54, and/or 55 in W 26. The trail is depicted in
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Fig. 5. Message dependencies after message compensation in SHA-512

Table 10 with the number of independent sufficient conditions.We also use bits 60, 61, 62 as
neutral in W 21. To prevent this difference to interleave with the backward trail difference in
round 19, we restrict the behavior of the forward trail as specified in Table 11. Note that the
trails based on the linearized version are now compatible with our choice of neutral bits. The
biclique is basically the same as in SHA-256, with a small difference that we spend 48 + 48 = 96
degrees of freedom inside.

Round A B C D E F G H Indep. cond-s

21 - - 53,54,55 - - Λ - * 3
22 - - - 53,54,55 - - Λ - 12
23 - - - - 53,54,55 - - Λ 12
24 - - - - - 53,54,55 - - 24
25 - - - - - - 53,54,55 - 24
26 - - - - - - - 53,54,55

Table 10. Biclique in SHA-512. Differential ∇-trail (active bits). Λ = Σ1{53, 54, 55} =
{12, 13, 14, 35, 36, 37, 39, 40, 41}

Complexity estimate. We get a pseudo-preimage with complexity approximately 2506 × 23 =
2509 compression function operations. Therefore, a full preimage can be found with complexity

approximately 21+(509+512)/2 ≈ 2511.5 by restarting the attack procedure 2
512−509

2 = 21.5 times
from step 2. Memory requirements are approximately 4 message words (2 message words for
storing the fixed parts of neutral bits, 23 entries of 3 neutral bits difference and 3 bits for
matching in each list). For finding a preimage, we need to store 21.5 pseudo-preimages, i.e. the
memory requirement is 21.5 × 24 words.



Round A B C D E F G H Cond.

22 * - - - 60,61,62 - - - 3
23 * * - - Φ 60,61,62 - - 18

Table 11. Biclique in SHA-512. Differential ∆-trail. Φ = Σ1{60, 61, 62} = {17, 20, 21, 42, 43, 44, 46, 47, 48}, ∗
refers to an arbitrary difference.

E Comparison with more generic brute-force optimizations

Due to the nature of our results being close to brute force in terms of time complexity, we here
discuss efficiency optimizations of otherwise naive brute-force search. This serves as a benchmark
for our results that use bicliques.

E.1 Second preimage search for full Skein-512

Skein-512 appears to be the only hash function in the finalist selection of the SHA-3 competition
that allows for time-complexity gains over brute-force search using cryptanalytic meet-in-the-
middle strategies1. In here we explore this further, while noting that the MITM strategy pursued
here is not using bicliques.

We start with the simple observation that when looking through a message space the first
rounds need only be partially computed. When using the 64-bit modular addition is the cost
metric, the first round can be for free, the second rounds needs only one instead of 8 compu-
tations, etc, saving more than 3 round computations in total. Likewise, if only a few output
bits instead of all need to be computed, e.g. for matching with the target hash value, a similar
number of computations can be saved. Similar observations can and have been made for other
primitives, however as Skein-512 is the only narrow-pipe SHA-3 finalist, we can go further. Those
bits on which the check is performed need not be at the end of the compression function call,
but can be at any point in the internal state. This allows to also have savings in another chunk.
One simple example of such savings are neutral bit effects. Similar to [17], in experiments we
found that for 7 rounds in the forwards direction, many neutrals bits to not affect a number of
state bits with probability close to 1. These neutral bits can in turn be used as the inner loop
of the search space. The total number of rounds that are saved are hence at least 13. For full
72-round Skein, this leads to a preimage search complexity of no more than 2511.71. For 22-round
Skein, the effort would be 2510.71. By spending some computation (that is later amortized) to
find suitable chaining values that allow for longer neutral bits, or by simply choosing a suitable
CV in the compression function setting, these results can be improved further.

1 The narrow pipe Skein-256-256 also allows for the approach, but all versions of Keccak, Grøstl, and JH are
wide-pipe and do not allow this. For Blake the situation is less clear.
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Abstract. In this paper, we present a new technique to construct a collision attack from a par-
ticular preimage attack which is called a partial target preimage attack. Since most of the recent
meet-in-the-middle preimage attacks can be regarded as the partial target preimage attack, a colli-
sion attack is derived from the meet-in-the-middle preimage attack. By using our technique, pseudo
collisions of the 43-step reduced SHA-256 and the 46-step reduced SHA-512 can be obtained with
complexities of 2126 and 2254.5, respectively. As far as we know, our results are the best pseudo
collision attacks on both SHA-256 and SHA-512 in literature. Moreover, we show that our pseudo
collision attacks can be extended to 52 and 57 steps of SHA-256 and SHA-512, respectively, by
combined with the recent preimage attacks on SHA-2 by bicliques. Furthermore, since the proposed
technique is quite simple, it can be directly applied to other hash functions. We apply our algorithm
to several hash functions including Skein and BLAKE, which are the SHA-3 finalists. We present not
only the best pseudo collision attacks on SHA-2 family, but also a new insight of relation between
a meet-in-the-middle preimage attack and a pseudo collision attack.
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1 Introduction

Cryptographic hash functions play a central role in the modern cryptography. A secure hash
function, which produces a fixed length hash value from an arbitrary length message, is required
to satisfy at least three security properties: preimage resistance, second preimage resistance and
collision resistance.

While there has not been a generic method to convert a collision attack into a preimage
attack, it has been known that the preimage attack that can find at least two distinct preimages
from the same target can be directly converted into a collision attack. However, the converted
collision attack is often not efficient due to that the birthday bound of a collision attack (2n/2)
is far lower than the generic bound of the preimage attack (2n), where n is the bit size of the
hash value. Thus, it is left as open question that how to convert an efficient preimage attack
into an efficient collision attack. In the case of the reduced SHA-256 regarding the number of
attacked rounds, a preimage attack, covering 43 steps [4], is much better than the best known
collision attack, with only 27 steps [17]. Moreover, basically, a collision attack and a preimage
attack require quite different techniques. In other words, in general, the techniques used for the
collision attack do not work well for a preimage attack, and vice versa. In fact, most of the recent
collision attacks are based on a differential attack [32, 31], in contrast to that most of the recent
preimage attacks are based on a meet-in-the-middle (MITM) attack [2]. Though converting the
differential collision attack to a (pseudo) preimage attack was discussed in [8], there is no generic
way to construct a collision attack from a MITM preimage attack.

In this paper, we give a generic method to convert a particular preimage attack into a collision
attack. By using our technique, an efficient collision attack which works faster than a generic
collision attack can be constructed from a partial target preimage attack even if the complexity



of the preimage attack is more than the birthday bound (2n/2). Our method is especially fit
for converting a MITM preimage attack into a pseudo collision attack, since most of the recent
MITM preimage attacks can be considered as the partial target preimage attack as long as its
matching point is located in the end of the compression function. We first apply our algorithm
to SHA-256 and SHA-512 and show the best pseudo collision attacks on them in literature.
Specifically, pseudo collisions of the 43-step (out of 64-step) reduced SHA-256 and the 46-step
(out of 80-step) reduced SHA-512 can be derived faster than a generic attack. Combined with
the recent preimage attacks on SHA-2 [14], these attacks are extended to the 52-step and 57-
step reduced SHA-256 and SHA-512, respectively. Then we show some other applications of our
conversion techniques including a pseudo collision attack on the 37-round reduced Skein-512
and pseudo collision attacks on the 4-round reduced BLAKE-256/512 without the initialization
function. While it seems hard to extend our pseudo collision attacks to collision attacks, the
proposed conversion technique is a generic, and thus it is expected to be widely used for security
evaluations of hash functions.

This paper is organized as follows. Some security notions and a meet-in-the-middle preimage
attack are introduced in Section 2. Section 3 introduces our approach for constructing a pseudo
collision attack. Then, applications of our technique to SHA-256 and SHA-512 are presented in
Section 4. The result on Skein is described in Section 5. Finally, we conclude in Section 6.

2 Preliminaries

In this section, we first give security notions used throughout this paper, then briefly refer a
meet-in-the-middle (MITM) preimage attack.

2.1 Security Notions

Let f be a compression function which outputs an n-bit chaining variable hi from an n-bit
input chaining variable hi−1 and a k-bit input message mi, i.e., hi = f(hi−1,mi). Similarly,
let H be an iterated hash function consisting of f , which produces an n-bit hash value d
from an initial value IV (= h0) and an arbitrary length message M , i.e., d = H(IV,M) =
f(· · · f(f(IV,m1),m2), · · · ,mt), where pad(M) = (m1|m2| · · · |mt) and pad denotes a padding
function. This type of hash function, in which the size of an intermediate chaining variable is the
same as that of a hash value, is called a narrow-pipe hash function. On the other hand, a hash
function having a larger internal state size is called a wide-pipe hash function, i.e., the size of a
final hash value is smaller than that of a chaining variable. We use the terminology introduced
in [15] for a collision attack and a pseudo (or free-start) collision attack on hash functions as
follows.

Definition 1 (Collision attack). Given IV , find (M,M ′) such that M 6= M ′ and H(IV,M)
= H(IV,M ′).

Definition 2 (Free-start or pseudo collision attack). Find (IV , IV ′, M , M ′) such that
H(IV,M) = H(IV ′,M ′) and (IV,M) 6= (IV ′,M ′).

Additionally, we give several definitions for (pseudo) preimage attacks on hash functions and
(pseudo) preimage attacks on compression functions.

Definition 3 (Preimage attack). Given IV and d(= H(IV,M)), find M ′ such that H(IV,
M ′) = d.

Definition 4 (Pseudo preimage attack). Given d(= H(IV,M)), find (IV ′, M ′) such that
H(IV ′,M ′) = d.

2
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Definition 5 ((t-bit) partial target preimage attack). Given IV and t-bit partial target
of d(= H(IV,M)), find M ′ such that t-bit of d′(= H(IV,M ′)) is the same as the t-bit of d at
the same position, and the other part of d′ is randomly obtained.

Definition 6 (Preimage attack on compression function). Given hi−1 and hi(= f(hi−1,
mi)), find m

′
i such that f(hi−1,m

′
i) = hi.

Definition 7 (Pseudo preimage attack on compression function). Given hi(= f(hi−1,
mi)), find (h′i−1,m

′
i) such that f(h′i−1,m

′
i) = hi.

Definition 8 ((t-bit) partial target preimage attack on compression function). Given
hi−1 and t-bit partial target of hi(= f(hi−1,mi)), find m

′
i such that t-bit of h′i(= f(hi−1,m

′
i)) is

the same as the t-bit of hi at the same position, and the other part of h′i is randomly obtained.

Definition 9 ((t-bit) pseudo partial target preimage attack on compression func-
tion). Given t-bit partial target of hi(= f(hi−1,mi)), find (h′i−1,m

′
i) such that t-bit of h′i(=

f(h′i−1,m
′
i)) is the same as the t-bit of hi at the same position, and the other part of h′i is

randomly obtained.

2.2 Meet-in-the-Middle Preimage Attack

The basic concept of the MITM preimage attack was introduced in [22, 16]. Since then, the MITM
preimage attacks have been drastically improved and applied to several hash functions [2, 28, 27,
3, 13, 4, 10]. Also, the techniques for the MITM preimage attacks on hash functions have been
extended to the attacks on several block ciphers [7, 12].

As shown in Fig. 1,3 in the MITM preimage attack on a compression function, the com-
pression function f is assumed to be divided into two sub-functions: f1 (forward process) and
f2 (backward process) so that the w-bit matching point z calculated by f1 does not depend
on m2 which is some message bits of m, and z calculated by f2 does not depend on m1 which
is other message bits of m. Such m1 and m2 are called neutral bits of f2 and f1, respectively.
Then, the MITM preimage attack finds a preimage m′ such that f(x,m′) = y from a given x
and y(= f(x,m)) as follows.

Step 1. Choose a random m except for m1 and m2.

Step 2. For all possible m1, calculate w-bit z1(= f1(x,m1)), and add a pair of (z
(i)
1 ,m

(i)
1 ) to a

list, where (1 ≤ i ≤ 2|m1|), and | ∗ | denotes the bit size of ∗.

Step 3. For all possible m2, calculate w-bit z2(= f−1
2 (x⊕ y,m2)), and add a pair of (z

(j)
2 ,m

(j)
2 )

to a list, where (1 ≤ j ≤ 2|m2|).

Step 4. Compare two lists to find pairs satisfying z
(p)
1 = z

(q)
2 . If such pair is found, then check

if the other bits of the matching point derived from m
(p)
1 and m

(q)
2 are the same value.

3 Here, we show the MITM preimage attack on Davies-Meyer mode as an example. MITM preimage attacks on
other modes like Matyas-Meyer-Oseas mode can be performed in a similar way.
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Step 5. If the other parts are also the same, then outputs such m including m
(p)
1 and m

(q)
2 .

Otherwise, go back to Step 1 and repeat the computation.

From Steps 2 and 3, we have 2|m1| and 2|m2| values of w-bit z1 and z2, i.e., we have 2|m1|+|m2|

values of (z1⊕z2). Since the probability of (z1⊕z2 = 0) is 2−w, we have 2|m1|+|m2| ·2−w pairs such
that z1 = z2 in Step 4. Thus, by repeating this algorithm about 2n−w ·2−(|m1|+|m2|) ·2w times, we
expect to obtain a desired preimage. The required computation for the one process from Step 1
to 5 is at most max(2|m1|, 2|m2|) calls of the compression function. Thus, the total computation
to find a preimage of the compression function is about 2n · 2−(|m1|+|m2|) ·max(2|m1|, 2|m2|).4

For a narrow-pipe hash function, by replacing x and y by IV and d, this MITM preimage
attack on a compression function can be directly converted into a preimage attack on a hash
function. However, for an attack on a hash function, some of the message bits related to the
padding bits are required to be controlled by the attacker to set appropriate padding data.

3 Method to Convert Preimage Attack into Collision Attack

In this section, we present how to efficiently convert a particular preimage attack into a pseudo
collision attack. First, we introduce a generic technique to construct a pseudo collision attack
from a partial target preimage attack. Then, we introduce the MITM preimage attack whose
matching point is located at the end of the compression function. We show that such class of
the MITM preimage attack is regarded as the partial target preimage attack. Finally, we show
that a pseudo collision attack can be efficiently constructed from the MITM preimage attack
whose matching point is at the end by showing how to efficiently obtain many partial target
preimages.

3.1 Generic Conversion of Partial Target Preimage Attack into Collision Attack

We consider the oracle A that can find a t-bit partial target preimage with a complexity of 2s.
Also, A is assumed to return different M ′ for each call. Obviously, we can construct a collision
attack with a complexity of 2s · 2(n−t)/2 by iteratively calling A as follows.

– Set t-bit random data as d′

– Call A with the parameter IV and d′ in 2(n−t)/2 times

After this procedure, we have 2(n−t)/2 of (n−t)-bit random data, and thus there exists a colliding
data with a high probability. Once the colliding data are found, we have a collision of the hash
function since the rest of the hash value d′ is fixed. The total complexity is 2(n−t)/2 · 2s. The
memory requirement can be reduced to the memory requirement of finding a partial target
preimage by using memory free birthday attack [29, 21]. This conversion itself can be applied to
not only a narrow-pipe hash but also a wide-pipe hash, since the required complexity depends
only on the size of the digest. The basic concept of this attack that fixes t-bit of the target with
the complexity of 2s has been used to find a collision of (new) FORK-256 in [22] and a collision
and a second preimage of LUX in [33]. However, the method does not work if the partial target
preimage attack is not efficient, i.e., (s ≥ t/2). In this case, the required complexity in total will
be higher than 2n/2.

3.2 Meet-in-the-Middle Attack with Matching Point in Last Step

We consider a similar model explained in Section 2.2. The difference from the model shown in
Fig. 1 is that the matching point is restricted to be in the last step as shown in Fig. 2. In this

4 The estimated complexity does not contain the size of the matching point w. However, as discussed in [10], if
w is extremely small like w = 1, the total complexity is dominated by the recomputations in Step 4 which is
ignored in our estimation. Thus, in our evaluation, we assume that w is sufficiently large.
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scenario, the MITM pseudo preimage attack on a compression function finds a preimage m′ and
a random x′ such that f(x′,m′) = y from a given y(= f(x,m)) as follows.

Step 1. Choose a random m except for m1 and m2, and a random starting state S.

Step 2. For all possible m1, calculate w-bit z1(= f1(S,m1)), and add a pair of (z
(i)
1 ,m

(i)
1 ) to a

list, where (1 ≤ i ≤ 2|m1|).

Step 3. For all possible m2, calculate w-bit z2(= f−1
2 (S,m2)), and add a pair of (z

(j)
2 ,m

(j)
2 ) to

a list, where (1 ≤ j ≤ 2|m2|).

Step 4. Compare two lists to find pairs satisfying that z
(p)
1 ⊕ z

(q)
2 equals the t-bit of y. If such

pair is found, then check if the XORed other bits of the matching point derived from m
(p)
1

and m
(q)
2 is the same as the rest of y.

Step 5. If the XORed other bits are also the same as y, then output such m including m
(p)
1 and

m
(q)
2 , and x′ calculated from the data of the matching point. Otherwise, go back to Step 1

and repeat the computation.

Note that, this attack basically cannot obtain a preimage from the given x unlike the attack
described in Section 2.2, since x′ will be randomly derived. Thus, this attack is considered as
a pseudo preimage attack on a compression function. However, for a narrow-pipe hash, it has
been known that a pseudo preimage attack on a compression function can be converted into a
preimage attack on a hash function assuming that the attacker can set valid padding bits [19,
10]. The estimated complexity to find a desired pseudo preimage is the same as that presented
in Section 2.2, i.e., 2n · 2−(|m1|+|m2|) ·max(2|m1|, 2|m2|).

3.3 Conversion of MITM Preimage Attack into Pseudo Collision Attack

If we can construct the MITM pseudo preimage attack whose matching point is located at
the end of the compression function, we can control part of the output variables as explained
in the previous subsection. In other words, the MITM pseudo preimage attack described in
the previous subsection can be regarded as the pseudo partial target preimage attack on a
compression function. For the MITM preimage attack, at least 2t/2 computations are required
to derive a preimage of an t-bit partial target. Thus, the directly converted pseudo collision
attack will at least have the complexity of 2(n−t)/2+t/2 = 2n/2, that is not an efficient pseudo
collision attack.

In order to overcome this problem, we exploit extra freedom of a neutral word after finding
a partial target preimage. For example, in the case of t = 10 and |m1| = |m2| = 8 (> t/2), we
can find 26(= 28+8/210) 10-bit partial target preimages with the complexity of 28. It essentially
means that a 10-bit partial target preimage is found with the complexity of 22(= 28/26) <
25(= 210/2). When t ≤ w, the required complexity to find a partial target preimage from a given
t-bit partial target is estimated as

2t−(|m1|+|m2|) ·max(2|m1|, 2|m2|),
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where recall that w denotes the bit size of the matching point. In particular, s < t/2, which is the
condition for a successful attack as mentioned in Section 3.1, holds when min(|m1|, |m2|) > t/2,
where recall that 2s represents the required complexity to find a t-bit partial target preimage.
Therefore, if we can move the matching point of the MITM attack to the end of the compression
function and there is enough freedom in neutral words, we can construct an efficient pseudo
collision attack on a compression function.

Moreover, for a narrow-pipe hash function, it has been known that a (pseudo) collision
attack on a compression function can be directly converted to a (pseudo) collision attack on a
hash function by appending another message block illustrated in Fig. 3, which is called multi-
block message technique. By using the multi-block message technique, an attacker can append
arbitrary messages. Thus, unlike the conversion to a (pseudo) preimage attack on a hash function,
for the conversion to a pseudo collision attack on a hash function, there is no restriction on
controllability of message bits for a MITM pseudo preimage attack on a compression function.
This will relax conditions on the position of the matching point for the MITM pseudo preimage
attack on a compression function, and thus may allow us to attack larger number of steps. Note
that, for a wide-pipe hash function, even though a (pseudo) collision attack on a compression
function can not be directly converted to a (pseudo) collision attack on a hash function by using
multi-block message, we still can convert a MITM pseudo preimage attack on a hash function
to a pseudo collision attack on a hash function since the conversion of a partial target preimage
attack into a collision attack is generic.

4 Pseudo Collision Attacks on SHA-2

In this section, we apply our conversion technique to SHA-2. At first, we briefly describe the
algorithm of SHA-2. Then, we review the previous collision attacks on SHA-2. After that, we
introduce the known MITM preimage attack on the 43-step SHA-256 presented in [4]. After we
modify these results in order to fit our conversion technique, i.e., moving the matching point to
the end of the compression function, we show the pseudo collision attack on the 43-step SHA-
256. Moreover, we present the pseudo collision attack on the 46-step SHA-512 based on the
MITM preimage attack on the 46-step SHA-512 [4]. Furthermore, pseudo collision attacks on
the 40-step reduced SHA-224 and SHA-384 are demonstrated as well. Finally, we discuss pseudo
collision attacks based on the recent MITM preimage attacks [14], which significantly improve
the results of [4] in terms of the number of attacked steps by using bicliques. These results on
SHA-2 are summarized in Table 1.
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Table 1. Summary of collision attacks on the reduced SHA-2

algorithm type of attack steps complexity based attack paper

SHA-256

collision 24 228.5 - [11]
collision 27 (practical) - [17]

semi-free-start-collision∗1 24 217 - [11]
semi-free-start-collision∗1 32 (practical) - [17]
pseudo-near-collision 31 232 - [11]

pseudo collision 42 2123 [4] Our (Section 4.7)
pseudo collision 43 2126 [4] Our (Section 4.4)
pseudo collision 45 2126.5 [14] Our (Section 4.9)
pseudo collision 52 2127.5 [14] Our (Section 4.9)

SHA-224 pseudo collision 40 2110 [4] Our (Section 4.8)

SHA-512

collision 24 228.5 - [11]
pseudo collision 42 2244 [4] Our (Section 4.7)
pseudo collision 46 2254.5 [4] Our (Section 4.6)
pseudo collision 50 2254.5 [14] Our (Section 4.9)
pseudo collision 57 2255.5 [14] Our (Section 4.9)

SHA-384 pseudo collision 40 2183 [4] Our (Section 4.8)

∗1: semi-free-start-collision attack finds (IV ′,M,M ′) such that H(IV ′,M) = H(IV ′,M ′)
and M 6= M ′.

4.1 Description of SHA-2

While our target is both SHA-256 and SHA-512, we only explain the structure of SHA-256,
since SHA-512 is structurally equivalent to SHA-256 except for the number of steps, the amount
of rotations and the word size. The compression function of SHA-256 consists of a message
expansion function and a state update function. The message expansion function expands a
512-bit message block into 64 32-bit message words (W0, · · · ,W63) as follows:

Wi =

{

Mi (0 ≤ i < 16),
σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16 (16 ≤ i < 64),

where the functions σ0(X) and σ1(X) are defined by

σ0(X) = (X ≫ 7)⊕ (X ≫ 18)⊕ (X ≫ 3),

σ1(X) = (X ≫ 17)⊕ (X ≫ 19)⊕ (X ≫ 10).

The state update function updates eight 32-bit chaining variables, A,B, · · · , G,H in 64 steps as
follows:

T1 = Hi +Σ1(Ei) + Ch(Ei, Fi, Gi) +Ki +Wi,

T2 = Σ0(Ai) +Maj(Ai, Bi, Ci),

Ai+1 = T1 + T2, Bi+1 = Ai, Ci+1 = Bi, Di+1 = Ci,

Ei+1 = Di + T1, Fi+1 = Ei, Gi+1 = Fi, Hi+1 = Gi,

where Ki is the i-th step constant and the functions Ch, Maj, Σ0 and Σ1 are given as follows:

Ch(X,Y, Z) = XY ⊕XZ,

Maj(X,Y, Z) = XY ⊕ Y Z ⊕XZ,

Σ0(X) = (X ≫ 2)⊕ (X ≫ 13)⊕ (X ≫ 22),

Σ1(X) = (X ≫ 6)⊕ (X ≫ 11)⊕ (X ≫ 25).

After 64 steps, a feed-forward process is executed with initial state variables by using word-wise
addition modulo 232.
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4.2 Known Collision Attacks on SHA-2

The first collision attack on reduced SHA-256 was presented in [18] which is a 19-step near col-
lision attack. Since then, the collision attacks on SHA-2 have been improved [20, 23, 25, 24, 26,
11, 17]. The previously published best collision attacks in terms of the number of attacked steps
are the 27 steps on SHA-256 [17] and the 24 steps on SHA-512 [11, 25]. A non-random prop-
erty, which is a second-order differential collision, of the 47-step reduced SHA-256 compression
function was reported in [6].

4.3 Known MITM Preimage Attack on 43-step SHA-256 [4]

The MITM preimage attack on the 43-step SHA-256 presented in [4] uses the 33-step two chunks
Wj , . . . ,Wj+32 including the 4-step initial structure (IS), the 2-step partial fixing (PF), the 7-
step partial matching (PM) and the 1-step indirect partial matching (IPM). In the following,
we review the details of these techniques.

33-step Two Chunks with the 4-step IS. The message words of length 33 is divided into
two chunks as {Wj , . . . ,Wj+14,Wj+18} and {Wj+15, Wj+16, Wj+17, Wj+19, . . . ,Wj+32}. Using
message compensation technique [4], the first chunk and the second chunk are independent from
Wj+15 andWj+18, respectively. In particular, the following constraints ensure the above message
words to be neutral words with respect to each chunk;

Wj+17 = σ1(Wj+15), Wj+19 = σ21(Wj+15), Wj+21 = σ31(Wj+15),
Wj+22 =Wz+5, Wj+23 = σ41(Wj+15), Wj+24 = 2σ1(Wj+15),
Wj+25 = σ51(Wj+15),

(1)

where σ21(X) means σ1 ◦ σ1(X).
These two chunks include the 4-step IS, which essentially exchanges the order of the words

Wi and Wi+3 by exploiting the absorption property of the function Ch. After the swapping, the
final output after the step (i+3) still keeps unchanged. Here, Wj+18 is moved to the first chunk
and Wj+15, Wj+16 and Wj+17 are moved to the second chunk.

In the forward direction, a state value of pj+33 = Aj+33|| . . . ||Hj+33 can be computed in-
dependently of the first chunk. In the backward direction, a state value of pj = Aj || . . . ||Hj

can be computed independently of the second chunk. Note that the 33-step two-chunk is valid
regardless of the choice of j for j > 0.

7-step PM. In the backward computation, Aj can be computed from pj+7 without knowing
{Wj , · · · ,Wj+6} for any j as used in [13].

2-step PF. PF is a technique to enhance PM by fixing a part of a neutral word. The equation
for Hj−1 is as follows:







Hj−1 = Aj −Σ0(Bj)−Maj(Bj , Cj , Dj)−Σ1(Fj)
−Ch(Fj , Gj , Hj)−Kj−1 −Wj−1,

Wj−1 =Wj+15 − σ1(Wj+13)−Wj+8 + σ0(Wj).

If we fix the lower ℓ bits of Wj+15, which is assumed to be a neutral word for the other chunk,
the lower ℓ bits of Hj−1 can be computed without using the value of the higher (32− ℓ) bits of
Wj+15. Furthermore, the equation for Hj−2 is expressed as follows:







Hj−2 = Aj−1 −Σ0(Bj−1)−Maj(Bj−1, Cj−1, Dj−1)−Σ1(Fj−1)
−Ch(Fj−1, Gj−1, Hj−1)−Kj−2 −Wj−2,

Wj−2 =Wj+14 − σ1(Wj+12)−Wj+7 + σ0(Wj−1).
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The lower (ℓ− 18) bits of Hj−2 can be computed if we can obtain the lower ℓ bits of Ch(Fj−1,
Gj−1, Hj−1) and the lower (ℓ − 18) bits of σ0(Wj−1). Note that these values can be computed
by using only the lower ℓ bits of Wj+15. Thus, when we fix the lower ℓ bits of Wj+15, the lower
(ℓ − 18) bits of Hj−2 can be computed without knowing the higher (32 − ℓ) bits of Wj+15.
Therefore, by combining the 7-step PM with the 2-step PF, 9 steps can be skipped in the
backward computation.

1-step IPM. For the forward computation, Aj+34 can be expressed as a sum of two independent
functions ψF , ξF of each neutral word as follows;







Aj+34 = Σ0(Aj+33) +Maj(Aj+33, Bj+33, Cj+33) +Hj+33 +Σ1(Aj+33)
+Ch(Aj+33, Bj+33, Cj+33) +Kj+33 +Wj+33,

Wj+33 = σ1(Wj+31) +Wj+26 + σ0(Wj+18) +Wj+17,

⇒ Aj+34 = ψF (Wj+15) + ξF (Wj+18).

Then, we can compute ψF (Wj+15) and ξF (Wj+18) independently. It is equivalent to move the
computation of ξF (Wj+18) to the backward chunk. In this case, ξF (Wj+18) = σ0(Wj+18).

Attack Overview. These techniques enable us to construct the 43 (= 33 + 7 + 2 + 1)-step
attack on SHA-256. Here, we have the freedom of choice of j as long as 36 steps (Wj−2 toWj+34)
is located sequentially.

For the actual attack in [4], j is chosen as j = 3, because W13, W14 and W15 can be freely
chosen to satisfy the message padding rule. The matching state is the lower 4 bits of A37. In
addition, the number of fixed bits ℓ for PF is chosen as ℓ = 23. Then, neutral words of W18 and
W21 have 5- and 4-bit freedom degrees, respectively. As a result, a pseudo preimage is found
with the complexity of 2251.9. After that, pseudo preimages are converted into a preimage with
the complexity of 2254.9. See [4] for more details about this attack.

4.4 Pseudo Collision Attack on 43-step SHA-256

As discussed in Section 3.3, to convert a MITM preimage attack into a pseudo collision attack,
the matching point is located into the end of the compression function, i.e., the addition of the
feed-forward. As mentioned in section 4.3, the matching point of the 43-step MITM preimage
attack is selected at the state after the step 37 (j = 3) due to the padding bits.

However, for a (pseudo) collision attack, we do not need to control message words for satisfy-
ing the padding rules, since we can generate correct padding by simply adding another message
block as discussed in Section 3.3. It means that the last block of a compression function is used
only for satisfying the padding condition in the collision attack when pseudo collision can be
found before the last compression function as shown in Fig. 3. As a result, for a (pseudo) collision
attack, we can move the matching point to the state after the step 43 (j = 9) that is the end of
the compression function. 5

Let a 256-bit output of the compression function be CV = {ZA|| · · · ||ZH}, where each word
is 32 bits. For j = 9, W24 and W27 are neutral words, and the matching point is the lower 4 bits
of A43(= A0 ⊕ ZA).

In order to construct the pseudo collision attack, we give the efficient method to obtain 4-bit
partial target preimages by using the MITM technique [4]. Figure 4 shows the overview of the
43-step pseudo collision attack.
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Fig. 4. 43-step pseudo collision attack on SHA-256

Attack Procedure.

1. Choose the lower 4 bits of ZA, which are target values.
2. Randomly choose the value of p25 and message W25. Randomly fix the lower 23 bits of W24.

Then we can find 25 values of W24 on average from 9 free bits that correctly construct the
4-step initial structure and store them in the table TW .

3. Randomly choose message words not related to the initial structure and the neutral words,
i.e., W19, W20, W21, W22, W23 and W29 (called an initial configuration).

4. For all 25 possible W24 in TW , compute W26, W28, W30, W31, W32, W33 and W34 following
Eq. (1). Compute forward and find ψF (W24). Then, store the pairs (W24, ψF (W24)) in a list
LF .

5. For all 24 possible values (the lower 4 bits) of W27, compute backward and find ξF (W27) and
the lower 4 bits of A0. Then, store the pairs (W27, ZA ⊕A0 − σ0(W27)) in a list LB.

6. If a match is found, i.e., ψF (W24) = ZA ⊕ A0 − σ0(W27), then compute two group of states
A43, B43, · · · , H43 and A0, B0, · · · , H0 with corresponding W24 and W27, respectively. Then
obtain 25 (= 29/24) CV whose 4-bit are fixed, i.e., the lower 4 bits of ZA, and store these in
a List L1.

7. Repeat (3)-(6) 2121 times with different values of the initial configuration.

After the above procedures, we obtain 2126 (= 25×2121) pairs whose 4 bits are fixed.6 Thus, there
exists a colliding pair with a high probability, because of the equation of (2126 = 2(256−4)/2).

Evaluation. We assume that the complexity for the 1-step function and the 1-step message
expansion is 1/43 compression function operation of the 43-step SHA-256. As estimated in [10],
the complexity of Step 2 in the presented attack is 29, and that of Steps 3-6 is 24.878, which
is the complexity for finding 25 4-bit partial target preimages. Thus, whole complexity of the
pseudo collision attack on the 43-step SHA-256 is estimated as 2126 ≈ 29 + (2121 × 24.878).

4.5 Known MITM Preimage Attack on 46-step SHA-512 [4]

The MITM preimage attack on the 46-step SHA-512 presented in [4] uses the 31-step two chunk
Wj , . . . ,Wj+30 including the 2-step IS, the 8-step PF for Wj−1, . . . ,Wj−6 and Wj+31,Wj+32 and
the 7-step PM. In this attack, we can choose j as long as 39 step (Wj−6 to Wj+32) are located

5 It is also pointed out in [10] as the matching point can be rotated to the end of the compression function
6 It is noted that we need a slightly more than 2121 times repeated experiments to get 2126 pairs that will achieve
a probability higher than 2−1. However the difference is so small that we ignore it here.

10



sequentially. For the actual attack in [10], j is chosen as j = 6 to satisfy the padding rule. Then,
the neutral wordsW21 andW22 have 4 and 3-bit freedom degrees, respectively, and the bit size of
the matching point is 3. Thus, a preimage of the 46-step SHA-512 is found with the complexity
of 2511.5. See [4] for more details about this attack.

4.6 Pseudo Collision Attack on 46-step SHA-512

Similarly to the attack on the reduced SHA-256, we can move the matching point to the end
of the compression function, because the padding issue can be avoided by using multi-block
message technique in the pseudo collision attack. In the case of SHA-512, since the bit size of
the matching point is 3, we utilize the 3-bit partial target preimages for the attack. Then, the
complexity of the attack is estimated as 2254.5 = (2(512−3)/2).

4.7 Pseudo Collision Attacks on 42-step SHA-256 and 42-step SHA-512

We consider pseudo collision attacks on smaller number of rounds of SHA-2 in order to save
the time complexity. For the 42-step reduced SHA-256, we can use 10 bits of freedom in both
directions to find a 10-bit partial target preimage as discussed in Section 5.4 of [4]. This implies
that a 10-bit partial target preimage is obtained with the complexity 1 (< 25). Thus, a pseudo
collision is found with the complexity of 2123(= 2(256−10)/2 × 210/210). Similarly to this, for the
42-step reduced SHA-512, we can use 24 bits of freedom in both directions to find a 24-bit partial
target preimage as discussed in Section 6.5 of [4]. Therefore, a pseudo collision of the 42-step
reduced SHA-512 is found with the complexity of 2244(= 2(512−24)/2 × 224/224).

4.8 Pseudo Collision Attacks on Reduced SHA-224 and SHA-384

The pseudo collision attack on the 43-step SHA-256 described in Section 4.4 is applicable to
the 43-step SHA-224 in the similar manner. However, we can not use the multi-block message
technique straightforwardly, because the pseudo collision attack on SHA-224 needs to be done in
the last compression function whose output ZH is disregarded. Thus, due to the padding issue,
we can mount only pseudo collision attack on a compression function of 43-step, not a hash
function. The estimated complexity is 2110 for this attack.

However, the smaller number of rounds of SHA-224 hash function can be attacked by using
another MITM attack. The 40-step SHA-224 hash function can be attacked by using the same
two chunks for the 43-step preimage attack on SHA-256 in [4], i.e., the case of j = 3. The 7-step
partial matching for backward computation are replaced by the 4-step one. Then the message
words W13, W14 and W15 are left as free message words to satisfy the padding rule. Instead
of the lower 4 bits of ZA, we use the lower 4 bits of ZD as the target value. Here, we need
additional one step: when finding matches at the lower 4 bits of A37, we compute forward from
the matching point to the end of the compression function (40-th step) by using these values
that are computed forward from the starting point. Since A37 = D40 = D0⊕ZD for the 40-step
SHA-224, the lower 4 bits of ZD will keep unaffected by the additional step. Thus, we can still get
a partial target preimage. It can be converted into a pseudo collision attack on a hash function,
because we can set W13, W14 and W15 to follow the padding rule.

The detail of the attack procedure is as follows.

1. Choose the lower 4 bits of ZD, which are target values.
2. Randomly choose the value of p19 and message W19. Randomly fix the lower 23 bits of W18.

Then we can find 25 values of W18 on average from 9 free bits that correctly construct the
4-step initial structure and store them in the table TW .
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3. Randomly choose message words not related to the initial structure and the neutral words,
i.e., W13, W14, W15, W16, W17, W23 (called an initial configuration [4]).

4. For all 25 possibleW18 in TW , computeW20,W22,W24,W25,W26,W27,W28 following Eq, (1).
Compute forward and find ψF (W18). Store the pairs (W18, ψF (W18)) in a list LF .

5. For all 24 possible values (the lower 4 bits) of W21, compute backward and find ξF (W21) and
the lower 4 bits of A37 (= D40 = ZD ⊕D0). Store the pairs (W21, ZD ⊕D0 − σ0(W27)) in a
list LB.

6. If a match is found, i.e., ψF (W24) = ZD ⊕ D0 − σ0(W27), then compute forward to get
the states A40, B40, · · · , H40 with corresponding W24 and W27, respectively. D40 will keep
unaffected in this step. Then obtain 25 (= 29/24) CV whose 4 bits are fixed, i.e., the lower
4 bits of ZD, and store these in a List.

7. Repeat (3)-(6) 2105 times with different values of the initial configuration.

The complexity of the attack is estimated as 2110.
Similarly, the pseudo collision attack on the 46-step SHA-512 hash function described in 4.6

can also be applied to the 46-step SHA-384 compression function with the complexity of 2190.5 =
(2(384−3)/2). For a pseudo collision attack on the reduced SHA-384 hash function, we use the 43-
step preimage attack on SHA-384 [4]. Combining the result in [4] with our conversion technique, a
pseudo collision attack on the 40-step SHA-384 hash function can be constructed. The matching
bit is 18 when chosen parameter of partial matching as ℓ = 27. The complexity of the pseudo
collision attack on the 40-step SHA-384 is estimated as 2(384−18)/2 = 2183. These 40-step pseudo
collision attacks give examples that the matching point is not at but near the end of compression
function. That is compatible to solve padding problem.

4.9 Application to Other Results of SHA-2

Recently, the MITM preimage attacks on the reduced SHA-2 are improved by using “bicliques”
technique which is considered as generalized initial structure [14]. This technique enables us to
construct longer initial structures than those of the attacks [4]. In the following, let us consider
pseudo collision attacks based on [14].

For SHA-256, the 36-step two independent chunks including the 6-step IS based on bicliques
are constructed. Combining the 2-step PM with the 7-step PM and the 1-step IPM, the MITM
preimage attack on the 45-step SHA-2 is derived. In this attack, both neutral words have 3-bit
freedom degrees, and the matching point is 4-bit. Since our conversion technique does not need
to consider the padding issue, the matching point can be moved to the end of the compression
function similar to the 43-step attack. Then, we can convert it into the 45-step pseudo collision
attack on SHA-256 with the complexity of 2126.5 (= 2(256−3)/2) 7. Similarly, we can construct the
50-step pseudo collision attack on SHA-512 based on the 50-step MITM preimage attack [14].
In this attack, both neutral words have 3-bit freedom degrees, and the bit size of the matching
point is 3. Thus, the complexity of the attack is estimated as 2254.5 (= 2(512−3)/2).

In addition, [14] showed pseudo preimage attacks on the 52-step SHA-256 and the 57-step
SHA-512. For the setting of a pseudo preimage attack, the cost of converting a pseudo preimage
to a preimage is omitted. Thus, larger number of rounds can be attacked. Note that in these
attacks, the amount of freedom degrees for both neutral words are only 1-bit, and the bit
size of the matching point is 1. In order to construct a pseudo collision attack by using our
conversion technique, it is sufficient to obtain a pseudo preimage on a compression function, i.e.,
a preimage on a hash function is not needed. Therefore, the above explained pseudo preimage
attacks can also be converted into pseudo collision attacks in a similar way. The complexities of

7 Our attack uses only 3 bits for the matching and find 3-bit partial target preimages, because this setting is
optimal with respect to the time complexity.
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the pseudo collision attacks on the 52-step SHA-256 and the 57-step SHA-512 are estimated as
2127.5 (= 2(256−1)/2) and 2255.5 (= 2(512−1)/2), respectively.

5 Application to Skein

In this section, we show pseudo collision attacks on the reduced Skein-512 [9] based on the
preimage attacks presented in [14].

5.1 Description of Skein

Skein is built from the tweakable block cipher Threefish EK,T (P ), where K, T and P denote a
key, a tweak and a plaintext message, respectively. The compression function F (CV, T,M) of
Skein outputs the next chaining variable as F (CV, T,M) = ECV,T (M) ⊕M , where CV is the
previous chaining variable and M is an input message block.

Threefish-512 supports a 512-bit block and a 512-bit key, and operates on 64-bit words. The
subkey Ks = (Ks

0 ,K
s
1 , . . . ,K

s
7) injected every four rounds is generated from the secret key K =

K[0], K[1], . . . ,K[7] as follows:

Ks
j = K[(s+ j) mod 9], (0 ≤ j ≤ 4); Ks

5 = K[(s+ 5) mod 9] + T [s mod 3];

Ks
6 = K[(s+ 6) mod 9] + T [(s+ 1) mod 3]; Ks

7 = K[(s+ 7) mod 9] + s,

where s denotes a round counter, T [0] and T [1] denote tweak words, T [2] = T [0] + T [1], and
K[8] = C240 ⊕

⊕7
j=0K[j] with a constant C240. Each Threefish-512 round consists of four

MIX functions followed by a permutation of the eight 64-bit words. The 128-bit function MIX
processes the pairs of eight words of internal state I0, I1, . . . , I7 after key addition.

5.2 Known Pseudo Preimage Attacks on Skein [14].

We briefly review two MITM preimage attacks on Skein-512 presented in [14]: one is a preimage
attack on the 22-round reduced Skein-512 hash function starting from the 3rd round, and the
other is a preimage attack on the 37-round reduced Skein-512 compression function starting
from the 2nd round.

For the 22-round attack, the 3-dimension biclique at rounds 12-15 is obtained with the
complexity of 2200. Since many bicliques can be produced out of one, the cost of constructing
the bicliques is negligible in the total complexity of the attack. In this attack, we can obtain 23

pairs matched in 3 bits by 22.3 calls of the 22-round Skein-512 compression function. As a result,
a preimage of the 22-round reduced Skein is found with the complexity of 2511.2.

Table 2. Parameters of the (pseudo) preimage attacks on the reduced Skein-512 [14]

Parameters of the preimage attack on the 22-round Skein-512 hash function

Chunks Matching

Forward Backward Biclique Partial matching Matching bits Total matching pairs Complexity

8-11 16-19 12-15 20→ 24 = 3← 7 I130,31,53 23 22.3

Parameters of the pseudo preimage attack on the 37-round Skein-512 compression function

Chunks Matching

Forward Backward Biclique Partial matching Matching bits Total matching pairs Complexity

8-15 24-31 16-23 32→ 38 = 2← 7 I325 2 21.2

Considering a pseudo preimage attack on the compression function, it is natural to assume
that tweak bits T can also be controlled by the attacker. Due to additional freedom, the pseudo

13



preimage attack on the 37-round reduced Skein-512 is feasible by using the 1-dimension biclique
at rounds 16-23. In this attack, we can obtain 2 pairs matched in 1 bit by 21.2 calls of the 37-
round Skein-512 compression function. Consequently, a pseudo preimage of the 37-round reduced
Skein is found with the complexity of 2511.2.

The parameters for the preimage attacks on the 22-round and the 37-round reduced Skein-
512 hash function and compression function are summarized in Table 2. See [14] for more details
about this attack.

5.3 Pseudo Collision Attacks on Skein.

Since the matching point used in the MITM preimage attack on the 22-round reduced Skein-512
hash function [14] is located in the end of the compression function, our conversion technique
can directly convert it to the pseudo collision attack on the 22-round reduced Skein-512. In this
attack, the neutral words have 3-bit freedom degrees, and the bit size of the matching point is
3. As reported in [14], a 3-bit matching candidate can be found with the complexity of 22.3/23.
Thus, the complexity of the pseudo collision attack on the 22-round reduced Skein-512 hash
function is estimated as 2253.8 (= 2(512−3)/2 × 22.3/23).

The pseudo preimage attack on the 37-round reduced Skein compression function can be
converted into a pseudo collision attack on a hash function in a similar way. The required com-
plexity for the pseudo collision attack on the 37-round reduced Skein hash function is estimated
as 2255.7 (= 2(512−1)/2 × 21.2/2).

6 Conclusion

In this paper, we gave a generic method to convert preimage attacks to pseudo collision attacks.
It provides a new insight to evaluate the security of hash functions. The essence of the method
is converting a partial target preimage attack to a pseudo collision attack. That is especially
compatible to meet-in-the-middle preimage attacks since it can be converted into a partial
target preimage attack if the matching point can be moved to the end of a hash function or a
compression function and enough freedom on neutral bits are left.

Using the proposed approach, we presented the best pseudo collision attacks on SHA-2 based
on the known preimage attacks, which has been left as open question. We showed pseudo collision
attacks on the 43- and 46-step reduced SHA-256 and SHA-512 based on the MITM preimage
attacks presented in [4]. Also, pseudo collision attacks on the 52- and 57-step reduced SHA-256
and SHA-512 based on the more advanced MITM preimage attacks in [14] were demonstrated.
We also applied the conversion technique to other hash functions including Skein and BLAKE
with the meet-in-the-middle preimage attacks, that showed the widely usage of this method. The
pseudo collision attacks on the 22- and 37-round reduced Skein-512 were presented. The 4-round
reduced BLAKE-256/512 without the initialization function can be attacked by the converted
pseudo collision attack (see Appendix A). Our technique can also apply to other hash functions,
such as Tiger [1]. Based on the MITM preimage attack on the full Tiger [10], we might construct
the pseudo collision attack on the full Tiger. We believe that the technique can be used for more
hash algorithms once their preimage or pseudo preimage attacks are found.

By this method, now we only can get pseudo collision attacks. It is left as future works that
how to construct collision attacks from known preimage attacks.

Acknowledgments The author would like to thank the anonymous reviewers for their helpful
comments.
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17. F. Mendel, T. Nad, and M. Schläffer, “Finding SHA-2 characteristics: Searching through a minefield of

contradictions.” in ASIACRYPT (D. H. Lee and X. Wang, eds.), vol. 7073 of Lecture Notes in Computer
Science, pp. 288–307, Springer, 2011.

18. F. Mendel, N. Pramstaller, C. Rechberger, and V. Rijmen, “Analysis of step-reduced SHA-256.” in FSE
(M. J. B. Robshaw, ed.), vol. 4047 of Lecture Notes in Computer Science, pp. 126–143, Springer, 2006.

19. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography . CRC Press, 1997.
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Appendix

A Application to BLAKE

We apply our technique to BLAKE hash family consisting of BLAKE-224, BLAKE-256, BLAKE-
384 and BLAKE-512 [5]. We utilize the result presented in [30] which showed a pseudo preimage
attack on the 4-round reduced BLAKE compression function without the initialization function.
While the practical impact on the attack on this reduced BLAKE compression function is
debatable, a pseudo collision on the reduced BLAKE can be directly derived by using our
conversion technique. We can find pseudo collision of BLAKE-256 compression function for
reduced 4 rounds with the complexity of 2112. For BLAKE-512, the complexity is 2224 for reduced
4 rounds compression function.

A.1 Description of BLAKE

The compression function of BLAKE-256 consists of initialization, round function and finalization.

Initialization : 8 words of chaining value h0, . . . , h7 are transformed into 16 words of an initial
state v0, . . . , v15 as vi = hi for 0 ≤ i ≤ 7. While vi (8 ≤ i ≤ 15) are obtained from the salts and
the counter, we ignore the details for the simplicity.

Round function : An initial state v is updated by 14 round functions. Each round function
includes the following steps, G0(v0, v4, v8, v12), G1(v1, v5, v9, v13), G2(v2, v6, v10, v14), G3(v3,
v7, v11, v15), G4(v0, v5, v10, v15), G5(v1, v6, v11, v12), G6(v2, v7, v8, v13), G7(v3, v4,v7, v14). The
function Gi(a, b, c, d) is defined as:

a← a+ b+ (mσr(2i) ⊕ cσr(2i+1)), d← (d⊕ a) ≫ 16,

c ← c+ d, b ← (b⊕ c) ≫ 12,
a← a+ b+ (mσr(2i+1) ⊕ cσr(2i)), d← (d⊕ a) ≫ 8,

c ← c+ d, b ← (b⊕ c) ≫ 7,

where permutations σr(j) (0 ≤ j < 16) of the first 4 rounds refer to Table 3. The functions G0

to G3 and G4 to G7 denote the column transfroms and the diagonal transforms, respectively.

Table 3. Message and Constants Permutation

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
σ2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
σ3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
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Fig. 5. MITM preimage attack for finalization

Finalization : After the round functions, the new chaining value is extracted with the updated
state, the salt and the feed-forward of the initial chaining value as follows.

h
′

0 ← h0 ⊕ s0 ⊕ v0 ⊕ v8 h
′

1 ← h1 ⊕ s1 ⊕ v1 ⊕ v9

h
′

2 ← h2 ⊕ s2 ⊕ v2 ⊕ v10 h
′

3 ← h3 ⊕ s3 ⊕ v3 ⊕ v11

h
′

4 ← h4 ⊕ s0 ⊕ v4 ⊕ v12 h
′

5 ← h5 ⊕ s1 ⊕ v5 ⊕ v13

h
′

6 ← h6 ⊕ s2 ⊕ v6 ⊕ v14 h
′

7 ← h7 ⊕ s3 ⊕ v7 ⊕ v15

BLAKE-512 operates on 64-bit words and outputs 512 bits. The compression function of
BLAKE-512 is similar to that of BLAKE-256 except the number of rounds (16 instead of 14),
and the constants and the amount of rotation used in G functions.

A.2 Known MITM Preimage Attacks on 4-round Compression Function of
BLAKE [30].

In the setting of the pseudo preimage of the compression function presented in [30], the initial-
ization step is disregarded, and selected a random start value from the start of round functions
(the end of initialization step) as shown in Fig. 5.

Figure 6 shows the overview of the pseudo preimage attacks on the 4-round reduced BLAKE
compression function without the initialization. Let an input state of the round i be {vi−1

0 , . . . , vi−1
15 }.

In this attack, message words m4 and m6 are used as the neutral words, and the starting point
of the attack is the state after the column transformation of the round 3. In the forward com-
putation from the starting point, v46, v

4
14 can be computed without using m6. Similarly, in the

backward computation, v06 can be computed without using m4. Therefore, stroing m4, v
4
6, v

4
14 in

a list LF , and m6, v
0
6 in a list LB, we expect to find matching pairs satisfying h′6 = v06⊕ v

4
6⊕ v

4
14.

As a result, a pseudo preimage of the 4-round reduced BLAKE without the initialization is
found with the complexity of 2224.

A.3 Pseudo Collision Attacks on BLAKE Compression Function.

Since the matching point of the known pseudo preimage attack is at the end of the compression
function, we can directly use it to construct a pseudo collision attack.

Attack Procedure.

1. Random choose the 7-th word words of the output value h′6, which is the target value.
2. Random choose the values of state words and message words except of m4 and m6.
3. For all 232 possible m4, compute forward and find v46 and v414. Store the pairs (m4, v

4
6 ⊕ v

4
14)

in a list LF

4. For all 232 possible m6, compute forward and find v06. Store the pairs (m4, h
′
6 ⊕ v

0
6) in a list

LB.
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: not depending on m6

: not depending on m4

: depending on m4 and m6

Fig. 6. Pseudo preimage attacks on reduced BLAKE compression function

5. Compare the value v46 ⊕ v
4
14 and h′6 ⊕ v

0
6 in two lists LF and LB.

6. Once matching, compute states v00, v
0
1, · · · , v

0
15 and v40, v

4
1, · · · , v

4
15. Compute output values

h′0, h
′
1, . . . , h

′
15 according to finalization steps and store with message words together. Then

obtain 232 items in which the value of h′6 are fixed.
7. Repeat steps (2) - (6) 280 times.

We can obtain 2112 items in which the value of h′6 are fixed. A colliding pair exists with
a high probability that the other 224 bits of output values are also same. Finally, we can find
a pseudo collision of the compression function for the 4-round reduced BLAKE-256 with the
complexity of 2112 = 280 · 232.

The attack is applicable to the reduced BLAKE-512 in a similar way, since the components
of BLAKE-512 are similar to those of BLAKE-256. In BLAKE-224, the variable h′7 is truncated
and discarded. However, the truncation does not affect our convertion, since we use h′6 as a
partial target preimage. Thus, a pseudo collision attack on the 4-round reduced BLAKE-224
without the initialization can be constructed with the complexity of 296(= 2(224−32)/2). For
BLAKE-512, in contrast to the other variants, the variable h′6 is discarded by the truncation as
well. Therefore, it is hard to straightforwardly apply our conversion to the reduced BLAKE-512,
since h′6 cannot be used as a partial target preimage.
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Abstract. Due to their fast performance in software, an increasing number of cryptographic primi-
tives are constructed using the operations addition modulo 2n, bit rotation and XOR (ARX). However,
the resistance of ARX-based ciphers against differential cryptanalysis is not well understood. In this
paper, we propose a new tool for evaluating more accurately the probabilities of additive differen-
tials over multiple rounds of a cryptographic primitive. First, we introduce a special set of additive
differences, called UNAF (unsigned non-adjacent form) differences. Then, we show how to apply
them to find good differential trails using an algorithm for the automatic search for differentials.
Finally, we describe a key-recovery attack on stream cipher Salsa20 reduced to five rounds, based
on UNAF differences.

Keywords: UNAF, ARX, Salsa20, additive differential probability, differential cryptanalysis

1 Introduction

Differential cryptanalysis [4] and linear cryptanalysis [14] have shown to be two of the most
powerful techniques in the cryptanalysis of symmetric-key cryptographic primitives. Security
against linear and differential cryptanalysis is therefore typically a major design criterion for
modern ciphers. An example of this is the wide-trail design strategy, used to provide provable
resistance against linear and differential cryptanalysis for the AES block cipher [6].

In order to achieve a fast performance in software, an increasing number of cryptographic
primitives are built using the operations addition modulo 2n, rotation and XOR (ARX). Examples
include the block cipher FEAL [17], the Salsa20 stream cipher family [3], as well as the SHA-3
finalists BLAKE [2] and Skein [9]. Although ARX-based algorithms are very popular, their
resistance to differential cryptanalysis [4] is not well understood.

The probability with which differences propagate through a sequence of operations must
be calculated efficiently and accurately, in order to correctly assess the security of a cipher
against differential cryptanalysis. Lipmaa et al. studied the xor-differential probability of addi-
tion (xdp+) in [12], and the additive differential probability of XOR (adp⊕) in [13]. These results
were generalized using the S-functions framework, introduced by Mouha et al. [15].

As shown by Velichkov et al. [18], the additive differential probability of ARX (adpARX) can
differ significantly from the multiplication of the differential probability of the separate compo-
nents – addition, rotation and XOR. Although an algorithm was proposed in [18] for the exact
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Table 1. Notation.

Symbol Meaning

n Number of bits in a word
x n-bit word

x[i] Select the (i mod n)-th bit (or element) of the n-bit word x,
x[0] is the least-significant bit (or element)

|x| The absolute value of x
x The negation of x i.e. x = −x (e.g. 1 = −1)

#A Number of elements in the set A
+, - Addition modulo 2n, subtraction modulo 2n

⊕ Exclusive-OR (XOR)
≪ t Left bit rotation by t positions

α→ β Input difference α propagates to output difference β
wr

i 32-bit word i from the input state to round r + 1 of Salsa20
∆r

i Additive difference in word i of the input to round r + 1 of Salsa20
0r

i Zero difference in word i of the input to round r + 1 of Salsa20
{∆U}ri UNAF difference in word i of the input to round r + 1 of Salsa20
ARX The sequence of the operations: +, ≪,⊕ as a single operation

HW(x) Hamming weight of x (number of non-zero bits in x)

calculation of adpARX, unfortunately their method does not scale to analyze larger components.
The accurate calculation of the probability of a differential characteristic therefore still remains
an open problem for ARX constructions.

In this paper we take a different approach. Namely, we do not calculate the exact differential
probability of a component consisting of more than one ARX operations. Instead, we multiply the
differential probabilities of several ARX operations in order to estimate the total probability. As
we want to avoid that this calculation differs significantly from the actual probability (e.g. due
to dependencies between the inputs as noted in [18]), we propose to use a new type of difference:
the UNAF difference, which represents a set of specially chosen additive differences.

We apply UNAF differences to the cryptanalysis of the ARX-based stream cipher Salsa20.
A general algorithm for automatic search of differentials is briefly discussed. We apply it to
find several differentials for three rounds of Salsa20. By multiplying the probabilities adpARX

of separate ARX components, we estimate that the best differential has a probability of 2−10.
Using UNAF differences, the same probability is evaluated as 2−4. Experimentally, we estimate
the probability of this differential to be 2−3.39. We observe that the probability obtained using
UNAF differences is much closer to the experimental value.

Finally, we apply UNAF differences to mount key-recovery attack on a version of Salsa20
reduced to 5 rounds. Note that this is not the best known attack on Salsa20. It is therefore
provided only as a demonstration of a practical application of UNAF differences. Furthermore,
we expect that our attack can be extended to more rounds.

The outline of the paper is as follows. In Sect. 2, we describe the UNAF framework. It is
applied to the differential analysis of stream cipher Salsa20 in Sect. 3. Sect. 4 concludes the
paper. Notation is defined in Table 1.

2 The UNAF Framework

In this section, we describe the UNAF framework. We define UNAF differences and state the
main UNAF theorem. The UNAF differential probability of ARX (udpARX) is defined and a general
algorithm for the automatic search for high-probability differentials is briefly discussed.
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2.1 Preliminaries

Before we give the formal definition of UNAF differences, we first recall a few related concepts:
the binary-signed digit (BSD) difference and the non-adjacent form (NAF) difference.

Definition 1. (BSD difference) A BSD difference is a difference whose bits are signed and take
values in the set {1, 0, 1}:

∆±a : ∆±a[i] = (a2[i]− a1[i]) ∈ {1, 0, 1}, 0 ≤ i < n . (1)

An additive difference ∆+a can be composed of more than one BSD difference ∆±a. From any
BSD difference, the corresponding additive difference can be computed as: ∆+a =

∑n−1
i=0 ∆±a[i] ·

2i.

All BSD differences corresponding to ∆+a can be obtained by replacing 01 with 11̄ and vice
versa and by replacing 01̄ with 1̄1 and vice versa [7, 16]. Note also that the number of pairs
(a1, a2) that satisfy the n-bit difference ∆+a is 2n, while the number of pairs that satisfy any of
its BSD differences ∆±a is 2k, where k is the number of zeros in the word ∆±a. Therefore, the
following inequality holds: 2k ≤ 2n, k = n−HW(∆±a).

The non-adjacent form (NAF) difference is a special BSD difference and is defined as follows:

Definition 2. (NAF) A NAF (non-adjacent form) difference is a BSD difference in which no
two adjacent bits are non-zero:

∆Na : ∄i : (∆Na[i] 6= 0) ∧ (∆Na[i + 1] 6= 0), 0 ≤ i < n− 1 . (2)

For every additive difference ∆+a, there is exactly one NAF difference ∆Na (ignoring the sign of
the MSB). No other BSD difference has a lower Hamming weight than ∆Na [16]. We illustrate
this with the following example:

Example 1. Let n = 4 and ∆+a = 3. Then all possible BSD differences corresponding to ∆+a
are 0011, 0101̄, 011̄1, 11̄1̄1, 1̄1̄1̄1, 11̄01̄ and 1̄1̄01̄. Of them, only 0101̄ is in non-adjacent form
(NAF). It also has the lowest Hamming weight among all BSD differences, namely 2.

By enumerating all possible combinations of signs of the non-zero bits of ∆Na, we can construct
a special set of additive differences. What is special about this set, is that all of its elements
correspond to the same unsigned NAF difference. This set is a UNAF difference and is denoted
by ∆Ua. More formally:

Definition 3. (UNAF) A UNAF difference is a set of additive differences that correspond to
the same unsigned NAF difference (i.e. a NAF difference with the signs ignored):

∆Ua = {∆+x : |∆Nx| = |∆Na|} . (3)

It is easy to see that the size of the UNAF set ∆Ua is 2k, where k is the Hamming weight of the
n-bit word ∆Na, excluding the MSB. We further clarify the concept of a UNAF difference with
the following example:

Example 2. Consider again an example where n = 4. Let ∆+a = 3, thus ∆Na = 0101̄. Then,
∆Ua = {∆+x1 = 3, ∆+x2 = −3, ∆+x3 = 5, ∆+x4 = −5}. This follows from |∆Nx1| = |∆

Nx2| =
|∆Nx3| = |∆

Nx4| = |∆
Na|, because |0101̄| = |01̄01| = |0101| = |01̄01̄| = 0101.
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2.2 Main UNAF Theorem

The main UNAF theorem provides the motivation for applying UNAF differences to the differ-
ential analysis of ARX. Before we state it, we define the additive differential probability of XOR
(adp⊕).

The differential probability of the operation XOR, when differences are expressed using addi-
tion modulo 2n, is denoted by adp⊕. For fixed additive differences α, β and γ, adp⊕ is equal to
the number of pairs (a1, b1) for which the equality ((a1 + α) ⊕ (b1 + β)) − (a1 ⊕ b1) = γ holds,
divided by the total number of such pairs. More formally, adp⊕(α, β → γ) is defined as:

Definition 4. (adp⊕)

adp⊕(α, β → γ) =
#{(a1, b1) : c2 − c1 = γ}

#{(a1, b1)}

= 2−2n ·#{(a1, b1) : c2 − c1 = γ} , (4)

where c1 = a1 ⊕ b1, c2 = (a1 + α)⊕ (b1 + β) and 22n is the total number of pairs (a1, b1).

Efficient algorithms for the computation of adp⊕ were studied in [13, 15]. Next we state the
main UNAF theorem. Its proof is given in Appendix A.

Theorem 1. (Main UNAF theorem) If the probability with which input additive differences
∆+a and ∆+b propagate to output difference ∆+c through XOR is non-zero, then the probability
with which any of the input additive differences belonging to the corresponding UNAF sets resp.
∆Ua and ∆Ub propagate to any of the output additive differences belonging to the UNAF set
∆Uc is also non-zero:

adp⊕(∆+a,∆+b→ ∆+c) > 0 =⇒ adp⊕(∆+ai, ∆
+bj → ∆+ck) > 0 ,

∀i, j, k : ∆+ai ∈ ∆Ua, ∆+bj ∈ ∆Ub, ∆+ck ∈ ∆Uc . (5)

Theorem 1 states that if a given additive differential is possible w.r.t. the XOR operation,
then all additive differentials whose inputs and outputs belong to the same UNAF sets, are also
possible. This is illustrated with the following example.

Example 3. Let n = 4 and ∆+a = 5, ∆+b = 1, ∆+c = 6. Because adp⊕(5, 1→ 6) = 0.15625 > 0,
we can use Theorem 1 to show that adp⊕(∆+ai, ∆

+bj → ∆+ck) > 0 for any ∆+ai ∈ ∆Ua =
{3,−3, 5,−5}, ∆+bj ∈ ∆Ub = {1,−1} and ∆+ck ∈ ∆Uc = {6,−6}.

In the next section we investigate the probability with which UNAF differences propagate
through the ARX operation.

2.3 The UNAF Differential Probability of ARX

The UNAF differential probability of ARX represents the probability with which the sets of input
additive differences ∆Ua, ∆Ub and ∆Ud propagate to the set of output additive differences ∆Ue.
It is defined as:

Definition 5. (udpARX)

udpARX(∆Ua, ∆Ub, ∆Ud
t
−→ ∆Ue) =

#{(a1, b1, d1) : ∆+a ∈ ∆Ua, ∆+b ∈ ∆Ub, ∆+d ∈ ∆Ud, ∆+e ∈ ∆Ue}

#{(a1, b1, d1) : ∆+a ∈ ∆Ua, ∆+b ∈ ∆Ub, ∆+d ∈ ∆Ud}
, (6)

where
∆+e = e2 − e1 = ARX(a1 + ∆+a, b1 + ∆+b, d1 + ∆+d, t)− ARX(a1, b1, d1, t),

and ARX(x, y, z, t) = ((x + y) ≪ t)⊕ z.
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The probability udpARX is computed using a method conceptually similar to the one proposed
for the computation of adpARX in [18]. The main difference is that in this case we are dealing
with sets of input and output additive differences. Details on this computation are provided in
Appendix B.

2.4 An Algorithm for Finding the Best Output Difference

To demonstrate how the UNAF framework can be used to construct high-probability differential
characteristics, we have developed a general algorithm for the automatic search of differentials.
It is capable of computing the highest probability output difference from a given operation.
The proposed algorithm is applicable to any type of difference and any operation. The only
condition is that the propagation of the difference through the operation can be represented
as an S-function. The method to find the best output difference is based on the A* search
algorithm [11].

Space constraints do not allow us to present the algorithm here in detail. However, a full
description of the algorithm accompanied by pseudo-code can be found in Appendix C. Further-
more, a software toolkit that implements this algorithm is available.4

In the following sections we describe an application of the algorithm and of UNAF differences
to the differential analysis of stream cipher Salsa20.

3 Applications

We describe several applications of the UNAF framework to the differential analysis of stream
cipher Salsa20. UNAF differences can be used to obtain more accurate estimations of the prob-
abilities of differentials through multiple rounds of ARX operations. We describe a key-recovery
attack using UNAF differentials on a version of Salsa20, reduced to 5 rounds.

3.1 Description of Salsa20

Salsa20 is a stream cipher proposed by Bernstein in [3]. It is one of the finalists of the eSTREAM
competition [8]. Salsa20 operates on 32-bit words. The inputs are a 256-bit key (k0, k1, . . . , k7),
a 64-bit nonce (v0, v1), a 64-bit counter (t0, t1) and four predefined 32-bit constants c0, c1, c2, c3.
These inputs are mapped to a two-dimensional square matrix as follows:









c0 k0 k1 k2

k3 c1 v0 v1

t0 t1 c2 k4

k5 k6 k7 c3









→









w0
0 w0

1 w0
2 w0

3

w0
4 w0

5 w0
6 w0

7

w0
8 w0

9 w0
10 w0

11

w0
12 w0

13 w0
14 w0

15









. (7)

The basic operation of Salsa20 is the quarterround. One quarterround transforms four of the
input words to round r+1: wr

0, w
r
1, w

r
2, w

r
3 into four output words: wr+1

0 , wr+1
1 , wr+1

2 , wr+1
3 by the

means of four consecutive ARX operations:

wr+1
1 = wr

1 ⊕ ((wr
0 + wr

3) ≪ 7) = ARX(wr
0, w

r
3, w

r
1, 7) , (8)

wr+1
2 = wr

2 ⊕ ((wr+1
1 + wr

0) ≪ 9) = ARX(wr+1
1 , wr

0, w
r
2, 9) , (9)

wr+1
3 = wr

3 ⊕ ((wr+1
2 + wr+1

1 ) ≪ 13) = ARX(wr+1
2 , wr+1

1 , wr
3, 13) , (10)

wr+1
0 = wr

0 ⊕ ((wr+1
3 + wr+1

2 ) ≪ 18) = ARX(wr+1
3 , wr+1

2 , wr
0, 18) . (11)
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12 ws
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13 ws

1 ws
10 ws

14 ws
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6 ws
15 ws

3 ws
7 ws

11

Fig. 1. Round s = r + 1 of Salsa20.

One round of Salsa20 consists of four parallel applications of the quarterround transformation.
Each transformation is applied to the elements (in permuted order) of one of the four columns
of the input state matrix, followed by a permutation of the words, as shown on Fig. 1.

Salsa20 has a total of 20 rounds, although versions with eight and twelve rounds have been
proposed, resp. Salsa20/8 and Salsa20/12. The output state after the last round is added to
the initial input state by means of a feed-forward operation. This produces sixteen 32-bit words
(512 bits) of key stream.

3.2 Estimating the Probability of Differentials Using UNAF Differences

We apply the algorithm of Sect. 2.4 to search for high probability differential characteristics in
Salsa20. We use a greedy strategy in which at every ARX operation we select the output UNAF
difference with the highest probability, before proceeding with the next ARX operation. In this
way we find the following truncated differential for three rounds:

∆0
8 = 0x80000000→ ∆3

9 = 0x80000000 . (12)

The expression (12) implies that all words of the input state have zero difference, except for the
word at position 8, which has difference 0x80000000. A three round differential characteristic
that satisfies (12) is shown on Fig. 2. The probability with which the differential (12) holds,
obtained experimentally over 220 chosen plaintexts, is pexper = 2−3.39.

We compute two theoretical estimations of pexper. The first estimation is based on single
additive differences and is denoted p̂add. It is computed as a multiplication of adpARX probabilities:

p̂add =
∏

adpARX = 2−10 . (13)

The second estimation of pexper is based on UNAF differences and is denoted p̂unaf . It is computed
as a multiplication of udpARX probabilities:

p̂unaf =
∏

udpARX = 2−4 . (14)

The computations (13) and (14) are shown in Table 2 and Table 3 respectively.
Clearly p̂unaf is a better estimation of pexper than p̂add. The reason is that multiple differential

characteristics connect the input and output differences of the differential (12). The estimation
p̂add is based upon a single one among all possible characteristics, while the estimation p̂unaf

takes into account several characteristics at once. This effect is illustrated in Fig. 3. Note that

4 http://www.ecrypt.eu.org/tools/s-function-toolkit
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00
0 ∆0

8 00
12

quarterround quarterround quarterround quarterround

01
1

∆1
3

∆1
0 01

4 01
12 01

10 ∆1
2 01

6

quarterround quarterround quarterround quarterround

02
11

∆2
8

02
5 ∆2

9 ∆2
1

quarterround quarterround quarterround quarterround

∆3
9

Fig. 2. Three round differential characteristic satisfying the differential ∆0
8 → ∆3

9.

the input {∆U}08 and output {∆U}39 UNAF sets contain a single element – the additive difference
80000000. Because of that {∆U}08 = ∆0

8 and {∆U}39 = ∆3
9 and therefore the estimations (13)

and (14) can be compared to each other.
In the case where the output UNAF set contains more than one element (i.e. {∆U}39 6= ∆3

9),
we propose to divide the resulting probability by the size of the output UNAF set #∆U :

p̂unaf =

∏

udpARX

#∆U
. (15)

The estimation (15) is based on the assumption that all additive differences from the output
UNAF set ∆U hold with approximately the same (or very close) probabilities. For the case of
Salsa20, our experiments confirm this assumption.

We use (15) to estimate the probabilities with which several differences from the output state
after Salsa20/3 hold, given input UNAF difference {∆U}08 = 0x80000000. The results are shown
in Table 4 and in Fig. 4.

The results presented in Table 4 and Fig. 4 show that although the probability estimations
p̂unaf/#∆U computed using UNAF differences with (15) deviate from the values obtained exper-
imentally pexper, they are still more accurate than the estimations p̂add based on single additive
differences and computed with (13).

3.3 Key-recovery Attack on Salsa20/5

In this section, we apply UNAF differences to mount a key-recovery attack on a version of
stream cipher Salsa20 reduced to 5 rounds, denoted as Salsa20/5. Although its complexity is
lower than exhaustive key search, the attack does not improve the best known attack on the
cipher. Therefore it is described only as a demonstration of a practical application of UNAF
differences.
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Table 2. The estimated probability p̂add (13) of the differential (12); adpARX refers to adpARX((∆+a+∆+b), ∆+d
t
−→

∆+e).

∆ ∆+a ∆+b ∆+d t ∆+e = ∆ adpARX

∆1
2 0 0 80000000 9 80000000 1

∆1
3 80000000 0 0 13 fffff000 2−1

∆1
0 fffff000 80000000 0 18 40020000 2−2.41

∆2
1 40020000 0 0 7 01000020 2−2.99

∆2
8 0 0 80000000 9 80000000 1

∆2
9 80000000 0 0 13 fffff000 2−1

∆3
9 0 01000020 fffff000 7 80000000 2−2.58

p̂add = 2−10

Table 3. The estimated probability p̂unaf (14) of the differential (12); udpARX refers to udpARX(∆Ua, ∆Ub, ∆Ud
t
−→

∆Ue).

∆U ∆Ua ∆Ub ∆Ud t ∆Ue = ∆U udpARX

{∆U}12 0 0 80000000 9 80000000 1
{∆U}13 80000000 0 0 13 00001000 1
{∆U}10 00001000 80000000 0 18 40020000 2−0.41

{∆U}21 40020000 0 0 7 01000020 2−0.99

{∆U}28 0 0 80000000 9 80000000 1
{∆U}29 80000000 0 0 13 00001000 1
{∆U}39 0 01000020 00001000 7 80000000 2−2.58

p̂unaf = 2−4

Using the best-first search algorithm from Sect. 2.4 we find the following UNAF differential
for 3 rounds of Salsa20:

{∆U}08 = 0x80000000→ {∆U}311 = 0x01000024 . (16)

The input UNAF set {∆U}08 = 0x80000000 consists of one element: the additive difference
0x80000000. The output UNAF set {∆U}311 = 0x01000024 contains the following 23 additive
differences: 0x01000024, 0x0100001c, 0x00ffffe4, 0x00ffffdc, 0xff000024, 0xff00001c,
0xfeffffe4, 0xfeffffdc. The probability that an additive difference ∆3

11 falls into the set
{∆U}311 was determined experimentally to be pexper = 2−3.38.

In our attack, we first invert the feed-forward operation to compute the differences ∆5
5,

∆5
6, . . ., ∆5

10 of the state after round 5. Next, we guess 5 of the 8 words of the secret key, in order
to compute the differences ∆5

1,∆
5
2,∆

5
3,∆

5
4,∆

5
11. Therefore, we do not only know the differences

∆5
1,∆

5
2,. . .,∆

5
11, but also the corresponding values of the word pairs. This allows us to compute

the differences ∆4
12,∆

4
13,∆

4
14 from the state after round 4. Using the latter, we can finally compute

the UNAF difference {∆U}311. If it is equal to 0x01000024, then our guess of the key words was
correct with some probability. This process is illustrated in Appendix D.

Since the probability of the differential (16) is 2−3.38 ≥ 2−4, from M = 26 chosen plaintext
pairs we expect that 2−4 ·26 = 22 = 4 pairs will follow the differential (i.e. will satisfy the output
difference {∆U}311).

We assume that a pair encrypted under a wrong key results in a uniformly random difference.
The probability that this difference falls into the set {∆U}311 is Prand = 23/232 = 2−29. Therefore
the probability that at least 4 plaintext pairs turn out to be all false positives (i.e. they satisfy
the differential, but are encrypted under a wrong key) can be calculated using the binomial
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8

80000000

80000000 {∆U}12

00001000 fffff000 {∆U}13

40020000 3ffe0000 c0020000 bffe0000 {∆U}10 80000000 {∆U}28
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Fig. 3. A single UNAF characteristic, satisfying the differential ∆0
8 → ∆3

9. It is composed of multiple additive
characteristics.

distribution:

64
∑

i=4

(

64

i

)

(2−29)i(1− 2−29)64−i ≈ 2−96.72 . (17)

As explained, because we guess 160 bits (5 words) of the secret key, in the attack we have
to make 2160 guesses. For each guess, we encrypt 26 chosen plaintext pairs and we partially
decrypt the resulting ciphertext pairs for 2 rounds in order to compute the output difference.
From 2160 guesses, the expected number of wrong keys that result in at least 4 pairs with the
right difference is 2−96.72 · 2160 ≈ 263. For each of those keys, we guess the remaining 96 bits (3
words) i.e. we make 296 guesses per candidate key. For each guess we encrypt one plaintext pair
(i.e. two encryptions are performed) under the full key and check if the encryption matches the
corresponding ciphertext pair. This results in 2 · 263 · 296 = 2160 additional operations. Thus we
estimate the total number of encryptions of our attack to be:

2 · 26 · 2160 + 2 · 263 · 296 = 2167 + 2160 ≈ 2167 . (18)

Therefore the presented attack on Salsa20/5 has data complexity 27 chosen plaintexts and
time complexity 2167 encryptions. As shown in Table 5, it is comparable to the attack proposed
by Crowley [5].

9



Table 4. Estimating the probabilities of differentials for three rounds of Salsa20 using UNAF differences.

i ∆3
i {∆U}3i p̂add p̂unaf/#∆U pexper

9 80000000 80000000 2−10.00 2−4.00 2−3.38

13 ffe00100 00200100 2−15.75 2−7.75 2−4.93

14 ff00001c 01000024 2−16.29 2−8.31 2−6.35

1 00e00fe4 01201024 2−23.01 2−13.04 2−10.18

2 00000800 00000800 2−35.59 2−16.62 2−11.08

3 fff000a0 001000a0 2−41.48 2−20.04 2−14.68

6 01038020 01048020 2−41.76 2−21.91 2−15.68

7 ffefc000 00104000 2−44.65 2−22.15 2−17.42
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3-Round Differentials for Salsa20 (Index)

Estimating the Probabilities of ARX Differentials Using UNAF

Estimated experimentally
UNAF

Additive

Fig. 4. Three estimates of the probabilities of eight differentials for three rounds of Salsa20, based on the data
from Table 4: (1) estimation obtained experimentally, (2) based on UNAF differences and (3) based on single
additive differences.

4 Conclusion

In this paper, we introduced UNAF differences. These are sets of specially chosen additive
differences used to estimate the probabilities of differentials through sequences of ARX operations
more accurately.

We presented the main UNAF theorem, which shows how a UNAF difference groups several
possible additive differences together. Further, we investigated the propagation of UNAF dif-
ferences through the ARX operation. We defined the UNAF differential probability of ARX and
noted that it can be computed efficiently using the S-functions framework proposed by Mouha
et al.

UNAF differences were applied to the cryptanalysis of the stream cipher Salsa20. We found
that for three rounds of Salsa20, the probability of the best differential based on additive dif-
ferences is estimated as 2−10. Evaluating the same probability using UNAF differences leads
to the value 2−4. The latter is closer to the the probability of the differential 2−3.39 that was
determined experimentally.

A general algorithm for the automatic search for differentials was briefly discussed. It was
used to find high-probability UNAF differentials for three rounds of Salsa20. One of them was
used to mount a key-recovery attack on Salsa20 reduced to five rounds. The attack has a time
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Table 5. Overview of key-recovery attacks on Salsa20.

Rounds Reference Time Data Type of Differences

Salsa20/5 Our result 2167 27 Additive
Salsa20/5 Crowley [5] 2165 26 XOR

Salsa20/6 Fischer et al. [10] 2177 216 XOR

Salsa20/7 Aumasson et al. [1] 2151 226 XOR

Salsa20/8 Aumasson et al. [1] 2251 231 XOR

complexity of 27 and a data complexity of 2167. It therefore does not improve the best-known
attack on the cipher. Nevertheless, to the best of our knowledge, this is the first cryptanalysis
result on Salsa20 that is based on additive differences. Furthermore, we expect that the attack
can be extended to more rounds. One possibility in this direction is to group two or more ARX

operations and consider them as a single operation. Another is to improve the method for finding
differential characteristics for multiple rounds.

The results in this paper were obtained for the Salsa20 stream cipher. We see the application
of UNAF differences to other ARX-based ciphers as another interesting topic for future research.
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A Proof of Theorem 1

The following Lemma provides the condition under which the probability adp⊕ is non-zero.

Lemma 1 (Theorem 2 of [13]). All differences ∆+a, ∆+b and ∆+c for which adp⊕(∆+a, ∆+b→
∆+c) > 0, are ∆+a = ∆+b = ∆+c = 0, and

∆+a = ∆+a[n− 1 . . . q + 1] ‖ ∆+a[q] ‖ 0∗ , (19)

∆+b = ∆+b[n− 1 . . . q + 1] ‖ ∆+b[q] ‖ 0∗ , (20)

∆+c = ∆+c[n− 1 . . . q + 1] ‖ ∆+c[q] ‖ 0∗ , (21)

where ¬(∆+a[q] = ∆+b[q] = ∆+c[q] = 0) and ∆+a[q]⊕∆+b[q] = ∆+c[q]. Each of the sub-word
differences ∆+a[n−1 . . . q+1], ∆+b[n−1 . . . q+1] and ∆+c[n−1 . . . q+1] can take any arbitrary
value. The symbol ∗ represents the Kleene star.

We proceed next with the proof of Theorem 1.

Proof. From Reitwiesner’s algorithm for the construction of the NAF [16], it follows that if
the first non-zero bit (starting from the LSB) of ∆+ai is at position q, then the first non-zero
bit of its NAF representation ∆Nai is also at position q. Since all ∆+ai in (5) belong to the
same UNAF set ∆Ua, the first non-zero bit for all of them is in the same position q. The same
observation holds for ∆+bj and ∆+ck. From adp⊕(∆+a, ∆+b → ∆+c) > 0 and Lemma 1, it
follows that ∆+a[q] ⊕∆+b[q] = ∆+c[q]. Therefore ∆+ai[q] ⊕∆+bj [q] = ∆+ck[q],∀i, j, k. Again
by Lemma 1, it follows that if ∆+a is replaced by any ∆+ai belonging to the same UNAF set
∆Ua, the resulting probability adp⊕ is still non-zero. The same observation can be made for
∆+b and ∆+c, which completes the proof. ⊓⊔

B Computation of udpARX

The probability udpARX can be efficiently computed using the S-function framework [15, 18]. We
briefly describe this computation below. It is also a part of a toolkit that will be made publicly
available.

The propagation of input UNAF differences ∆Ua, ∆Ub and ∆Ud to output UNAF difference
∆Ue is represented as an S-function. The latter is used to compute 16 adjacency matrices. Each
of them corresponds to a given value of the i-th bit of each of the four UNAF differences and
connects a set of possible input states to a set of possible output states.

The differential (∆Ua[i], ∆Ub[i], ∆Ud[i + t]
t
−→ ∆Ue[i + t]) at bit position i is written as the

bit string w[i]← (∆Ua[i] ‖ ∆Ub[i] ‖ ∆Ud[i + t] ‖ ∆Ue[i + t]). At each bit position 0 ≤ i < n, the
index w[i] ∈ {0, . . . , 15} selects one of the 16 adjacency matrices Aw[i]. The probability udpARX

is computed as follows:

udpARX(∆Ua,∆Ub, ∆Ud
t
−→ ∆Ue) =

14
∑

j=0

Lj

(

n−1
∏

i=n−t

Aw[i]

)

R

(

n−t−1
∏

i=0

Aw[i]

)

Cj . (22)
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In (22), the summation is performed over each of the 14 possible initial states. The reason
for having multiple initial states is the bit rotation by t positions, as explained in [18]. The
multiplication by the projection matrix R at bit position t is necessary because of the rotation
operation. The column vectors Cj , 0 ≤ j < 15 represent the 15 possible initial states. The row
vectors Lj , 0 < j < 15 represent their corresponding final states. For further details, we refer
to [18].

Note that the matrices Aw[i] are of dimension 540 × 540, but these can be minimized to
60× 60 by combining equivalent states using the algorithm of [15, §3.5] .

C An Algorithm for Finding the Best Output Difference

Let � be an operation that takes a finite number of n-bit input words a1, b1, d1, . . . and computes
an n-bit output word c1 = �(a1, b1, d1, . . .). Let • be a type of difference. Let α,β,ζ,. . . and γ
be differences of type • such that a1 • a2 = α, b1 • b2 = β, d1 • d2 = ζ, . . . and c1 • c2 = γ
for some a2,b2,d2,. . . and some c2. The differential probability with which input differences
α, β, ζ, . . . propagate to output difference γ with respect to the operation � is denoted as
•dp�(α, β, ζ, . . . → γ). Finally, let the difference • be such that it is possible to express its
propagation through the operation � as an S-function consisting of N states. Therefore, there
exist adjacency matrices Aw[i] such that the probability •dp� can be efficiently computed as

LAw[n−1] . . . Aw[1]Aw[0]C, where L = [1 1 · · · 1 ] is a 1 × N matrix and C = [1 0 · · · 0 ]T is an
N ×1 matrix (as in [15]). The problem is to find an output difference γ such that its probability
pγ over all possible output differences is maximal:

pγ = •dp�(α, β, ζ, . . .→ γ) = max
j
• dp�(α, β, ζ, . . .→ γj) . (23)

We represent (23) as a problem of finding the shortest path in an node-weighted binary tree.
We define the binary tree T = (N, E), where N is the set of nodes and E is the set of edges. The
height of T is n + 1 with a dummy start node positioned at level −1 and the leaves positioned
at level n − 1. Each node at level i : 0 ≤ i < n contains a value of γ[i], where i = 0 is the LSB
and i = n− 1 is the MSB. Every node on level i has two children at level i + 1. Since the input
differences α, β, ζ, . . . are fixed, at every bit position i we can choose between two matrices Aw[i],
corresponding to the two possibilities for the output difference γ[i].

To find the output difference with the highest probability, we use the A* search algorithm [11].
In this algorithm, an evaluation function f can be computed for every node in the search tree.
The f -function represents the weight of a node, and is based on the cost of the path from the
start node, and a heuristic that estimates the distance to the goal node. The algorithm always
expands the node with the highest f -value (corresponding to the highest probability). The A*
search algorithm guarantees that the optimal solution will be found, provided that the evaluation
function f never underestimates the probability of the best output difference. After introducing
some definitions, we will define an evaluation function f and prove in Theorem 2 that this f
satisfies the required condition.

Let vector Xi = [xi,0 xi,1 · · · xi,N−1 ] be a transition probability vector, i.e. xi,r ≥ 0 for

0 ≤ r < N and
∑N−1

r=0 xi,r ≤ 1. We define Hr as a column vector of length N , of which the
r-th element (counting from 0) is 1 and all other elements are 0. The cost of a node at level i
is then denoted by ‖Xi‖ (the 1-norm of Xi) and is calculated as ‖Aw[i]Aw[i−1] · · ·Aw[0]C‖. Let

us define a sequence of row vectors Ĝi,r, 0 ≤ r < N and 0 ≤ i < n. Each Ĝi,r is a product of
matrices LAw[n−1]Aw[n−2] . . . Aw[i+1], where each of the A-matrices are chosen such that Ĝi,rHr is
maximized. The choice of the A-matrices may differ for different values of r. We define row vector
Gi as the product of matrices LAw[n−1]Aw[n−2] . . . Aw[i+1], where the A-matrices are chosen such
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that GiXi is maximized. For a node at level i with cost ‖Xi‖, the evaluation function f is defined
as
∑N−1

r=0 Ĝi,rHrxi,r.

Theorem 2. The evaluation function f =
∑N−1

r=0 Ĝi,rHrxi,r never underestimates the probabil-
ity of the best output difference.

Proof. The following inequality holds: Ĝi,rHr ≥ GiHr for 0 ≤ r < N . The latter can be proven
by contradiction: if Ĝi,rHr < GiHr for some r, then Ĝi,r is not the product of A-matrices that
maximizes Ĝi,rHr, which contradicts its definition. Because probabilities are non-negative, we
can multiply both sides of the inequality by the state probability xi,r, to obtain Ĝi,rHrxi,r ≥
GiHrxi,r, 0 ≤ r < N . By summing the left and the right sides of the N inequalities, we

obtain
∑N−1

r=0 Ĝi,rHrxi,r ≥
∑N−1

r=0 GiHrxi,r = GiXi. By definition, GiXi is the best choice of
A-matrices, starting from transition probability Xi. This proves that the left-hand side of the
inequality never underestimates the probability, which proves the theorem. ⊓⊔

Before we can apply the A* algorithm to compute the best output difference, we must
determine the values of Ĝi,rHr for 0 ≤ i < n and 0 ≤ r < N . This is done by again running the
A* algorithm for the most significant bit, then for the two most significant bits, and so on until
we process the entire word. For the MSB, we define Ĝn−1,r = L for 0 ≤ r < N . For the two
MSBs, we run the A* algorithm for every 0 ≤ r < N , setting the transition probability vector
Xn−2 to Hr. This allows us to compute Ĝn−2,rHr. This process is continued until Ĝ0,rHr for
0 ≤ r < N is calculated. Having calculated all values of Ĝi,rHr, we then use the A* algorithm to
search for the best output difference by setting the state transition probability vector X−1 = C.
Pseudo-code of the entire A* search algorithm is provided in Algorithm 1.

D Attack on Salsa20/5 using UNAF Differences

Fig. 5 illustrates the attack presented in Sect. 3.3. Gray boxes denote guessed words and white
boxes denote words that are either known or can be computed.
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Fig. 5. Key-recovery attack on Salsa20/5 using the 3-round UNAF differential {∆U}08 → {∆
U}311. Gray boxes

denote guessed words; white boxes denote words that are either known or can be computed.
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Algorithm 1 Find the Best Output Diff. of Type • w.r.t. Operation �.

Input: Matrices Aw[i] for •dp� ; input diffs. α, β, ζ, . . .,; num. states N .
Output: Output difference γ and probability pγ such that

pγ = •dp�(α, β, ζ, . . .→ γ) = max
j
• dp�(α, β, ζ, . . .→ γj) .

1: Define struct node = {index, γ, findex−1, Ĥindex−1}
2: Init priority queue of nodes ordered by f : Q = ∅
3: Init output difference: γ ← ∅
4: for i = n− 1 downto 0 do
5: if i = n− 1 then
6: Ĝi ← L = [1 1 · · · 1 ]
7: else
8: Ĝi ← [ Ĝi,0 Ĝi,1 . . . Ĝi,N−1 ]
9: end if

10: if i = 0 then
11: N = 1
12: end if
13: for r = 0 to N − 1 do
14: Reset priority queue: Q = ∅
15: Init the total probability of node vi−1: fi−1 ← 1
16: Init the transition probability vector vi: Ĥi−1 ← Ĥi−1,r

17: Init node vi ← {i, γ, fi−1, Ĥi−1}
18: Add new node to the queue: Q.push(vi)
19: vbest ← Q.top(); {j, γ, fj−1, Ĥj−1} ← vbest

20: while j 6= n do
21: Remove vbest from the queue: Q.pop()
22: for q = 0 to 1 do
23: Set the j-th bit of γ: γ[j]← q
24: Estimate the total probability: fj ← ĜjA

q

w[j]Ĥj−1

25: Compute the transition probability vector: Ĥj ← Aq

w[j] Ĥj−1

26: Init child of vbest: node vq
j+1 ← {j + 1, γ, fj , Ĥj}

27: Add the child to the queue: Q.push(vq
j+1)

28: end for
29: Extract the node with the lowest total cost: vbest ← Q.top()
30: {j, γ, fj−1, Ĥj−1} ← vbest

31: end while
32: vbest ← Q.top(); fbest ← get cost(vbest)
33: Set the r-th element of Ĝi: Ĝi,r ← fbest

34: end for
35: end for
36: Extract the node with highest total probability: vbest ← Q.top()
37: Get the output difference associated to vbest: γ, pγ ← get gamma(vbest)
38: return γ, pγ
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Abstract. ElimLin is a simple algorithm for solving polynomial systems of multivariate equations
over small finite fields. It was initially proposed by Courtois to attack DES. It can reveal some hidden
linear equations existing in the ideal generated by the system. We report a number of key theorems
on ElimLin. Our main result is to characterize ElimLin in terms of a sequence of intersections of
vector spaces. It implies that the linear space generated by ElimLin is invariant with respect to
any variable ordering during elimination and substitution. This can be seen as surprising given the
fact that it eliminates variables. On the contrary, monomial ordering is a crucial factor in Gröbner
Bases algorithms such as F4. Moreover, we prove that the result of ElimLin is invariant with respect
to any affine bijective variable change. Analyzing an overdefined dense system of equations, we
argue that to obtain more linear equations in the succeeding iteration in ElimLin some restrictions
should be satisfied. Finally, we compare the security of LBlock and MIBS block ciphers with respect
to algebraic attacks and propose several attacks on Courtois Toy Cipher version 2 (CTC2) with
distinct parameters using ElimLin.

Keywords: block ciphers, algebraic cryptanalysis, systems of sparse polynomial equations of low
degree

[Breaking a good cipher should require]
“as much work as solving a system of simultaneous equations

in a large number of unknowns of a complex type.”

Claude Elwood Shannon [46]

1 Introduction

Various techniques exist in cryptanalysis of symmetric ciphers. Some involve statistical analysis
and some are purely deterministic. One of the latter methods is algebraic attack formulated as
early as 1949 by Shannon [46].

Any algebraic attack consists of two distinct stages:

– Writing the cipher as a system of polynomial equations of low degree often over GF(2) or
GF(2k), which is feasible for any cipher [49, 21, 43].

– Recovering the secret key by solving such a large system of polynomial equations.

Algebraic attacks have been successful in breaking several stream ciphers (see [1, 19, 12, 25,
20, 15, 24, 11] for instance) and a few block ciphers such as Keeloq [38] and GOST [16], but they
are not often as successful as statistical attacks. On the other hand, they often require low data
complexity. This is not the case for statistical attacks.

General purpose algebraic attack techniques were developed in the last few years by Courtois,
Bard, Meier, Faugère, Raddum, Semaev, Vielhaber, Dinur and Shamir to solve these systems [17,
22, 21, 19, 12, 31, 32, 45, 48, 24, 25]. The problem of solving such polynomial systems of multivari-
ate equations is called MQ problem and is known to be NP hard for a random system. Currently,



for a random system in which the number of equations is equal to the number of unknowns, there
exists no technique faster than an exhaustive key search which can solve such systems. On the
other hand, the equations derived from symmetric ciphers turn out to be overdefined and sparse
for most ciphers. So, they might be easier to solve. This sparsity is coming from the fact that due
to the limitations in hardware and the need for lightweight algorithms, simple operations arise
in the definition of cryptosystems. They are also overdefined due to the non-linear operations.

The traditional method for solving overdefined polynomial systems of equations are known
to be various Gröbner basis algorithms such as Buchberger algorithm [10], F4 and F5 [31, 32]
and XL [22]. The most critical drawback of the Gröbner basis approach is the elimination step
where the degree of the system increases. This leads to an explosion in memory space and in
the worst case scenario they run in double exponential time and even the most current efficient
implementations of Faugère algorithm [31, 32] under PolyBoRi framework [8] or Magma [41] are
not capable of handling large systems of equations efficiently. On the other hand, they are faster
than other methods for overdefined dense systems or when the equations are over GF(q) where
q > 2. In fact, together with SAT solvers, they are currently the most successful methods for
solving polynomial systems.

Nevertheless, due to the technical reasons mentioned above, the system of equations extracted
from symmetric ciphers turns out to be sparse. Unfortunately, the Gröbner basis algorithms can
not exploit this property. In such cases, algorithms such as XSL [21], SAT solving techniques [4,
28, 3], Raddum-Semaev algorithm [45] and ElimLin [17] are of interest.

In this paper, we study the elimination algorithm ElimLin that falls within the remit of
Gröbner basis algorithms, though it is conceptually much simpler and is based on a mix of
simple linear algebra and substitution. It maintains the degree of the equations and it does not
require any fixed ordering on the set of all monomials. This is not the case for the Gröbner basis
algorithms, where monomial ordering is a prominent factor. On the contrary, we need to work
with ad-hoc monomial orderings to preserve the sparsity and make it run faster. This simple
algorithm reveals some hidden linear equations existing in the ideal generated by the system.
We show in Sec. 7 that ElimLin does not find all such linear equations.

As far as the authors are aware, no clue has been found yet which demonstrates that Elim-
Lin at some stage stops working. This does not mean that ElimLin can break any system. As
mentioned earlier, for a random system this problem is NP hard and Gröbner basis algorithms
behave much better for such dense random systems. But, the equations derived from cryptosys-
tems are often not random (see [33] for the huge difference between a random system and the
algebraic representation of cryptographic protocols). What we mean here is that if for some
small number of rounds ElimLin performs well but then it stops working for more rounds, we
can increase the number of samples and it will become effective again (see the Appendix). The
bottleneck is having an efficient data structure for implementing ElimLin together with a rigor-
ous theory behind it to anticipate its behaviour. These two factors are currently missing in the
literature.

Except two simple theorems by Bard (see Chapter 12, Section 5 of [4]), almost nothing has
been done regarding the theory behind ElimLin. As ElimLin can also be used as a pre-processing
step in any algebraic attack, building a proper theory is vital for improving the state of the art
algebraic attacks. We are going to shed some lights on the way this ad-hoc algorithm works and
the theory behind it.

In this paper, we show that the output of ElimLin is invariant with respect to any variable
ordering. This is a surprising result, i.e., while the spaces generated are different depending on
how substitution is performed, we prove that their intersection is exactly the same. Furthermore,
we prove that no affine bijective variable change can modify the output of ElimLin. Then, we
prove a theorem on how the number of linear equations evolves in each iteration of ElimLin.
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An unannounced competition is currently running for designing lightweight cryptographic
primitives. This includes several designs which have appeared in the last few years (see [7,
23, 40, 35, 30, 37, 47, 2, 36, 6]). These designs mainly compete over the gate equivalent (GE) and
throughput. This might not be a fair comparison of efficiency, since they do not provide the
same level of security with respect to distinct types of attacks. In this paper, we compare the
two lightweight Feistel-based block ciphers MIBS [39] and LBlock [50] and show that with the
same number of rounds, LBlock provides a much lower level of security compared to MIBS
with respect to algebraic attacks. In fact, we attack both ciphers with ElimLin and F4 algorithm.
Finally, we provide several algebraic attacks against Courtois Toy Cipher version 2 (CTC2) with
distinct parameters using ElimLin.

In Sec. 2, we elaborate the ElimLin algorithm. Then, we remind some basic theorems on
ElimLin in Sec. 3. As our main contribution (Theorem 7), we prove in Sec. 4 that ElimLin can
be formulated as an intersection of vector spaces. We also discuss its consequences in Sec. 4.2
and prove a theorem regarding the evolution of linear equations in Sec. 4.3. We perform some
attacks simulations on CTC2, LBlock and MIBS block ciphers in Sec. 5.2, 5.3, 5.4 respectively.
In Sec. 6 we compare ElimLin and F4. We mention some open problems and a conjecture in
Sec. 7 and we conclude. Finally, in the Appendix we give a toy example on ElimLin and discuss
the effect of multiple samples.

2 ElimLin Algorithm

ElimLin stands for Eliminate Linear and it is a technique for solving polynomial systems of
multivariate equations of low degree d mostly: 2, 3, or 4 over a finite field specifically GF(2).
Originally, it was proposed in [17] to attack DES. It broke 5-round DES. Later, it was applied
to break 5-round PRESENT block cipher [44] and to analyze the resistance of Snow 2.0 stream
cipher against algebraic attacks [18]. It is a simple but a powerful algorithm which can be
applied to any symmetric cipher and is capable of breaking their reduced versions. There is
no specific requirement for the system except that there should exist at least one linear term,
otherwise ElimLin trivially fails. The key question for such an algorithm is to predict its behavior.
Currently, very similar to most other types of algebraic attacks such as [48, 24, 25], multiple parts
of the algorithm are heuristic, so it is worthwhile to prove which factors can improve its results,
make it run faster or does not have any influence on its ultimate result. This will yield a better
understanding of how ElimLin works and can be extended.

ElimLin is composed of two sequential distinct stages, namely:

– Gaussian Elimination: All the linear equations in the linear span of initial equations are
found. They are the intersection between two vector spaces: The vector space spanned by all
monomials of degree 1 and the vector space spanned by all equations.

– Substitution: Variables are iteratively eliminated in the whole system based on linear equa-
tions until there is no linear equation left. Consequently, the remaining system has fewer
variables.

This routine is iterated until no linear equation is obtained in the linear span of the system.
See Fig. 1 for a more precise definition of the algorithm. We also give a toy system of equations
in the Appendix and solve it with ElimLin.

Clearly, the algorithm shall depend on ordering strategies to apply in step 5, 11, and 12 of
Fig. 1. We will see that it is not, i.e., the span of the resulting SL is invariant.

We observe that new linear equations are derived in each iteration of the algorithm that did
not exist in the former spans. This phenomenon is called avalanche effect in ElimLin and is the
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1: Input : A system of polynomial equations S0 = {Eq0
1, . . . ,Eq0

m0
} over GF(2).

2: Output : An updated system of equations ST and a system of linear equations SL.
3: Set SL ← ∅ and ST ← S0 and k ← 1.
4: repeat
5: Perform Gaussian elimination Gauss(.) on ST with an arbitrary ordering of equations and monomials to

eliminate non-linear monomials.
6: Set SL′ ← Linear equations from Gauss(ST ).
7: Set ST ← Gauss(ST ) \ SL′ .
8: Set flag.
9: for all ` ∈ SL′ in an arbitrary order do

10: if ` is a trivial equation then
11: if ` is unsolvable then
12: Terminate and output “No Solution”.
13: end if
14: else
15: Unset flag.
16: Let xtk be a monomial from `.
17: Substitute xtk in ST and S ′L using `.
18: Insert ` in SL.
19: k ← k + 1
20: end if
21: end for
22: until flag is set.
23: Output ST and SL.

Fig. 1. ElimLin algorithm.

consequence of Theorem 7. At the end, the system is solved linearly (when SL is large enough)
or ElimLin fails. If the latter occurs, we can increase the data complexity 3 and re-run the attack.

3 State of the Art Theorems

The only theoretical analysis of ElimLin was done by Bard in [4]. He proved the following theorem
and corollary for one iteration of ElimLin:

Theorem 1 ([4]). All linear equations in the linear span of a polynomial equation system S0
are found in the linear span of linear equations derived by performing the first iteration of ElimLin
algorithm on the system.

The following corollary (also from [4]) is the direct consequence of the above theorem.

Corollary 2. The linear equations generated after performing the first Gaussian elimination in
ElimLin algorithm form a basis for all possible linear equations in the linear span of the system.

This shows that any method to perform Gaussian elimination does not affect the linear space
obtained at an arbitrary iteration of ElimLin. All linear equations derived from one method exist
in the linear span of the equations cumulated from another method. This is trivial to see.

4 Algebraic Representation of ElimLin

4.1 ElimLin as an Intersection of Vector Spaces

We also formalize ElimLin in an algebraic way. This representation is used in proving Theorem 7.
First, we define some notations.

3 For instance, the number of plaintext-ciphertext pairs.
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We call an iteration a Gaussian elimination preceding a substitution; The system of equations
for ElimLin can be stored as a matrixMα of dimension mα×Tα, where each mα rows represents
an equation and each Tα columns represents a monomial at iteration α. Also, rα denotes the
rank of Mα. Let nα be the number of variables at iteration α. We use a reverse lexicographical
ordering of columns during Gaussian elimination to accumulate linear equations in the last rows
of the matrix. In fact, we use the same matrix representation as described in [4].

Let K = GF(2) and x = (x1, . . . , xn) be a set of free variables. We denote by K[x] the ring
of multivariate polynomials over K. For S ⊂ K[x], we denote Span (S) the K-vector subspace
of K[x] spanned by S. Let γ = (γ1, γ2, . . . , γn) be a power vector in Nn. The term xγ is defined

as the product xγ = xγ11 × xγ22 × · · · × xγnn . The total degree of xγ is defined as deg(xγ)
def
=

γ1 + γ2 + · · ·+ γn. Let Ideal (S) be the ideal spanned by S and Root (S) be the set of all tuples
m ∈ Kn such that f(m) = 0 for all f ∈ S. Let

Rd = Span (monomials of degree ≤ d) /Ideal
(
x21 − x1, x22 − x2, . . . , x2n − xn

)
Let Sα be ST after the α-th iteration of ElimLin and S0 be the initial system. Moreover, nαL

is the number of non-trivial linear equations in SL′ at the α-th iteration. We denote SαL the SL
after the α-th iteration. Also,

Cα
def
= #SαL

Let assume that S0 has degree bounded by d. We denote by Var(f) the set of variables
xi expressed in f . Let xt1 , . . . , xtk be the sequence of eliminated variables. We define Vk =
{x1, . . . , xn}\{xt1 , . . . , xtk}. Also, let `1, `2, . . . , `k be the sequence of linear equations as they
are used during elimination (step 11 of Fig. 1). Hence, we have xtk ∈ Var(`k) ⊆ Vk−1.

We prove the following crucial lemma which we use later to prove Theorem 7.

Lemma 3. After the α-th iteration of ElimLin, an arbitrary equation Eqαi in the system (Sα∪SαL)
for an arbitrary i can be represented as

Eqαi =

m0∑
t=1

βαti · Eq0t +
Cα∑
t=1

`t(x) · gαti(x) (1)

where βαti ∈ K and gαti(x) is a polynomial in Rd−1 and Var(gαti) ⊆ Vt.

Proof. Let xt1 be one of the monomials existing in the first linear equation `1(x) and this specific
variable is going to be eliminated. Substituting xt1 in an equation xt1 · h(x) + z(x), where h(x)
has degree at most d− 1, xt1 /∈ Var(h) and xt1 /∈ Var(z) is identical to subtracting h(x) · `1(x).
Consequently, the proof follows by induction on α.

ut

Now, we prove the inverse of the above lemma.

Lemma 4. For each i and each α, there exists β′αti ∈ K and g′αti (x) such that

Eq0i =

mα∑
t=1

β′αti · Eqαt +

Cα∑
t=1

`t(x) · g′αti (x) (2)

where g′αti (x) is a polynomial in Rd−1 and Var(g′αti ) ⊆ Vt.

Proof. Gaussian elimination and substitution are invertible operations. We can use a similar
induction as the previous lemma to prove the above equation.

ut
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In the next lemma, we prove that SαL contains all linear equations which can be written in the
form of Eq. (1).

Lemma 5. If there exists ` ∈ R1 and some βt and g′′t (x) such that

`(x) =

m0∑
t=1

βt · Eq0t +
Cα∑
t=1

`t(x) · g′′t (x) (3)

at iteration α, where g′′t (x) is a polynomial in Rd−1, then there exists ut ∈ K and vt ∈ K such
that

`(x) +

Cα∑
t=1

ut · `t(x) =

mα∑
t=1

vt · Eqαt

So, `(x) ∈ Span (SαL).

Proof. We define uk iteratively: uk is the coefficient of xtk in

`(x) +

k−1∑
t=1

ut · `t(x)

for k = 1, . . . , Cα. So, Var(`(x) +
∑k

t=1 ut · `t(x)) ⊆ Vk. By substituting Eq0i from Eq. (2) in
Eq. (3) and integrating ut and g′′t in g′αti , we obtain

`(x) +
Cα∑
t=1

ut · `t(x)︸ ︷︷ ︸
⊆V1

=

mα∑
t=1

vt · Eqαt︸ ︷︷ ︸
⊆V1

+
Cα∑
t=1

`t(x) · g′t(x)︸ ︷︷ ︸
=⇒ ⊆V1

(4)

with g′t(x) ∈ Rd−1. All g′t(x) where t > 1 can be written as ḡt(x) + xt1 · ¯̄gt(x) with Var(ḡt) ⊆ V1,
Var(¯̄gt) ⊆ V1 and ¯̄gt(x) ∈ Rd−2. Since,

`1(x) · g′1(x) + `t(x) · g′t(x) = `1(x) ·
(
g′1(x) + `t(x) · ¯̄gt(x)

)︸ ︷︷ ︸
new g′1(x)

+ `t(x)︸ ︷︷ ︸
⊆V1

· (ḡt(x) + ¯̄gt(x) · (xt1 − `1(x)))︸ ︷︷ ︸
(new g′t(x)) ⊆V1

we can re-arrange the sum in Eq. (4) using the above representation and obtain Var(g′t) ⊆ V1

for all t > 1. Also, xt1 only appears in `1(x) and g′1(x). So, the coefficient of xt1 in the expansion
of `1(x) · g′1(x) must be zero. In fact, we have

`1(x) · g′1(x) = (xt1 + (`1(x)− xt1)) · (ḡ1(x) + xt1 · ¯̄gt(x))
= xt1 · (¯̄g1(x) · (1 + `1(x)− xt1) + ḡ1(x)) + ḡ1(x) · (`1(x)− xt1)

So, ḡ1(x) = ¯̄g1(x) · (xt1 − `1(x)− 1) and we deduce,

g′1(x) = ¯̄g1(x) · (`1(x) + 1)

over GF(2). But, then
`1(x) · g′1(x) = 0

over R, since `1(x) · (`1(x) + 1) = 0. Finally, we iterate and obtain

`(x) +

Cα∑
t=1

ut · `t(x) =

mα∑
t=1

vt · Eqαt

ut
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1: Input : A set S0 of polynomial equations in Rd.
2: Output : A system of linear equations SL.
3: Set S̄L := ∅.
4: repeat
5: S̄L ← Span

(
S0 ∪ (Rd−1 × S̄L)

)
∩R1

6: until S̄L unchanged
7: Output SL: a basis of S̄L.

Fig. 2. ElimLin algorithm from another perspective.

From another perspective, ElimLin algorithm can be represented as in Fig. 2. In fact, as a
consequence of Lemma 3 and Lemma 5, Fig. 2 presents a unique characterization of Span (SL)
in terms of a fixed point:

Lemma 6. At the end of ElimLin, Span (SL) is the smallest subset S̄L of R1, such that

S̄L = Span
(
S0 ∪ (Rd−1 × S̄L)

)
∩R1

Proof. By induction, at step α we have S̄L ⊆ Span (SαL), using Lemma 5. Also, SαL ⊆ S̄L using
Lemma 3. So, S̄L = Span (SαL) at step α. Since S̄L 7→ Span

(
S0 ∪ (Rd−1 × S̄L)

)
∩R1 is increasing,

we obtain the above equation.

ut

ElimLin eliminates variables, thus it looks very unexpected that the number of linear equa-
tions in each step of the algorithm is invariant with respect to any variable ordering in the sub-
stitution step and the Gaussian elimination. We finally prove this important invariant property.
Concretely, we formalize ElimLin as a sequence of intersection of vector spaces. Such intersection
in each iteration is between the vector space spanned by the equations and the vector space
generated by all monomials of degree 1 in the system. This implies that if ElimLin runs for α
iterations (finally succeeds or fails), it can be formalized as a sequence of intersections of α pairs
of vector spaces. These intersections of vector spaces only depend on the vector space of the
initial system.

Theorem 7. The following relations exist after running ElimLin on a polynomial system of
equations Q:

1. Root
(
S0
)

= Root(ST ∪ SL)

2. There is no linear equation in Span
(
ST
)
.

3. Span (SL) is uniquely defined by S0.

4. SL consists of linearly independent linear equations.

5. The complexity is O
(
nd+1
0 m2

0

)
, where d is the degree of the system and n0 and m0 are the

initial number of variables and equations, respectively.

Proof (1). Due to Lemma 3 and Lemma 4, S0 and (ST ∪ SL) are equivalent. So, a solution of
S0 is also a solution of (ST ∪ SL) and visa versa.

Proof (2). Since ElimLin stops on ST , the Gaussian reduction did not find any linear polynomial.

Proof (3). Due to Lemma 6.

Proof (4). SL includes a basis for S̄L. So, it consists of linearly independent equations.
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Proof (5). n0 is an upper bound on #SL due to the fact that SL consists of linearly independent
linear equations. So, the number of iterations is bounded by n0. The total number of monomials
is bounded by

T0 ≤
d∑
i=0

(
n0
i

)
= O

(
nd0

)
The complexity of Gaussian elimination is O(m2

0T0), since we have T0 columns and m0 equations.

Therefore overall, the complexity of ElimLin is O
(
nd+1
0 m2

0

)
.

ut

4.2 Affine Bijective Variable Change

In the next theorem, we prove that the result of ElimLin algorithm does not change for any
affine bijective variable change. It is an open problem to find an appropriate non-linear variable
change which improves the result of ElimLin algorithm.

Theorem 8. Any affine bijective variable change A : GF(2)n0 → GF(2)n0 on a n0-variable
system of equations S0 does not affect the result of ElimLin algorithm, implying that the number
of linear equations generated at each iteration is invariant with respect to an affine bijective
variable change.

Proof. In Lemma 6, we showed that Span (SL) is the output of the algorithm in Fig. 2, iterating

S̄L ← Span
(
S0 ∪ (Rd−1 × S̄L)

)
∩R1

We represent the composition of a polynomial f1 with respect to A by Com(f1). We then show
that there is a commutative diagram

S0 Com(S0)

S̄L Com(S̄L)

Com

ElimLin

Com

ElimLin

We consider two parallel executions of the algorithm in Fig. 2, one with S0 and the other with
Com(S0).
If we compose the polynomials in S0 with respect to A, in the above relation Rd−1 remains the
same. Since the transformation A is affine,

Com(Span
(
S0 ∪ (Rd−1 × S̄L)

)
∩R1) = Span

(
Com(S0) ∪ (Rd−1 × Com(S̄L))

)
∩R1

So, at each iteration, the second execution has the result of applying Com to the result of the
first one.

ut
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4.3 Linear Equations Evolution

An open problem regarding ElimLin is to predict how the number of linear equations evolves
in the preceding iterations. In the following theorem, we give a necessary (but not sufficient)
condition for a dense overdefined system of equations to have an additional linear equation in the
next iteration of ElimLin. Proving the similar result for a sparse system is not straightforward.

Theorem 9. If we apply ElimLin to an overdefined dense system of quadratic equations over
GF(2), For nα+1

L > nαL to hold, it is necessary to have

bα
2
− aα < nαL <

bα
2

+ aα

where bα = 2nα − 1 and aα =

√
b2α−8nαL

2 .

Proof. For the system to generate linear equations, it is necessary that the sufficient rank condi-
tion [4] is satisfied. More clearly, we must have rα > Tα − 1− nα, otherwise no linear equations
will be generated. This is true if the system of equations is overdefined. Hence, we obtain,

nαL = rα + nα + 1− Tα (5)

If some columns of the matrix Mα are pivotless, it will shift the diagonal strand of ones to
the right. Therefore, nαL will be more than what the above equation expresses. Assuming the
system of equations is dense, this phenomenon happens with a very low probability. Suppose
the above equation is true with high probability, then we get

nα+1
L = rα+1 + nα+1 + 1− Tα+1 (6)

In the (α+ 1)-th iteration, the number of variables is reduced by nαL. Thus, nα+1 = nα − nαL. If
the system of equations is dense, in a quadratic system,

Tα =

(
nα
2

)
+ nα + 1

and so,

Tα+1 =

(
nα − nαL

2

)
+ nα − nαL + 1

Consequently, we have

Tα − Tα+1 = nαL

(
nα −

1

2
(nαL − 1)

)
(7)

Therefore, using Eq. (5), Eq. (6) and Eq. (7), we obtain,

nα+1
L = (rα+1 − rα) + (rα + nα − Tα + 1) + nαL(−1

2n
α
L + nα − 1

2)

= nαL(−1
2n

α
L + nα + 1

2)− (rα − rα+1)

If nα+1
L > nαL, then nαL(−1

2n
α
L + nα + 1

2)− (rα − rα+1) > nαL and this leads to

nαL
2 + (1− 2nα)nαL + 2(rα − rα+1) < 0

∆ = (1 − 2nα)2 − 8(rα − rα+1), and if the above inequality holds, ∆ should be positive and
assuming bα = 2nα − 1, then, bα −

√
∆ < 2nαL < bα +

√
∆.
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Considering ∆ is positive, nα >
√

2(rα − rα+1) + 1
2 . We also know that rα+1 ≤ rα − nαL,

which together lead to nα > 1
2 +

√
2nαL. Therefore, for nα+1

L > nαL, it is necessary to have

nα > 1
2 +

√
2nαL, but not visa versa. Simplifying bα −

√
∆ < 2nαL < bα +

√
∆ and deploying

rα − rα+1 ≥ nαL results in

bα − 2aα < 2nαL < bα + 2aα

where bα = 2nα − 1 and 2aα =
√
b2α − 8nαL.

Notice that nα >
1
2 +

√
2nαL, which was obtained in the first stage of the proof, has been

originated from the fact that b2α − 8nαL should be non-negative.

ut

5 Attacks Simulations

In this section, we present our experimental results against CTC2, LBlock and MIBS block
ciphers. The simulations for CTC2 were run on an ordinary PC with a 1.8 Ghz CPU and 2 GB
RAM. All the other simulations were run on an ordinary PC with a 2.8 Ghz CPU and 4 GB
RAM. The amount of RAM required by our implementation is negligible.

In our attacks, we build a system of quadratic equations with variables representing plaintext,
ciphertext, key and state bits, which allows to express the system of equations of high degree as
quadratic equations. Afterwards, for each sample we set the plaintext and ciphertext according
to the result of the input/output of the cipher. In order to test the efficiency of the algebraic
attack, we guess some bits of the key and set the key variables corresponding to the guess. Then,
we run the solver (ElimLin, F4 or SAT solver) to recover the remaining key bits and test whether
the guess was correct. Therefore, the complexity of our algebraic attack can be bounded by
2g · C(solver), where C(solver) represents the running time of the solver and g is the number of
bits we guess. C(solver) is represented as the the “Running Time” in all the following tables.

For a comparison with a brute force attack, we consider a fair implementation of the cipher,
which requires 10 CPU cycles per round. This implies that the algebraic attack against t rounds
of the cipher is faster than an exhaustive search for the 1.8 Ghz and 2.8 Ghz CPU iff recovering
c bits of the key is faster than 5.55 ·t ·2c−31 and 3.57 ·t ·2c−31 seconds respectively. This is already
twice faster than the complexity of exhaustive search. All the attacks reported in the following
tables are faster than exhaustive search with the former argument. In fact, we consider the
cipher to be broken for some number of rounds if the algebraic attack that recovers (#key − g)
key bits is faster than an exhaustive key search over (#key − g) bits of the key.

5.1 Simulations Using F4 Algorithm under PolyBoRi Framework

The most efficient implementation of the F4 algorithm is available under PolyBoRi framework [9]
running alone or under SAGE algebra system. PolyBoRi is a C++ library designed to compute
Gröbner basis of an ideal applied to Boolean polynomials. A Python interface is used, surround-
ing the C++ core. It uses zero-suppressed binary decision diagrams (ZDDs) [34] as a high level
data structure for storing Boolean polynomials. This representation stores the monomials more
efficiently in memory and it makes the Gröbner basis computation faster compared to other
algebra systems.

We use polybori-0.8.0 for our attacks. Together with ElimLin, we also attack LBlock and
MIBS with F4 algorithm and then compare its efficiency with ElimLin.
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5.2 Simulations on CTC2

Courtois Toy Cipher (CTC) is an SPN-based block cipher devised by Courtois [14] as a toy
cipher to evaluate algebraic attacks on smaller variants of cryptosystems. It was designed to
show that it is possible to break a cipher using an ordinary PC deploying a small number of
known or chosen plaintext-ciphertext pairs.

Since the system of equations of well-known ciphers such as AES is often large, it is not
feasible by the current algorithms and computer capacities to solve them in a reasonable time,
therefore smaller but similar versions such as CTC can be exploited to evaluate the resistance of
ciphers against algebraic cryptanalysis. This turns out to yield a benchmark on understanding
the algebraic structure of ciphers. Ultimately, this might lead to break of a larger system later.

CTC was not designed to be resistant against all known types of attacks like linear and differ-
ential cryptanalysis. Nevertheless, in [26], it was attacked by linear cryptanalysis. Subsequently,
CTC Version 2 or CTC2 was proposed [13] to resolve the flaw exists in CTC structure. CTC2
is very similar to CTC with a few changes. It is an SPN-based network with scalable number of
rounds, block and key size. For the full specification, refer to [13]. In CT-RSA 2009, differential
and differential-linear attacks could reach up to 8 rounds of CTC2 [27], but as stated before, the
objective of the CTC designer was not applying statistical attacks to his design. Finally, there
is a cube attack on 4 rounds of one variant of this cipher in [42].

Since block size and key size are flexible in CTC2 cipher, we break various versions with
distinct parameters (see Table 1) using ElimLin. The block size is specified by a parameter B,
which specifies the number of parallel S-boxes per round. CTC2 S-box is 3× 3, hence the block
size is computed as 3B. We guess some LSB bits of the key and we show that recovering the
remaining is faster than exhaustive search.

It might be possible that during the intermediate steps of ElimLin, a quadratic equation
in only key bits (possibly linear) appears. In such cases, approximately O(#key2) samples are
enough to break the system. This is due to the fact that we can simply change the plaintext-
ciphertext pair and generate a new linearly independent equation in the key. Finally, when we
have enough such equations, we solve a system of quadratic equations in only key bits using
the linearization technique. When such phenomenon occurs, intuitively the cipher is close to be
broken but not yet. We can increase the number of samples and most often it makes the cipher
thoroughly collapse.

5.3 Simulations on LBlock

LBlock is a new lightweight Feistel-based block cipher, aimed at constrained environments, such
as RFID tags and sensor networks [50] proposed at ACNS 2011. It operates on 64-bit blocks,
uses a key of 80 bits and iterates 32 rounds. For a detailed specification of the cipher, refer to
[50]. As far as the authors are aware, there is currently no cryptanalysis results published on
this cipher.

We break 8 rounds of LBlock using 6 samples deploying an ordinary PC by ElimLin. Our
results are summarized in Table 2. In the same scenario, PolyBoRi crashes due to running out
of memory.

5.4 Simulations on MIBS

Similar to the LBlock block cipher, MIBS is also a lightweight Feistel-based block cipher, aimed
at constrained environments, such as RFID tags and sensor networks [39]. It operates on 64-bit
blocks, uses keys of 64 or 80 bits and iterates 32 rounds. For a detailed specification of the cipher,
see [39].
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Table 1. CTC2 simulations using ElimLin up to 6 rounds with distinct parameters.

B Nr #key g Running Time1 Running Time2 Data Attack
(in hours) (in hours) notes

16 3 48 0 0.03 5 KP ElimLin
16 3 48 0 0.12 14 KP ElimLin
64 3 192 155 0.03 1 KP ElimLin
85 3 255 210 0.04 1 KP ElimLin

16 4 48 0 0.01 2 CP ElimLin
16 4 48 0 0.05 4 CP ElimLin
40 4 120 85 0.00 1 KP ElimLin
40 4 120 85 0.84 16 KP ElimLin
48 4 144 100 0.12 4 KP ElimLin
64 4 192 148 0.05 1 KP ElimLin
64 4 192 155 2.21 5 KP ElimLin
85 4 255 220 0.29 1 KP ElimLin
85 4 255 215 0.64 1 KP ElimLin
85 4 255 220 0.26 2 KP ElimLin
85 4 255 215 0.90 3 KP ElimLin
85 4 255 210 1.33 4 KP ElimLin

16 5 48 0 3 8 CP ElimLin
40 5 120 85 0.03 2 CP ElimLin

32 6 96 60 2.5 16 CP ElimLin
40 6 120 80 1 8 CP ElimLin
64 6 192 155 2.4 4 CP ElimLin
85 6 255 210 3 2 CP ElimLin
85 6 255 220 3 16 CP ElimLin
85 6 255 210 180.5 64 CP ElimLin
128 6 384 344 4.5 2 CP ElimLin

B : Number of S-boxes per round. To obtain the block size, B should be multiplied by 3.
Nr : Number of rounds
g: Number of guessed LSB of the key
Running Time1: Running time until we achieve equations only in key variables (no other internal variables). When
this is achieved, the cipher is close to be broken, but not yet (see Sec. 5.2).
Running Time2: Attack running time for recovering (#key − g) bits of the key.
KP: Known plaintext
CP: Chosen plaintext

Currently, the best cryptanalysis results is a linear attack reaching 18-round MIBS with data
complexity 261 and time complexity of 276 [5]. In fact, statistical attacks often require very large
number of samples. This is not always achievable in practice.

We break 4 and 3 rounds of MIBS80 and MIBS64 using 32 and 2 samples deploying an
ordinary PC by ElimLin. Our results are summarized in Table 3. In 2 out of 3 experiments,
PolyBoRi crashes due to running out of memory. This is the first algebraic analysis of the cipher.

The designers in [39] have evaluated the security of their cipher with respect to algebraic
attacks. They used the complexity of XSL algorithm for this evaluation, which is not a precise
measurement for evaluating resistance of a cipher against algebraic attacks, since effectiveness of
XSL is still controversial and under speculation. There are better methods such as SAT solvers
[3] which solve MQ problem faster than expected due to the system being overdefined and sparse.

Let assume XSL can be precise enough to evaluate the security of a cipher with respect to
algebraic attacks. According to [21, 39], the complexity of XSL can be evaluated with the work
factor. For MIBS, work factor is computed as:

WF = Γω
(
(Block Size) ·N2

r

)ωdT
r
e
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Table 2. Algebraic attack complexities on reduced-round LBlock using ElimLin and PolyBoRi.

Nr #key g Running Time Data Attack
in hours notes

8 80 32 0.252 6 KP ElimLin
8 80 32 crashed 6 KP PolyBoRi

Nr : Number of rounds
g: Number of guessed LSB of the key
KP: Known plaintext
CP: Chosen plaintext

where Γ is a parameter which depends only on the S-box. For MIBS, Γ = 85.56. The value
r = 21 is the number of equations the S-box can be represented with. T = 37 is the number
of monomials in that representation. ω = 2.37 is the exponent of the Gaussian elimination
complexity. The work factor for attacking 5-round MIBS is WF = 265.65 which is worse than
an exhaustive key search for MIBS64. Deploying SAT solving techniques using MiniSAT 2.0
[29], we can break 5 rounds of MIBS64 (see Table 3). Our strategy is exactly the same as [3].
Table 3 already shows that we can do better than 265.65 for MIBS64. We can perform a very
similar attack on MIBS80. This already shows that considering the complexity of XSL is not a
precise measure to evaluate the security of a cipher against algebraic cryptanalysis. Complexity
of attacking such system with XL is extremely high.

We believe that due to the similarity between the structure of MIBS and LBlock, we can
compare them with respect to algebraic attacks. As can be seen from the table of attacks, LBlock
is much weaker. This is not surprising though, since the linear layer of LBlock is much weaker
than MIBS, since it is nibble-wise instead of bit-wise. So, we could attack twice more rounds of
LBlock. Thus, although LBlock is lighter with respect to the number of gates, but it provides a
lower level of security with respect to algebraic attacks.

Table 3. Algebraic attack complexities on reduced-round MIBS using ElimLin, PolyBoRi and MiniSAT 2.0.

Nr #key g Running Time Data Attack
(in hours) notes

4 80 20 0.137 32 KP ElimLin
4 80 20 crashed 32 KP PolyBoRi

5 64 16 0.395 6 KP MiniSAT 2.0
5 64 16 crashed 6 KP PolyBoRi
3 64 0 0.006 2 KP ElimLin
3 64 0 0.002 2 KP PolyBoRi

Nr : Number of rounds
g: Number of guessed LSB of the key
KP: Known plaintext
CP: Chosen plaintext

6 A Comparison Between ElimLin and F4

Gröbner basis and SAT solving techniques are currently the most successful methods for solving
polynomial systems of equations. However, both these approaches have significant restrictions.
The main bottleneck of the Gröbner basis techniques is the memory requirement and therefore
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most of the Gröbner basis attacks use relatively small number of samples. ElimLin algorithm on
the other hand requires a large number of samples to work.

Table 2 and Table 3 show that F4 requires too much memory and crashes for a large number
of samples. At the same time, ElimLin algorithm is slightly slower than PolyBoRi implementation
attacking 2 samples of 3-round MIBS64 as in Table 3. This demonstrates that ElimLin can be
more effective than PolyBoRi and vice versa, depending on memory requirements of PolyBoRi.
However, whenever the system is solvable by ElimLin, our experiments revealed that PolyBoRi
does not give a significant advantage over ElimLin because the memory requirements are too
high.

The advantage of ElimLin compared to F4 is the fact that it always performs substitution
using only linear equations, which means that the number of monomials is bounded by O

(
n20
)

and the degree of the system is maintained. On the other hand, ElimLin may require many
more samples to succeed compared to F4 or F5. While the Gröbner basis algorithms may yield
a solution for a few samples, the success of ElimLin is determined by the number of samples
provided to the algorithm. The evaluation of the number of sufficient samples in ElimLin is still
an open problem.

We demonstrated that even a simple linear algebra technique can outperform the more
sophisticated Gröbner basis algorithms, mainly due to the structural properties of the system
of equations of a cryptographic primitive (such as sparsity). ElimLin takes advantage of such
structural properties and uncovers the hidden linear equations using multiple samples. According
to our experiments, F4 or F5 algorithms do not seem to be able to take advantage of these
structural properties as would be expected, which results in higher memory requirements than
would be necessary and ultimately their failure for large systems.

7 Further Work and Some Conjectures

An interesting area of research is to estimate the number of linear equations in ElimLin or
anticipate how this number evolves in the succeeding iterations or evaluate after how many
iterations ElimLin finishes. Also, to anticipate how many samples is enough to make the system
collapse by ElimLin. Last but not least, it is prominent to find a very efficient method for
implementing ElimLin and to find the most appropriate data structure to choose.

There are some evidence which illustrate that ElimLin does not reveal all hidden linear equa-
tions in the structure of the cipher up to a specific degree. We give an example, demonstrating
such an evidence:

Assume there exists an equation in the system which can be represented as `(x)g(x) + 1 = 0
over GF(2), where `(x) is a polynomial of degree one and g(x) is a polynomial of degree at most
d − 1. Running ElimLin on this single equation trivially fails. But, if we multiply both sides of
the equation by `(x), we obtain `(x)g(x) + `(x) = 0. Summing these two equations, we derive
`(x) = 1. This hidden linear equation can be simply captured by the XL algorithm, but can not
be captured by ElimLin. There exist multiple other examples which demonstrate that ElimLin
does not generate all the hidden linear equations. A further work to this paper can be to extend
ElimLin, leading to the capturing of all such linear equations.

For big ciphers, for example the full AES, it is also plausible that:

Conjecture 1 For each number of rounds X, there exists Y such that AES is broken by ElimLin
given Y Chosen or Known Plaintext-Ciphertext pairs.

Disproving the above conjecture leads to the statement that “AES can not be broken by
algebraic attack at degree 2”. But maybe this conjecture is true, then the capacities of the
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ElimLin attack are considerable and it works for any number of rounds X. As a consequence,
if for X = 14 this Y is not too large, say less than 264, the AES-256 will be broken faster
than brute force by ElimLin at degree 2, which is much simpler than Gröbner basis objective of
breaking it at degree 3 or 4 with 1 KP.

ElimLin is a polynomial time algorithm. If it can be shown that a polynomial number of
samples is enough to gain a high success rate for ElimLin, this can already be considered a
breakthrough in cryptography. Unfortunately, the correctness of this statement is not clear.

Conclusion

In this paper, we proved that ElimLin can be formulated in terms of a sequence of intersections
of vector spaces. We showed that different monomial orderings and any affine bijective variable
change do not influence the result of the algorithm. We did some predictions on the evolution of
linear equations in the succeeding iterations in ElimLin. We presented multiple attacks deploying
ElimLin against CTC2, LBlock and MIBS block ciphers.
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A A Toy Example of ElimLin

Let assume that we have the following overdefined system of multivariate equations over GF(2)
with 5 variables x1, . . . , x5 and 6 equations,

x1x2 + x1x3 + x2x5 + x3x5 + x2 + x4 + x5 + 1 = 0

x1x3 + x1x4 + x2x3 + x2x4 = 0

x1x4 + x2x3 + x3 + 1 = 0

x1x4 + x1x5 + x2x5 + x1 = 0

x1x5 + x2x3 + x3x5 + x1 + x3 + x4 = 0

x1x5 + x2x3 + x3x5 + x5 + x4 + x2 + 1 = 0

We perform Gaussian elimination on the system, and obtain,

x1x2 + x2x4 + x2x5 + x3x5 + x2 + x3 + x4 + x5 = 0

x1x3 + x2x4 + x3 + 1 = 0

x1x4 + x2x3 + x3 + 1 = 0

x1x5 + x2x3 + x3x5 + x1 + x3 + x4 = 0

x2x5 + x3x5 + x4 + 1 = 0

x1 + x2 + x3 + x5 + 1 = 0

The linear equation we obtain is used for the substitution of variable x5 = x1 + x2 + x3 + 1.
Then, we perform Gaussian elimination on the system again. We derive

x2x4 + x1 = 0

x1x4 + x2x3 + x3 + 1 = 0

x1x2 + x1 + x3 + x4 = 0

x1x3 + x1 + x3 + 1 = 0

x4 + x3 + x1 = 0

The new linear equation is used for the substitution of the variable x4 = x3 + x1. After the
substitution, we perform the Gaussian elimination again and obtain,

x2x3 + x1 = 0

x1x3 + x3 + 1 = 0

x1x2 = 0

x1 = 0

We derive a new linear equation x1 = 0. Consequently, we perform substitution and Gaussian
elimination, which yields, {

x2x3 = 0

x3 + 1 = 0

The new linear equation we obtain is x3 = 1. After the substitution of this variable, we obtain
x2 = 0. Hence, we have gathered 5 linear equations in 5 variables as follows, which can be simply
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solved by 

x1 + x2 + x3 + x5 + 1 = 0

x1 + x3 + x4 = 0

x1 = 0

x3 + 1 = 0

x2 = 0

leading to x1 = x2 = x5 = 0 and x3 = x4 = 1.

B Multiple Samples Effect on ElimLin

A prominent question regarding ElimLin is that how we can extract more linear equations from
the structure of the cipher. One approach is to use more samples. On one hand, having multiple
instances increases the number of variables, since the state bits are totally distinct, on the other
hand all the instances share the same key bits. The speed in which the number of equations
increases is higher than which of the number of variables. Consequently, we expect that at one
moment the system is solved. We have performed many experiments using ElimLin. In some
cases, we would expect it to fail, since the number of linear equations at some stage dropped
significantly, but those few equations could cause the system to collapse at the consequent
iterations and the system is finally solved. We give an example to be more clear:

We attacked 8-round LBlock [50] block cipher with 32 LSB key bits fixed starting from 1
pair to 8 pairs (see Sec. 5.3 for details). As can be observed from Tables 4 to Table 11, the cipher
is unbroken for 5 plaintext-ciphertext pairs, but then 6 pairs is enough to break the system. We
use the following legend in those tables.

Legend
I : iteration number in ElimLin.
n : number of variables.
m0 : number of initial equations.
AvS : the average number of monomials per equation (It represents the sparsity).
T : number of monomials.
nL : number of linear equations.
nc : cumulative number of linear equations.

For instance, in Table 9 we start with n0 = 8 784 variables and m0 = 27 758 equations. We
then eliminate n1L = 7 528 variables at iteration 1. The variable elimination is repeated until the
iteration 15, when we finish with 2 variables and n15L = 2 linear equations. As can be observed,
at the last iteration the number of cumulative linear equations nc is the same as the initial
number of variables n0. This implies that we only need to solve a linear system of equations in
8 784 variables and the system is solved. This is not the case for smaller number of samples. For
instance, in Table 8, at the last iteration we finish with 499 variables and no linear equations.
This implies that all 499 variables should be guessed.
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Table 4. Attacking 8-round LBlock with 1 pair
and 32 LSB key bits guessed.

I n m0 AvS T nL nc

1 2064 5174 3 4249 1768 1768
2 296 5174 7 5678 42 1810
3 254 5174 6 5035 16 1826
4 238 5174 7 4868 3 1829
5 235 5174 7 5178 0 1829

Table 5. Attacking 8-round LBlock with 2 pairs
and 32 LSB key bits guessed.

I n m0 AvS T nL nc

1 3408 8822 3 7385 2920 2920
2 488 8822 8 10855 85 3005
3 403 8822 9 11545 48 3053
4 355 8822 11 11955 22 3027
5 333 8822 15 13779 8 3035
6 325 8822 16 13729 0 3035

Table 6. Attacking 8-round LBlock with 3 pairs
and 32 LSB key bits guessed.

I n m0 AvS T nL nc

1 4752 13110 3 10521 4072 4072
2 680 13110 8 16032 128 4200
3 552 13110 9 17495 83 4283
4 469 13110 13 18190 40 4323
5 429 13110 17 19913 21 4344
6 408 13110 20 20547 5 4349
7 403 13110 22 20843 1 4350
8 402 13110 21 20725 1 4351
9 401 13110 21 20561 0 4351

Table 7. Attacking 8-round LBlock with 4 pairs
and 32 LSB key bits guessed.

I n m0 AvS T nL nc

1 6096 17839 3 13657 5224 5224
2 872 17839 8 21209 171 5395
3 701 17839 10 24035 118 5511
4 583 17839 14 25396 66 5577
5 517 17839 20 27955 40 5617
6 477 17839 26 31106 21 5638
7 456 17839 31 31611 16 5654
8 440 17839 28 28934 1 5655
9 439 17839 28 28717 0 5655

Table 8. Attacking 8-round LBlock with 5 pairs
and 32 LSB key bits guessed.

I n m0 AvS T nL nc

1 7440 22730 3 16793 6376 6376
2 1064 22730 8 26386 214 6590
3 850 22730 10 30368 151 6741
4 699 22730 15 33097 91 6832
5 608 22730 23 37005 55 6887
6 553 22730 32 39058 35 6922
7 518 22730 35 37629 16 6938
8 502 22730 34 35748 1 6939
9 501 22730 35 35709 1 6940
10 500 22730 34 35509 1 6941
11 499 22730 34 34649 0 6941

Table 9. Attacking 8-round LBlock with 6 pairs
and 32 LSB key bits guessed.

I n m0 AvS T nL nc

1 8784 27758 3 19929 7528 7528
2 1256 27758 7 31563 257 7785
3 999 27758 10 36607 189 7974
4 810 27758 17 41351 123 8097
5 687 27758 26 48066 83 8180
6 604 27758 34 46540 41 8221
7 563 27758 36 42910 15 8236
8 548 27758 37 41469 8 8244
9 540 27758 32 39312 24 8268
10 516 27758 16 29409 126 8394
11 390 27758 19 23370 108 8502
12 282 27758 20 14889 87 8589
13 195 27758 15 9157 122 8711
14 73 27758 4 1454 71 8782
15 2 27758 0 3 2 8784

Table 10. Attacking 8-round LBlock with 7 pairs
and 32 LSB key bits guessed.

I n m0 AvS T nL nc

1 10128 32815 3 23065 8680 8680
2 1448 32815 7 36740 300 8980
3 1148 32815 10 42889 228 9208
4 920 32815 17 48974 157 9365
5 763 32815 30 58471 111 9476
6 652 32815 40 55476 47 9523
7 605 32815 42 51967 20 9543
8 585 32815 37 47625 25 9568
9 560 32815 19 36163 141 9709
10 419 32815 21 27254 126 9835
11 293 32815 20 16116 145 9980
12 148 32815 8 4960 142 10122
13 6 32815 0 8 6 10128

Table 11. Attacking 8-round LBlock with 8 pairs
and 32 LSB key bits guessed.

I n m0 AvS T nL nc

1 11472 37945 3 26201 9832 9832
2 1640 37945 7 41917 343 10175
3 1297 37945 9 47974 268 10443
4 1029 37945 17 55084 186 10629
5 843 37945 30 65625 129 10758
6 714 37945 39 63385 57 10815
7 657 37945 41 57671 22 10837
8 635 37945 34 50898 21 10858
9 614 37945 20 40883 161 11019
10 453 37945 23 30905 144 11163
11 309 37945 22 19850 160 11323
12 149 37945 8 5108 145 11468
13 4 37945 0 6 4 11472
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Abstract. Message authentication codes usually require the underlining universal hash functions
to have a long output so that the probability of successfully forging messages is low enough for
cryptographic purposes. To take advantage of fast operation on word-size parameters in modern
processors, long-output universal hashing schemes can be securely constructed by concatenating
several instances of short-output primitives. In this paper, we describe a new method for short-
output universal hash function termed digest() suitable for very fast software implementation and
applicable to secure message authentication. The method possesses a higher level of security relative
to other well-studied short-output universal hashing schemes. Suppose that the universal hash
output is fixed at one word of b bits, then the collision probability of ours is 21−b compared to
6 × 2−b of MMH, whereas 2−b/2 of NH within UMAC is far away from optimality. In addition to
message authentication codes, we show how short-output universal hashing is applicable to manual
authentication protocols where universal hash keys are used in a very different and interesting way.

1 Introduction

Universal hash functions (or UHFs) first introduced by Carter and Wegman [6, 31] have many
applications in computer science, including randomised algorithms, database, cryptography and
many others. A UHF takes two inputs which are a key k and a message m: h(k,m), and produces
a fixed-length output. Normally what we require of a UHF is that for any pair of distinct messages
m and m′ the collision probability h(k,m) = h(k,m′) is small when key k is randomly chosen
from its domain. In the majority of cryptographic uses, UHFs usually have long outputs so that
combinatorial search is made infeasible. For example, UHFs can be used to build secure message
authentication codes or MAC schemes where the intruder’s ability to forge messages is bounded
by the collision probability of the UHF. In a MAC, parties share a secret universal hash key and
an encryption key, a message is authenticated by hashing it with the shared universal hash key
and then encrypting the resulting hash. The encrypted hash value together with the message is
transmitted as an authentication tag that can be validated by the verifier. We note however that
our new construction presented here applies to other cryptographic uses of universal hashing,
e.g., manual authentication protocols as seen later as well as non-cryptographic applications.

Since operating on short-length values of 16, 32 or 64 bits is fast and convenient in ordinary
computers, long-output UHFs can be securely constructed by concatenating the results of mul-
tiple instances of short-output UHFs to increase computational efficiency. To our knowledge, a
number of short-output UHF schemes have been proposed, notably MMH (Multilinear-Modular-
Hashing) of Halevi and Krawczyk [9] and NH within UMAC of Black et al. [4]. We note that
widely studied polynomial universal hashing schemes PolyP, PolyQ [14] and GHASH [24] can
also be designed to produce a short output. While polynomial based UHFs only require short
and fixed length keys, they suffer from two unpleasant properties relating to security and com-
putational efficiency as will be discussed later in the paper.

Our main contribution presented in Section 3 is the introduction of a new short-output UHF
algorithm termed digest(k,m) that can be efficiently computed on any modern microprocessors.
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The main advantage of ours is that it provides a higher level of security regarding both collision
and distribution probabilities relative to MMH and NH described in Section 4. Our digest()
algorithm operates on word-size parameters via word multiplication and word addition instruc-
tions, i.e. finite fields or non-trivial reductions are excluded, because the emphasis is on high
speed implementation using software.

Let us suppose that the universal hash output is fixed at one word of b bits then the collision
probability of ours is 21−b compared to 6 × 2−b of MMH, whereas 2−b/2 of NH is much weaker
in security. For clarity, the security bounds of our constructions as well as MMH and NH are
independent of the length of message being hashed, which is the opposite of polynomial universal
hashing schemes mentioned earlier. For multiple-word output universal hashing constructions as
required in MACs, the advantage in security of ours becomes more apparent. When the universal
hash output is extended to n words or n× b bits for any n ∈ N∗, then the collision probability
of ours is 2n−nb as opposed to 6n × 2−nb of MMH and 2−nb/2 of NH. There is however a trade-
off between security and computational cost as illustrated by our estimated operation counts
and software implementations of these constructions. On a 1GHz AMD Athlon processor, one
version of digest() (where the collision probability εc is 2−31) achieves peak performance of 0.53
cycles/byte (or cpb) relative to 0.31 cpb of MMH (for εc = 2−29.5) and 0.23 cpb of NH (for
εc = 2−32). Another version of digest(k,m) for εc = 2−93 achieves peak performance of 1.54
cpb. For comparison purpose, 12.35 cpb is the speed of SHA-256 recorded on our computer. A
number of files that provide the software implementations in C programming language of NH,
MMH and our proposed constructions can be downloaded from [1] so that the reader can run
them and adapt them for other uses of the short-output universal hash schemes.

We will briefly discuss the motivation of designing (and the elegant graphical structure of)
our digest() scheme which, we have recently discovered, relates to the well-studied multiplicative
universal hashing schemes of Dietzfelbinger et al. [7], Krawczyk [12, 13] and Mansour et al. [18].
The latter algorithms are however not efficient when the input message is of a significant size.

Although researchers from cryptographic community have mainly studied UHFs to construct
message authentication codes, we would like to point out that short-output UHF on its own has
found applications in manual authentication protocols [2, 8, 15, 17, 19, 10, 20–23, 25, 30]. In the
new family of authentication protocols, data authentication can be achieved without the need of
passwords, shared private keys as required in MACs, or any pre-existing security infrastructures
such as a PKI. Instead human owners of electronic devices who seek to exchange their data
authentically would need to manually compare a short string of bits that is often outputted
from a UHF. Since humans can only compare short strings, the UHF ideally needs to have a
short output of say 16 or 32 bits. There is however a fundamental difference in the use of universal
hash keys between manual authentication protocols and message authentication codes, it will
be clear in Section 5 that none of the short-output UHF schemes including ours should be used
directly in the former. Thus we will propose a general framework where any short-output UHFs
can be used efficiently and securely to digest a large amount of data in manual authentication
protocols.

While existing universal hashing methods are already as fast as the rate information is
generated, authenticated and transmitted in high-speed network traffic, one may ask whether we
need another universal hashing algorithm. Besides keeping up with network traffic, as excellently
explained by Black et al. [4] — the goal is to use the smallest possible fraction of the CPU’s
cycles (so most of the machine’s cycles are available for other work), by the simplest possible
hash mechanism, and having the best proven bounds. This is relevant to MACs as well as manual
authentication protocols where large data are hashed into a short string, and hence efficient
short-output UHF constructions possessing a higher (or optimal) level of security are needed.



2 Notation and definitions

We define M , K and b the bit length of the message, the key and the output of a universal hash
function. We denote R = {0, 1}K , X = {0, 1}M and Y = {0, 1}b.

Definition 1. [12, 13] A ε-balanced universal hash function, h : R×X → Y , must satisfy that
for every m ∈ X \ {0} and y ∈ Y : Pr{k∈R}[h(k,m) = y] ≤ ε

Many existing UHF constructions [4, 9, 12, 13] as well as our newly proposed scheme rely on
(integer or matrix) multiplications of message and key, and hence non-zero input message is
required; for otherwise h(k, 0) = 0 for any key k ∈ R.

Definition 2. [13, 27] A ε-almost universal hash function, h : R ×X → Y , must satisfy that
for every m,m′ ∈ X (m 6= m′): Pr{k∈R}[h(k,m) = h(k,m′)] ≤ ε

Since it is useful particularly in manual authentication protocols discussed later to have both
the collision and distribution probabilities bounded, we combine Definitions 1 and 2 as follows

Definition 3. An εd-balanced and εc-almost universal hash function, h : R×X → Y , satisfies

– for every m ∈ X \ {0} and y ∈ Y : Pr{k∈R}[h(k,m) = y] ≤ εd
– for every m,m′ ∈ X (m 6= m′): Pr{k∈R}[h(k,m) = h(k,m′)] ≤ εc

3 Integer multiplication construction

We first discuss the multiplicative universal hashing algorithm of Dietzfelbinger et al. [7] which
obtains a very high level of security. Although this scheme is not efficient with long input data,
it strongly relates to our digest() method that make use of word multiplication instructions.

We note that there are two other universal hashing schemes which use arithmetic that com-
puter likes to do to increase computational efficiency, namely MMH of Halevi and Krawczyk [9]
and NH of Black et al. [4]. Both of which will be compared against our construction in Section 4.

3.1 Multiplicative universal hashing

Suppose that we want to compute a b-bit universal hash of a M -bit message, then the universal
hash key k is drawn randomly from R = {1, 3, . . . , 2M − 1}, i.e. k must be odd. Dietzfelbinger
et al. [7] define:

h(k,m) = (k ∗m mod 2M ) div 2M−b

It was proved that the collision probability of this construction is εc = 21−b on equal length
inputs [7]. While this has a simple description, for long input messages of several kilobytes or
megabytes, such as documents and images, it will become very time consuming to compute the
integer multiplication involved in this algorithm.

3.2 Word multiplicative construction

In this section, we will define and prove the security of a new short-output universal hashing
scheme termed digest(k,m) that can be calculated using word multiplications instead of an
arbitrarily long integer multiplication as seen in Equation 1 or an example from Figure 1.

Let us divide message m into b-bit blocks 〈m1, . . . ,mt=M/b〉. An (M + b)-bit key k =

〈k1, . . . , kt+1〉 is selected randomly from R = {0, 1}M+b. A b-bit digest(k,m) is defined as



digest(k,m)

m1m2m3

k1 k4k3k2

*

k  = k1 || k2 || k3 || k4           
m = m3 || m2 || m1

digest(k,m) = m1*k1 + (m1*k2 div 2b)+ m2*k2 + (m2*k3 div 2b) + m3*k3 + (m3*k4 div 2b) (mod 2b)

Fig. 1. A b-bit output digest(k,m): each parallelogram represents the expansion of a word multiplication between
a b-bit key block and a b-bit message block.

digest(k,m) =
t∑

i=1

[mi ∗ ki + (mi ∗ ki+1 div 2b)] mod 2b (1)

Here, * refers to a word multiplication of two b-bit blocks which produces a 2b-bit output,
whereas both ‘+’ and

∑
are additions modulo 2b. It should be noted that (div 2b) is equivalent

to a right shift (>> b).
To see why this scheme is related to the multiplicative method of Dietzfelbinger et al. [7], one

can study Figure 1 where all word multiplications involved in Equation 1 are elegantly arranged
into the same shape as the overlap of the expanded multiplication between m and k.1

Operation count. To give an estimated operation count for an implementation of digest(),
which will be subsequently compared against universal hashing schemes MMH and NH, we
consider a machine with the same properties as one used by Halevi and Krawczyk [9]:2

– (b = 32)-bit machine integers, and arithmetic operations are done in registers.
– A multiplication of two 32-bit integers yields a 64-bit result that is stored in 2 registers.

A pseudo-code for digest() on such machine may be as follows. For a ’C’ implementation, please
see [1].

digest(key,msg)
1. Sum = 0
2. load key[1]
3. for i = 1 to t
4. load msg[i]

1 If we further ignore the effect of the carry in (word) multiplications of both digest() and the scheme of
Dietzfelbinger et al. then they become very similar to the Toeplitz matrix based construction of Krawczyk [12,
13] and Mansour et al. [18] discussed in Annex A. Such a carry-less multiplication instruction is available in a
new Intel processor [3].

2 Although this is a 32-bit machine, the same operation count is applicable to a (2b = 64)-bit machine. In the
latter, a multiplication of two 32-bit unsigned integer is stored in a single 64-bit register, and High and Low
are the upper and lower 32-bit halves of the register.



5. load key[i+ 1]
6. 〈High1, Low1〉 = msg[i] ∗ key[i]
7. 〈High2, Low2〉 = msg[i] ∗ key[i+ 1]
8. Sum = Sum+ Low1 +High2
9. return Sum

This consists of 2t = 2M/b word multiplications (MULT) and 2t = 2M/b addition modulo
2b (ADD). That is each message-word requires 1 MULT and 2 ADD operations. As in [9],
a MULT/ADD operation should include not only the actual arithmetic instruction but also
loading the message- and key-words to registers and/or loop handling.

The following theorem shows that the switch from a single (arbitrarily long) multiplication
of Dietfelbinger et al. into word multiplications of digest() does not weaken the security of
the construction. Namely the same collision probability of 21−b is retained while optimality in
distribution is achieved. Moreover this change not only greatly increases computational efficiency
but also removes the restriction of odd universal hash key as required in Dietfelbinger et al.

Theorem 1. For any t, b ≥ 1, digest() of Equation 1 satisfies Definition 3 with the distribution
probability εd = 2−b and the collision probability εc = 21−b on equal length inputs.

Proof. We first consider the collision property. For any pair of distinct messages of equal length:
m = m1 · · ·mt and m′ = m′1 · · ·m′t, without loss of generality we assume that m1 > m′1.

3 A
digest collision is equivalent to:

t∑
i=1

[mi ∗ ki + (mi ∗ ki+1 div 2b)] =
t∑

i=1

[m′i ∗ ki + (m′i ∗ ki+1 div 2b)] (mod 2b)

There are two possibilities as follows.

WHEN m1 −m′1 is odd. The above equality can be rewritten as

(m1 −m′1)k1 = y (mod 2b) (2)

where

y = (m′1k2 div 2b)−(m1k2 div 2b)+
t∑

i=2

[
(m′i −mi) ∗ ki + (m′i ∗ ki+1 div 2b)− (mi ∗ ki+1 div 2b)

]
We note that y depends only on keys k2, . . .,kt+1, and hence we fix k2 through kt+1 in our anal-
ysis. Since m1 −m′1 is odd, i.e. m1 −m′1 and 2b are co-prime, there is at most one value of k1
satisfying Equation 2. The collision probability is therefore εc = 2−b < 21−b.

WHEN m1 −m′1 is even. A digest collision can be rewritten as

(m1 −m′1)k1 + (m1k2 div 2b)− (m′1k2 div 2b) + (m2 −m′2)k2 = y (mod 2b) (3)

where

y = (m′2k3 div 2b)−(m2k3 div 2b)+

t∑
i=3

[
(m′i −mi) ∗ ki + (m′i ∗ ki+1 div 2b)− (mi ∗ ki+1 div 2b)

]
3 Please note that when mi = m′i for all i ∈ {1, . . . , j} then in the following calculation we will assume that
mj+1 > m′j+1.



We note that y depends only on keys k3, . . .,kt+1. If we fix k3 through kt+1 in our analysis, we
need to find the number of pairs (k1, k2) such that Equation 3 is satisfied. We arrive at

εc = Prob{
0≤k1<2b

0≤k2<2b

} [
(m1 −m′1)k1 + (m1k2 div 2b)− (m′1k2 div 2b) + (m2 −m′2)k2 = y (mod 2b)

]
Let us define

m1k2 = u2b + v

m′1k2 = u′2b + v′

Since we assumed m1 > m′1, we have u ≥ u′ and (m1 −m′1)k2 = (u− u′)2b + v − v′.

– When v ≥ v′: (m1k2 div 2b)− (m′1k2 div 2b) = (m1 −m′1)k2 div 2b

– When v < v′: (m1k2 div 2b)− (m′1k2 div 2b) = [(m1 −m′1)k2 div 2b] + 1

Let c = m1 −m′1 and d = m2 −m′2 (mod 2b), we then have 1 ≤ c < 2b and:

εc ≤ p1 + p2

where
p1 = Prob{

0≤k1<2b

0≤k2<2b

} [
ck1 + (ck2 div 2b) + dk2 = y (mod 2b)

]
and

p2 = Prob{
0≤k1<2b

0≤k2<2b

} [
ck1 + (ck2 div 2b) + dk2 = y − 1 (mod 2b)

]
Using Lemma 1, we have p1, p2 ≤ 2−b, and thus εc ≤ 21−b.

As regards distribution, since m = m1 · · ·mt > 0 as specified in Definition 3, without loss of
generality we can assume that m1 ≥ 1. If we fix k3 through kt+1 and for any y ∈ {0, . . . , 2b− 1},
then the distribution probability εd is equivalent to:

εd = Prob{
0≤k1<2b

0≤k2<2b

} [
m1k1 + (m1k2 div 2b) +m2k2 = y (mod 2b)

]
Since 1 ≤ m1 < 2b, we can use Lemma 1 to deduce that εd = 2−b. ut

Lemma 1. Let 1 ≤ c < 2b and 0 ≤ d < 2b, then for any y ∈ {0, . . . , 2b − 1} we have

Prob{
0≤k1<2b

0≤k2<2b

} [
ck1 + (ck2 div 2b) + dk2 = y (mod 2b)

]
= 2−b

Proof. We write c = s2l with s odd and 0 ≤ l < b. Since s and 2b are co-prime, there exist a
unique inverse modulo 2b of s, we call it s−1. Our equation now becomes:

2lsk1 + (2lsk2 div 2b) + ds−1sk2 = y (mod 2b)

Let sk1 = γ (mod 2b−l) and sk2 = α2b−l + β (mod 2b), we then have 0 ≤ γ < 2b−l and
0 ≤ α < 2l. The above equation becomes:

2lγ + α+ ds−1(α2b−l + β) = y (mod 2b)

2lγ + α(1 + ds−12b−l) + βds−1 = y (mod 2b)

2lγ + αx = z (mod 2b)



where x = 1 + ds−12b−l (mod 2b) which is always odd because l < b, and z = y − βds−1

(mod 2b). Since z is independent of γ and α, we fix z in our analysis. We can then use Lemma 2
to derive that there is a unique pair (γ, α) satisfying the above equation.

Since 0 ≤ γ < 2b−l and 0 ≤ α < 2l, γ and α together determine b bits of the combination
of k1 and k2. Consequently there are at most 2b different pairs (k1, k2) satisfying the condition
that we require in this lemma. ut

Lemma 2. Let 0 ≤ l < b and x ∈ {1, 3, . . . , 2b − 1} then for any z ∈ {0, . . . , 2b − 1} there is
a unique pair (γ, α) such that 0 ≤ γ < 2b−l, 0 ≤ α < 2l, and 2lγ + αx = z (mod 2b).

Proof. If there exist two distinct pairs (γ, α) and (γ′, α′) satisfying this condition, then

2lγ + αx = 2lγ′ + α′x = z (mod 2b)

which implies that
2l(γ − γ′) = (α′ − α)x (mod 2b)

This leads to two possibilities.

– When α′ = α then 2l(γ − γ′) = 0, which means that 2b−l|(γ − γ′). The latter is impossible
because 0 ≤ γ, γ′ < 2b−l and γ 6= γ′.

– When α′ 6= α and since x is odd, we must have 2l|(α′ − α). This is also impossible because
0 ≤ α, α′ < 2l.

ut

REMARKS. The bound given by Theorem 1 for the distribution probability (εd = 2−b) is tight:
let m = 0b−11 and any y and note that any key k = k1k2 with k1 = y satisfying this equation
digest(k,m) = y. The bound given by Theorem 1 for the collision probability εc = 21−b also
appears to be tight, i.e. it cannot be reduced to 2−b. To verify this bound, we have implemented
exhaustive tests on single-word messages with small value of b. For example, when b = 7, we look
at all possible pairs of two different (b = 7)-bit messages in combination with all (2b = 14)-bit
keys, the obtained collision probability is 2−7 × 1.875.

We end this section by pointing out that truncation is secure in this digest construction. For
any b′ ∈ {1, . . . , b− 1}, we define

truncb′(digest(k,m)) =
t∑

i=1

[mi ∗ ki + (mi ∗ ki+1 div 2b)] mod 2b
′

(4)

where truncb′() takes the first b′ least significant bits of the input. We then have the following
theorem whose proof is very similar to the proof of Theorem 1, and hence it is not given here.

Theorem 2. For any n, t ≥ 1, b ≥ 1 and any integer b′ ∈ {1, . . . , b − 1}, truncb′(digest())
of Equation 4 satisfies Definition 3 with the distribution probability εd = 2−b

′
and the collision

probability εc = 21−b
′

on equal length inputs.

3.3 Extending digest()

If we want to use digest functions as the main ingredient of a message authentication code, we
need to reduce the collision probability without increasing the word bitlength b that is dictated
by architecture characteristics. One possibility is to hash our message with several random and
independent keys, and concatenate the results. If we concatenate the results from n independent
instances of the digest function, the collision probability drops from 21−b to 2n−nb. This solution
however requires n times as much key material.



   d1     d2     d3

m1m2m3

k3 k6k5k4
*

k  = k1 || k2 || k3 || k4 || k5 || k6          
m = m3 || m2 || m1

digest
MW

(k,m) = d1 || d2 || d3

d1 = m1 * k1 + (m1 * k2 div 2b) + m2 * k2 + (m2 * k3 div 2b) + m3 * k3 + (m3 * k4 div 2b) (mod 2b)
d2 = m1 * k2 + (m1 * k3 div 2b) + m2 * k3 + (m2 * k4 div 2b) + m3 * k4 + (m3 * k5 div 2b)     (mod 2b)
d3 = m1 * k3 + (m1 * k4 div 2b) + m2 * k4 + (m2 * k5 div 2b) + m3 * k5 + (m3 * k6 div 2b) (mod 2b)

k2k1

Fig. 2. A 3b-bit (or three-word) output digestMW (k,m): each parallelogram represents the expansion of a word
multiplication between a b-bit key block and a b-bit message block.

A much better and well-studied approach is to use the Toeplitz-extension: given one key we
left shift the key by one word to get the next key and digest again. The resulting construction is
called digestMW (), where MW stands for multiple-word output. The structure of digestMW ()
is again graphically illustrated by an example in Figure 2 that shows a close connection between
digestMW () and the multiplicative universal hashing scheme of Dietfelbinger et al.

We define a n-blocks or (n× b)-bit output digestMW (k,m) as follows. We still divide m into
b-bit blocks 〈m1, . . . ,mt=M/b〉. However, an (M + bn)-bit key k = 〈k1, . . . , kt+n〉 will be chosen

randomly from R = {0, 1}M+bn to compute a nb-bit digest.

For all i ∈ {1, . . . , n}, we then define:

di = digest(ki···t+i,m) =
t∑

j=1

[mjki+j−1 + (mjki+j div 2b)] mod 2b

And

digestMW (k,m) = 〈d1 · · · dn〉

The following theorem and its proof show that digestMW () enjoys the best bound for both
collision and distribution probabilities that one could hope for.

Theorem 3. For any n, t ≥ 1 and b ≥ 1, digestMW () satisfies Definition 3 with the distribu-
tion probability εd = 2−nb and the collision probability εc = 2n−nb on equal length inputs.

Proof. We first consider the collision property of a digest function. For any pair of distinct
messages of equal length: m = m1 · · ·mt and m′ = m′1 · · ·m′t, without loss of generality we
assume that m1 > m′1. Please note that when t = 1 or mi = m′i for all i ∈ {1, . . . , t− 1} then in
the following calculation we will assume that mt+1 = m′t+1 = 0.

For i ∈ {1, . . . , n}, we define Equality Ei as

Ei :
t∑

j=1

[
mjki+j−1 + (mjki+j div 2b)

]
=

t∑
j=1

[
m′jki+j−1 + (m′jki+j div 2b)

]
(mod 2b)



and thus the collision probability is: εc = Prob{k∈R}[E1 ∧ · · · ∧ En].

WHEN m1 −m′1 is odd. We proceed by proving that for all i ∈ {1, . . . , n}

Prob[Ei is true | Ei+1, . . . , En are true] ≤ 2−b

For Equality En, the claim is satisfied due to Theorem 1. We notice that Equalities Ei+1 through
En depend only on keys ki+1, . . . , kn+t, whereas Equality Ei depends also on key ki. Fix ki+1

through kn+t such that Equalities Ei+1 through En are satisfied. We prove that there is at most
one value of ki satisfying Ei. To achieve this we let

z = (m′1ki+1 div 2b)−(m1ki+1 div 2b)+
t∑

j=2

[
(m′j −mj)ki+j−1 + (m′jki+j div 2b)− (mjki+j div 2b)

]
we then rewrite Equality Ei as

(m1 −m′1)ki = z (mod 2b)

Since we assumed m1 −m′1 is odd, there is at most one value of ki satisfying this equation.

WHEN m1 − m′1 is even. We write m1 − m′1 = 2ls with s odd and 0 < l < b, and s′ =
(m′2 −m2)s

−1. We further denote ski = xi2
b−l + yi for i ∈ {1, . . . , n+ t}, where 0 ≤ xi < 2l and

0 ≤ yi < 2b−l.
For i ∈ {1, . . . , n}, if we define bi ∈ {0, 1} and

f(yi, xi+1) = 2lyi + xi+1[(m2 −m′2)s−12b−l + 1] (mod 2b)

g(ki+2, . . . , ki+t) = (m′2ki+2 div 2b) +

t∑
j=3

[
m′jki+j−1 + (m′jki+j div 2b)

]
−

(m2ki+2 div 2b)−
t∑

j=3

[
mjki+j−1 + (mjki+j div 2b)

]
(mod 2b)

then, using similar trick as in the proof of Lemma 1, Equality Ei can be rewritten as

(m1 −m′1)ki + ((m1 −m′1)ki+1 div 2b) + (m2 −m′2)ki+1 = g(ki+2, . . . , ki+t)− bi (mod 2b)

2lski + (2lski+1 div 2b) + (m2 −m′2)s−1ski+1 = g(ki+2, . . . , ki+t)− bi (mod 2b)

2lyi + xi+1 + (m2 −m′2)s−1(xi+12
b−l + yi+1) = g(ki+2, . . . , ki+t)− bi (mod 2b)

2lyi + xi+1[(m2 −m′2)s−12b−l + 1] = s′yi+1 − bi + g(ki+2, . . . , ki+t) (mod 2b)

f(yi, xi+1) = s′yi+1 − bi + g(ki+2, . . . , ki+t) (mod 2b)

Putting Equalities E1 through En together, we have

E1 : f(y1, x2) = s′y2 − b1 + g(k3, . . . , k1+t) (mod 2b)

E2 : f(y2, x3) = s′y3 − b2 + g(k4, . . . , k2+t) (mod 2b)

E3 : f(y3, x4) = s′y4 − b3 + g(k5, . . . , k3+t) (mod 2b)

...
...

...

En−1 : f(yn−1, xn) = s′yn − bn−1 + g(kn+1, . . . , kn+t−1) (mod 2b)

En : f(yn, xn+1) = s′yn+1 − bn + g(kn+2, . . . , kn+t) (mod 2b)



We fix kn+2 through kt+n. We note that there are 2b−t values for yn+1 and two values for bn. For
each pair (yn+1, bn) there is a unique pair (yn, xn+1) satisfying Equality En due to Lemma 2.
Similarly, for each tuple 〈yn, kn+1, bn−1, bn〉 there is also a unique pair (yn−1, xn) satisfying
Equality En−1. We will continue this process until we reach the pair (y1, x2) in Equality E1.
Since Equalities E1 through En do not depend on x1 and there are 2l values for x1, there will be
at most 2l2n2b−l = 2n+b different tuples 〈k1 · · · kn+1〉 satisfying Equalities E1 through En. And
thus the collision probability εc = 2n+b/2(n+1)b = 2n−nb.

Similar argument also leads to our bound on the distribution probability εd = 2−nb. ut

REMARKS. Even though Theorems 1 and 3 address the collision property of an almost uni-
versal hash function, their proofs can be easily adapted to show that our constructions are
also εc-almost-∆-universal [9] as in the case of the MMH scheme considered in the next sec-
tion. The latter property requires that for every m,m′ ∈ X where m 6= m′ and a ∈ Y :
Pr{k∈R}[digest(k,m)− digest(k,m′) = a] ≤ εc.

Operation count. The advantage of this scheme is the ability to reuse the result of each word
multiplication in the computation of two adjacent digest output words as seen in Figure 2 and
the following pseudo-code, e.g. the multiplication m1k2 is instrumental in the computation of
both d1 and d2. Using the same machine as specified in subsection 3.2, each message-word there-
fore requires (n+ 1) MULT and 2n ADD operations.

A pseudo-code for digestMW () on such machine may be as follows

digestMW (key,msg)
1. For i = 1 to n
2. d[i] = 0
3. load key[i]
4. For j = 1 to t
5. load msg[j]
6. load key[j + n]
7. 〈High[0], Low[0]〉 = msg[j] ∗ key[j]
8. For i = 1 to n
9. 〈High[i], Low[i]〉 = msg[j] ∗ key[j + i]
10. d[i] = d[i] + Low[i− 1] +High[i]
11. return 〈d[1] · · · d[n]〉

4 Comparative analysis

In this section, we mainly compare our new digest scheme against well-studied universal hashing
algorithms MMH of Halevi and Krawczyk [9] and NH of Black et al. [4] described in Subsec-
tions 4.1 and 4.2 respectively. Since digest() can be extended to produce multiple-word output
as in the case of MMH and NH to build MACs, our analysis consider both single- and multiple-
word output schemes. We note that NH is the building block of not only UMAC but also
UHASH16 and UHASH32 [4]. For completeness, we will discuss another widely studied UHF
family based on polynomial over finite field, e.g. PolyP, PolyQ, PolyR [14] and GHASH [24].
While the polynomial universal hashing schemes only require short keys, they suffer from two
unpleasant properties: (1) the collision probability decreases linearly with the message length,
and (2) they are less efficient, especially in software implementation, than our digest functions
as well as MMH and NH due to the involved modular arithmetic operations.



The properties of the three main schemes – MMH, NH and digest() – are summarised in
Table 1 where the upper and lower halves correspond to single-word (b bits) and respectively
multiple-word (nb bits) output schemes for any n ≥ 1. This table indicates that the security
level obtained in our digest algorithm is higher than both MMH and NH with respect to the
same output length. In particular, the collision probability of digest() is a third of MMH, while
NH must double the output length to achieve the same order of security. For multiple-word
output schemes, this advantage in security of our proposed digest algorithm becomes even more
significant as seen in the lower half of Table 1.

Scheme Key length MULTs/word ADDs/word εc εd Output bitlength

digest M + b 2 2 21−b 2−b b

MMH M 1 1 6× 2−b 22−b b

NH M 1/2 3/2 2−b 2−b 2b

digestMW M + nb n+ 1 2n 2n−nb 2−nb nb

MMHMW M + (n− 1)b n n 6n × 2−nb 22n−nb nb

NHMW M + 2(n− 1)b n/2 3n/2 2−nb 2−nb 2nb

Table 1. A summary on the main properties of digest(), MMH and NH. MULT operates on b-bit inputs, whereas
ADD operates on inputs of either b or 2b bits.

We end this section by providing implementation results in Table 2 of Section 4.3. As de-
scribed earlier, C files which contain the implementations of NH, MMH and digest() as well as
their multiple-word output versions can be downloaded from [1] which allows readers to test the
speed of the constructions for themselves.

4.1 MMH

Fix a prime number p ∈ [2b, 2b + 2b/2]. The b-bit output MMH universal hash function is defined
for any k = k1, . . . , kt and m = m1, . . . ,mt as follows

MMH(k,m) =

[[[
t∑

i=1

mi ∗ ki

]
mod 22b

]
mod p

]
mod 2b

It was proved in [9] that the collision probability of MMH is εc = 6 × 2−b as opposed to only
21−b of digest(). By using the same proof technique presented in [9], it is also not hard to show
that the distribution probability of MMH is εd = 22−b, as opposed to 2−b of digest().

Following is the pseudo-code of MMH take from [9].

MMH(key,msg)
1. SumHigh = SumLow = 0
2. for i = 1 to t
3. load msg[i]
4. load key[i]
5. 〈ProdHigh, ProdLow〉 = msg[i] ∗ key[i]
6. SumLow = SumLow + ProdLow
7. SumHigh = SumHigh+ ProdHigh+ carry
8. Reduce 〈SumHigh, SumLow〉 mod p and then mod 2b



For single-word output, each message word in MMH requires 1 (b×b) MULT and 1 ADD modulo
22b. We note however that this does not include the cost of the final reduction modulo p. For
n-word output MMH, using “the Toeplitz matrix approach”, the scheme is defined as

MMHMW (k,m) = MMH(k1···t,m) ‖ MMH(k2···t+1,m) ‖ · · · ‖ MMH(kn···t+n−1,m)

MMHMW obtains εc = 6n2−nb and εd = 22n−nb, which are considerably weaker than digestMW ()
(εc = 2n−nb, εd = 2−nb).

4.2 NH

The 2b-bit output NH universal hash function is defined for any k = k1, . . . , kt and m =
m1, . . . ,mt, where t is even, as follows

NH(k,m) =

t/2∑
i=1

(k2i−1 +m2i−1)(k2i +m2i) mod 22b

The downside of NH relative to MMH and our digest method is the level of security obtained,
namely with a 2b-bit output, which is twice the length of both digest() and MMH, NH was
shown to have the collision probability εc = 2−b and the distribution probability εd = 2−b, which
are far from optimality. Its computational cost is however lower than the other twos, i.e. each
message-word requires only 1/2 (b× b) MULT, 1 ADD modulo 2b, and 1/2 ADD modulo 22b.

Following is the pseudo-code of NH.

NH(key,msg)
1. SumHigh = SumLow = 0
2. for i = 1 to t/2
3. load msg[2i− 1]
4. load msg[2i]
5. load key[2i− 1]
6. load key[2i]
7. Left = msg[2i− 1] + key[2i− 1]
8. Right = msg[2i] + key[2i]
9. 〈ProdHigh, ProdLow〉 = Left ∗Right
10. SumLow = SumLow + ProdLow
11. SumHigh = SumHigh+ ProdHigh+ carry
12. return 〈SumHigh, SumLow〉

For 2n-word output, also using “the Toeplitz matrix approach”, we have εc = 2−nb and εd = 2−nb.
Each message-word requires n/2 MULT and 3n/2 ADD operations as seen below.

NHMW (k,m) = NH(k1···t,m) ‖ NH (k3···t+2,m) ‖ · · · ‖ NH(k2n−1···t+2(n−1),m)

4.3 Implementations of MMH, NH and digest constructions

We have tested the implementations of digest(), MMH, NH as well as their multiple-word output
versions on a workstation with a 1GHz AMD Athlon(tm) 64 X2 Dual Core Processor (4600+
or 512 KB caches) running the 2.6.30 Linux kernel. All source codes were written in C making
use of GCC 4.4.1 compiler. The number of cycles elapsed during execution was measured by the
clock() instruction in the normal way (as in UMAC [29]) in our C implementations [1].



digest MMH NH

Output εc Speed Output εc Speed Output εc Speed
bitlength (cpb) bitlength (cpb) bitlength (cpb)

32 2× 2−32 0.53 32 6× 2−32 0.31 64 2−32 0.23
64 22 × 2−64 1.05 64 62 × 2−64 0.57 128 2−64 0.39
96 23 × 2−96 1.54 96 63 × 2−96 0.76 192 2−96 0.62
160 25 × 2−160 2.13 160 65 × 2−160 1.37 320 2−160 1.15
256 28 × 2−256 3.44 256 68 × 2−256 2.31 512 2−256 1.90

Table 2. Performance (cycles/byte) of digest, MMH and NH constructions. In each row, the length of NH is
always twice the length of MMH and digest.

For comparison, we recompiled publicly available source codes for SHA-256 and SHA-512 [26]
whose reported speeds on our workstation are 12.35 cpb and 8.54 cpb respectively.

For application of these primitives in MACs, normally each universal hash key is generated
once out of a short seed and reused for a period of time, and hence previously reported speeds for
MMH and NH within UMAC in [4, 9] and our results do not include the cost of key generation.

Table 2 shows the results of the experiments, which were averaged over a large number of
random and long data inputs of at least 8 kilobytes. The speeds are in cycles/byte or cpb. Our
digest constructions, at the cost of higher security, are slightly slower than MMH and NH due to
extra multiplication operations, but still considerably faster than standard cryptographic hash
functions SHA-256 and SHA-512.

4.4 Polynomial universal hashing schemes

Since our emphasis of this paper is on fast software implementation of universal hash functions,
we have so far mainly considered UHF algorithms using simple arithmetic operations available
in most ordinary computers. In this section, we will study another well-studied class of UHF
based on polynomial over finite fields, including PolyP, PolyQ, PolyR [14] and GHASH within
Galois Counter Mode or GCM [24].

For simplicity, we will give a simple version of polynomial universal hashing that is the core of
PolyP, PolyQ, PolyR and GHASH. Let the set of all messages be {m = 〈m1, . . . ,mt〉;mi ∈ Fp},
here p is the largest prime number less than 2b and the message length is M = tb bits. For any
key k ∈ Fp, we define:

Poly(k,m) = m1 +m2k +m3k
2 + · · ·+mtk

t−1 (mod p)

Such a scheme does have two nice properties as follows

– The key length of the b-bit output Poly() scheme is fixed at b bits regardless of the message
length. In contrast, MMH, NH and digest() all require the key length to be greater than or
equal to message length.

– Poly() provides collision resistance for both equal and unequal length messages. Suppose that
the bit lengths of two different messages m and m′ are bt and bt′, then the collision probability
is max{t − 1, t′ − 1}/p. On the other hand, MMH, NH and digest() only ensure collision
resistance for equal length data, but not unequal length messages. The latter is intuitively
because unequal length messages in digest(), MMH and NH require unequal length keys,
which make them incomparable for collision analysis.

Regarding the first property, as mentioned earlier all of the short-output constructions are usually
used to build MACs which reuse a single key for a period of time. Consequently long key
generation from a short seed that is done once in a while for digest(), MMH or NH will not



affect their practical uses in message authentication codes. Without taking into account key
generation, MMH, NH and digest functions are significantly faster than PolyP32, PolyQ32 and
PolyP64 whose peak performance in Pentium II assembly are 3.69, 3.86 and 6.86 cpb as reported
by Krovetz and Rogaway [14]. In addition to 1 MULT and 1 ADD, Poly() requires an extra
reduction modulo p per each message word as seen in the pseudo-code below.4

The main disadvantage of a polynomial universal hashing scheme is that its collision prob-
ability depends on the length of messages, which is the opposite of MMH, NH and digest().
Namely, the collision probability of the above scheme is ε = (t − 1)2−b that is no where near
the level of security obtained by our digest function when message is of a significant size. The
security downside of polynomial universal hash functions does have a negative impact on their
use in manual authentication protocols where short-output but highly secure universal hash
functions are required.

Following is the pseudo-code for Poly().

Poly(key,msg)
1. load msg[1]
2. Sum = msg[1]
3. for i = 2 to t
4. load msg[i]
5. Sum = (Sum+msg[i] ∗ key) mod p
6. return Sum

5 Short-output universal hash functions in manual authentication protocols

In addition to MAC schemes, short-output universal hash functions have found use in manual
authentication protocols as explained below.

In the following scheme, parties A and B want to authenticate their public data mA/B to
each other without the need for passwords, shared private keys as in MACs, or pre-established
security infrastructures such as a PKI. Instead authentication is bootstrapped from human trust
and interactions.

The authenticated data mA/B might include public keys, images or videos, and so can be of
significant size. Using notation taken from authors’ work [20–23] the N -indexed arrow (−→N )
indicates an unreliable and high-bandwidth (or normal) link where messages can be maliciously
altered, whereas the E-indexed arrow (−→E) represents an authentic and unspoofable (or em-
pirical) channel. The latter is not a private channel (anyone can overhear it) and it is usually
very low-bandwidth since it is implemented by humans, e.g., human conversations or manual
data transfers between devices. hash() is a cryptographic hash function. Long random keys kA/B

are generated by A/B, and kA is kept secret until after kB is revealed in Message 2. Operators
‖ and ⊕ denote bitwise concatenation and exclusive-or.

A pairwise manual authentication protocol [2, 15, 17, 20]

1.A −→N B : mA, hash(A ‖ kA)
2.B −→N A : mB, kB
3.A −→N B : kA
4.A←→E B : h(k∗,mA ‖ mB)

where k∗ = kA ⊕ kB

4 In line 5 of the pseudo-code of Poly() the operation Sum+msg[i]∗key can overflow or be bigger than 22b, and
hence reduction modulo p must be done carefully to obtain the correct result. For example, one might compute
y = msg[i] ∗ key mod p first, which is followed by Sum = (Sum+ y) mod p.



To ensure both devices agree on the same data mA ‖ mb, their human owners manually compare
the universal hash value in Message 4. As human interactions are expensive, the universal hash
function needs to have a short output of b ∈ [16, 32] bits.

As seen from the above protocol, the universal hash key k∗ always varies randomly and
uniformly from one to another protocol run. In other words, no value of k∗ is used to hash more
than one message because kA/B instrumental in the computation of k∗ are randomly chosen
in each protocol run. This is fundamentally different from MACs which use the same private
key to hash multiple messages for a period of time, and hence attacks which rely on the reuse
of a single private key in multiple sessions are irrelevant in manual authentication protocols.
What we then want to understand is the collision and distribution properties of the universal
hash function. We stress that this analysis is also applicable to group manual authentication
protocols [16, 20–22, 30].

Should digest(), MMH or NH (or UHASH16/32) be used directly in Message 4 of the above
protocol, random and fresh keys kA/B of similar size as mA ‖ mB must be generated whenever
the protocol is run.5 Obviously one can generate a long random key stream from a short seed via
a pseudo-random number generator, but it can be computationally expensive especially when the
authenticated data mA/B are of a significant size. Of course we can use one of the polynomial
universal hashing functions (e.g. PolyP32, PolyQ32 or PolyR16 32 all defined in [14]) which
require a short key. But since humans only can compare short value over the empirical channel,
it is intolerable that the security bound of the universal hash function degrades linearly along
with the length of data being authenticated.

One possibility suggested in [2, 8, 25] is to truncate the output of a cryptographic hash
function to the b least significant bits:

h(k,m) = truncb (hash(k ‖ m))

Although it can be computationally infeasible to search for a full cryptographic hash collision,
it is not clear whether the truncated solution is sufficiently secure because the definition of a
hash function does not normally specify the distribution of individual groups of bits.

What we therefore propose is a combination of cryptographic hashing and short-output
universal hash functions. We want to stress that among MMH, NH and digest(), the least
preferable scheme would be NH because it needs to double output length to achieve the same
order of security as MMH and digest(). The length of universal hash functions must be short in
manual authentication protocols because humans can only compare short strings efficiently and
accurately.

Without loss of generality, we use our digest method in the following construction which
is also applicable to MMH and NH. Let hash() be a B-bit cryptotgraphic hash function, e.g.
SHA-2 or SHA-3. First the input key is split into two parts of unequal lengths k = k1 ‖ k2,
where k1 is B+ b bits and k2 is at least 80 bits. Then our modified digest construction digest′()
which takes an arbitrarily length message m is computed as follows

digest′(k,m) = digest(k1, hash(m ‖ k2))

We hash the concatenation of m and k2 to make it much harder for the intruder to search for
hash collision because a large number of bits of the hash input will not be controlled by the
intruder. Consequently the intruder cannot carry out effective off-line searching.

We denotes θc the hash collision probability on random messages of hash(), and it should
be clear that θc � 2−b given that b ∈ [16, 32]. The following theorem will demonstrate that this

5 Suppose that the bitlengths of input data and output are M and b then digest() requires M + b bits and both
MMH and NH requires M bits for the key.



construction preserves both the collision probability except a tiny bias due to the hash function
and the distribution probability of digest() regardless of what hash() is. It also removes the
restriction on equal length input messages because the hash function hash() always produces a
fixed length value.6

Theorem 4. digest′() satisfies Definition 3 with the distribution probability εd = 2−b and
the collision probability εc = 21−b + θc.

Proof. Let l1 and l2 denote the bitlengths of keys k1 and k2 respectively.
We first consider collision property of digest′(). For any pair of distinct messages m and m′,

as key k2 varies uniformly and randomly the probability that hash(m ‖ k2) = hash(m′ ‖ k2) is
bounded above by θc. So there are two possibilities:

– When hash(m ‖ k2) = hash(m′ ‖ k2) then digest(k1, hash(m ‖ k2)) = digest(k1, hash(m′ ‖
k2)) for any key k1 ∈ {0, 1}l1 .

– When hash(m ‖ k2) 6= hash(m′ ‖ k2) then digest(k1, hash(m ‖ k2)) = digest(k1, hash(m′ ‖
k2)) with probability 21−b.

Consequently the collision probability of digest′() is

θc + (1− θc)21−b < θc + 21−b

As regards distribution probability of digest′(), we fix message m of arbitrarily length and a
b-bit value y in our analysis.

For each value of k2, there will be at most 2l1−b different keys k1 such that

digest(k1, hash(m ‖ k2)) = y

Since there are 2l2 different keys k2, there will be at most 2l1−b2l2 = 2l1+l2−b different pairs
(k1, k2) or different keys k such that digest(k1, hash(m ‖ k2)) = y. The distribution probability
of digest′() is therefore 2−b ut

We end this section by pointing out that the shortness of UHF output required in manual
authentication protocols further implies that UHFs with optimal (or nearly optimal) collision
probability are much more sought here than in message authentication codes. Although our pro-
posed digest′() scheme is very near to optimality, we might want to go further. To our knowledge,
this is possible but at the expense of involving arithmetic that computers less like to do than
word multiplication and addition even when the input data is short. These are bit-wise ma-
trix multiplications in the well-studied Toeplitz matrix hashing construction of [12, 18] that we
mentioned in Footnote 1 and finite fields modular reductions in polynomial universal hashing
schemes of [5, 11, 28]. Both of these are discussed in Annexes A and B.
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A Toeplitz universal hashing

We first give the definition of a Toeplitz matrix.

Definition 4. A Toeplitz matrix A is a (not necessary square) matrix where each left-to-right
diagonal is fixed, i.e. for all pairs of indexes (i, j): Ai,j = Ai+1,j+1.

If we want to compute a b-bit universal hash of a M -bit message m, then (M + b− 1)-bit key k
is drawn randomly from R = {0, 1}M+b−1. We can generate a Toeplitz matrix A(k) of M rows
and b columns from key k, i.e. we assume a linear map from (F2)

M+b−1 to the set of Toeplitz
matrices in (F2)

M×b.
Krawczyk [12] and Mansour [18] independently introduce the following scheme, where the

symbol ‘×’ in Equation 5 represents a product of vector m and matrix A(k) over F2.

hT (k,m) = m×A(k) (5)

If key k is drawn randomly from R, then the collision probability is 2−b which is optimal. For
use in manual authentication protocols of Section 5, we define h(k,m) = hT (k1, hash(m ‖ k2))
where k = k1 ‖ k2. This obtains εc = 2−b+θc where θc is the hash collision probability of hash().

B Polynomial universal hashing

We first define the following n-bit output polynomial universal hashing scheme PHn,p adapted
from [5, 11, 28], where p is the largest prime number less than 2n. This unversal hash function
takes a n-bit key k ∈ Fp and a 2n-bit data m = m1 ‖ m2, and produces an output in Fp.

PHn,p(k,m) = k ∗m1 +m2 (mod p)

It is not difficult to show that the collision probability of this construction is 1/p.
Suppose that we can hash an arbitrarily long message m into a 4b-bit value by using a

cryptographic hash function then our construction uses two different instances of the above



polynomial hashing scheme, namely PHb,p1 and PH2b,p2 where p1 and p2 are the biggest prime
numbers less than 2b and 22b respectively.

h(k,m) = PHb,p1(k1,PH2b,p2(k2, hash(m ‖ k3)))

Here k = k1 ‖ k2 ‖ k3, where k1 ∈ Fp1 , k2 ∈ Fp2 and k3 is at least 80 bits.
The collision probability of this construction is therefore εc = 1/p1 + 1/p2 + θc, where θc

denotes the hash collision probability on random messages of hash(). Since p2 � p1 and 1/p1 �
θc, we can deduce that εc ≈ 1/p1 ≈ 2−b.
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Abstract. We propose a new authentication protocol that is provably secure based on a ring variant of the
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block-cipher. Our basic protocol is roughly 20 times slower than AES, but with the advantage of having 10
times smaller code size. Furthermore, if a few hundred bytes of non-volatile memory are available to allow the
storage of some off-line pre-computations, then the online phase of our protocols is only twice as slow as AES.
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1 Introduction

Lightweight shared-key authentication protocols, in which a tag authenticates itself to a reader, are exten-
sively used in resource-constrained devices such as radio-frequency identification (RFID) tags or smart
cards. The straight-forward approach for constructing secure authentications schemes is to use low-level
symmetric primitives such as block-ciphers, e.g. AES [DR02]. In their most basic form, the protocols
consist of the reader sending a short challenge c and the tag responding with AESK(c), where K is the
shared secret key. The protocol is secure if AES fulfils a strong, interactive security assumption, namely
that it behaves like a strong pseudo-random function.

Authentication schemes based on AES have some very appealing features: they are extremely fast,
consist of only 2 rounds, and have very small communication complexities. In certain scenarios, however,
such as when low-cost and resource-constrained devices are involved, the relatively large gate-count
and code size used to implement AES may pose a problem. One approach to overcome the restrictions
presented by low-weight devices is to construct a low-weight block cipher (e.g. PRESENT [BKL+07]),
while another approach has been to deviate entirely from block-cipher based constructions and build a
provably-secure authentication scheme based on the hardness of some mathematical problem. In this
work, we concentrate on this second approach.

Ideally, one would like to construct a scheme that incorporates all the beneficial properties of AES-
type protocols, while also acquiring the additional provable security and smaller code description char-
acteristics. In the past decade, there have been proposals that achieved some, but not all, of these criteria.
Most of these proposals are extensions and variants of the Hopper-Blum (HB) protocol, recently a pro-
tocol following a different blueprint has been proposed by Kiltz et al. [KPC+11]. Our proposal can be
seen as a continuation of this line of research that contains all the advantages enjoyed by LPN-based
protocols, while at the same time, getting even closer to enjoying the benefits of AES-type schemes.

OVERVIEW OF OUR RESULTS. In this work we present a new symmetric authentication protocol which
(i) is provably-secure against active attacks (as defined in [JW05]) based on the Ring-LPN assumption,
? Supported by the European Research Council / ERC Starting Grant (259668-PSPC)
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a natural variant of the standard LPN (learning parity with noise) assumption; (ii) consists of 2 rounds;
(iii) has small communication complexity (approximately 1300 bits); (iv) has efficiency comparable to
AES-based challenge-response protocols (depending on the scenario), but with a much smaller code size.
To demonstrate the latter we implemented the tag part of our new protocol in a setting of high practical
relevance – a low-cost 8-bit microcontroller which is a typical representative of a CPU to be found on
lightweight authentication tokens, and compared its performance (code size and running time) with an
AES implementation on the same platform.

PREVIOUS WORKS. Hopper and Blum [HB00,HB01] proposed a 2-round authentication protocol that
is secure against passive adversaries based on the hardness of the LPN problem (we remind the reader
of the definition of the LPN problem in Section 1.2). The characteristic feature of this protocol is that
it requires very little workload on the part of the tag and the reader. Indeed, both parties only need to
compute vector inner products and additions over F2, which makes this protocol (thereafter named HB)
a good candidate for lightweight applications.

Following this initial work, Juels and Weis constructed a protocol called HB+ [JW05] which they
proved to be secure against more realistic, so called active attacks. Subsequently, Katz et al. [KS06a],
[KS06b,KSS10] provided a simpler security proof for HB+ as well as showed that it remains secure when
executed in parallel. Unlike the HB protocol, however, HB+ requires three rounds of communication be-
tween tag and reader. From a practical aspect, 2 round authentication protocols are often advantageous
over 3 round protocols. They often show a lower latency which is especially pronounced on platforms
where the establishment of a communication in every directions is accompanied by a fixed initial delay.
An additional drawback of both HB and HB+ is that their communication complexity is on the order of
hundreds of thousands of bits, which makes them almost entirely impractical for lightweight authentica-
tion tokens because of timing and energy constraints. (The contactless transmission of data on RFIDs or
smart cards typically requires considerably more energy than the processing of the same data.)

To remedy the overwhelming communication requirement of HB+, Gilbert et al. proposed the three-
round HB] protocol [GRS08a]. A particularly practical instantiation of this protocol requires fewer than
two thousand bits of communication, but is no longer based on the hardness of the LPN problem. Rather
than using independent randomness, the HB] protocol utilized a Toeplitz matrix, and is thus based on a
plausible assumption that the LPN problem is still hard in this particular scenario.

A feature that the HB,HB+, and HB] protocols have in common is that at some point the reader
sends a random string r to the tag, which then must reply with 〈r, s〉+ e, the inner product of r with the
secret s plus some small noise e. The recent work of Kiltz et al. [KPC+11] broke with this approach,
and they were able to construct the first 2-round LPN-based authentication protocol (thereafter named
EC11) that is secure against active attacks. In their challenge-response protocol, the reader sends some
challenge bit-string c to the tag, who then answers with a noisy inner product of a random r (which the
tag chooses itself) and a session-key K(c), where K(c) selects (depending on c) half of the bits from the
secret s. Unfortunately, the EC11 protocol still inherits the large communication requirement of HB and
HB+. Furthermore, since the session key K(c) is computed using bit operations, it does not seem to be
possible to securely instantiate EC11 over structured (and hence more compact) objects such as Toeplitz
matrices (as used in HB] [GRS08a]).

1.1 Our contributions

PROTOCOL. In this paper we propose a variant of the EC11 protocol from [KPC+11] which uses an
“algebraic” derivation of the session keyK(c), thereby allowing to be instantiated over a carefully chosen
ring R = F2[X]/(f). Our scheme is no longer based on the hardness of LPN, but rather on the hardness of
a natural generalization of the problem to rings, which we call Ring-LPN(see Section 3 for the definition
of the problem.) The general overview of our protocol is quite simple. Given a challenge c from the
reader, the tag answers with (r, z = r · K(c) + e) ∈ R × R, where r is a random ring element, e is a



Table 1. Summary of implementation results

Protocol Time (cycles) Code size
online offline (bytes)

Ours: reducible f (§5.1) 30, 000 82, 500 1, 356
Ours: irreducible f (§5.2) 21, 000 174, 000 459
AES-based [LLS09,Tik] 10, 121 0 4, 644

low-weight ring element, and K(c) = sc + s′ is the session key that depends on the shared secret key
K = (s, s′) ∈ R2 and the challenge c. The reader accepts if e′ = r ·K(c) − z is a polynomial of low
weight, cf. Figure 1 in Section 4. Compared to the HB and HB+ protocols, ours has one less round and
a dramatically lower communication complexity. Our protocol has essentially the same communication
complexity as HB], but still retains the advantage of one fewer round. And compared to the two-round
EC11 protocol, ours again has the large savings in the communication complexity. Furthermore, it inherits
from EC11 the simple and tight security proof that, unlike three-round protocols, does not use rewinding.

We remark that while our protocol is provably secure against active attacks, we do not have a proof
of security against man-in-the-middle ones. Still, as argued in [KSS10], security against active attacks
is sufficient for many use scenarios (see also [JW05,KW05,KW06]). We would like to mention that
despite man-in-the-middle attacks being outside our “security model”, we think that it is still worthwhile
investigating whether such attacks do in fact exist, because it presently seems that all previous man-in-
the middle attacks against HB-type schemes along the lines of Gilbert et al. [GRS05] and of Ouafi et
al. [OOV08] do not apply to our scheme. In Appendix A, however, we do present a man-in-the-middle
attack that works in time approximately n1.5 · 2λ/2 (where n is the dimension of the secret and λ is the
security parameter) when the adversary can influence on the order of n1.5 · 2λ/2 interactions between the
reader and the tag. To resist this attack, one could simply double the security parameter, but we believe
that even for λ = 80 (and n > 512, as it is currently set in our scheme) this attack is already impractical
because of the extremely large number of interactions that the adversary will have to observe and modify.

IMPLEMENTATION. We demonstrate that our protocol is indeed practical by providing a lightweight
implementation of the tag part of the protocol. (The reader is typically not run on a constrained device
and therefore we do not consider its performance.) The target platform was an AVR ATmega163 [Atm]
based smart card. The ATmega163 is a small 8-bit microcontroller which is a typical representative of
a CPU to be found on lightweight authentication tokens. The main metrics we consider are run time
and code size. We compare our results with a challenge-response protocol using an AES implementation
optimized for the target platform. A major advantage of our protocol is its very small code size. The most
compact implementation requires only about 460 bytes of code, which is an improvement by factor of
about 10 over AES-based authentication. Given that EEPROM or FLASH memory is often one of the
most precious resources on constrained devices, our protocol can be attractive in certain situations. The
drawback of our protocol over AES on the target platform is an increase in clock cycles for one round
of authentication. However, if we have access to a few hundred bytes of non-volatile data memory, our
protocol allows precomputations which make the on-line phase only a factor two or three slower than
AES. But even without precomputations, the protocol can still be executed in a few 100 msec, which will
be sufficient for many real-world applications, e.g. remote keyless entry systems or authentication for
financial transactions. Table 1 gives a summary of the results, see Section 5 for details.

We would like to stress at this point that our protocol is targeting lightweight tags that are equipped
with (small) CPUs. For ultra constrained tokens (such as RFIDs in the price range of a few cents targeting
the EPC market) which consist nowadays of a small integrated circuit, even compact AES implementa-
tions are often considered too costly. (We note that virtually all current commercially available low-end
RFIDs do not have any crypto implemented.) However, tokens which use small microcontrollers are far
more common, e.g., low-cost smart cards, and they do often require strong authentication. Also, it can
be speculated that computational RFIDs such as the WISP [Wik] will become more common in the fu-



ture, and hence software-friendly authentication methods that are highly efficient such as the protocol
provided here will be needed.

1.2 LPN, Ring-LPN, and Related Problems

The security of our protocols relies on the new Ring Learning Parity with Noise (Ring-LPN) problem
which is a natural extension of the standard Learning Parity with Noise (LPN) problem to rings. It can
also be seen as a particular instantiation of the Ring-LWE (Learning with Errors over Rings) problem
that was recently shown to have a strong connection to lattices [LPR10]. We will now briefly describe
and compare these hardness assumptions, and we direct the reader to Section 3 for a formal definition of
the Ring-LPN problem.

The decision versions of these problems require us to distinguish between two possible oracles to
which we have black-box access. The first oracle has a randomly generated secret vector s ∈ Fn2 which
it uses to produce its responses. In the LPN problem, each query to the oracle produces a uniformly
random matrix4 A ∈ Fn×n2 and a vector As + e = t ∈ Fn2 where e is a vector in Fn2 each of whose
entries is an independently generated Bernoulli random variable with probability of 1 being some public
parameter τ between 0 and 1/2. The second oracle in the LPN problem outputs a uniformly-random
matrix A ∈ Fn×n2 and a uniformly random vector t ∈ Fn2 .

The only difference between LPN and Ring-LPN is in the way the matrix A is generated (both by
the first and second oracle). While in the LPN problem, all its entries are uniform and independent, in
the Ring-LPN problem, only its first column is generated uniformly at random in Fn2 . The remaining n
columns of A depend on the first column and the underlying ring R = F2[X]/(f(X)). If we view the
first column of A as a polynomial r ∈ R, then the ith column (for 0 ≤ i ≤ n− 1) of A is just the vector
representation of rXi in the ring R. Thus when the oracle returns As+ e, this corresponds to it returning
the polynomial r · s+ e where the multiplication of polynomials r and s (and the addition of e) is done
in the ring R. The Ring-LPNR assumption states that it is hard to distinguish between the outputs of the
first and the second oracle described above. In Section 3, we discuss how the choice of the ring R affects
the security of the problem.

While the standard Learning Parity with Noise (LPN) problem has found extensive use as a crypto-
graphic hardness assumption (e.g., [HB01,JW05,GRS08b,GRS08a,ACPS09,KSS10]), we are not aware
of any constructions that employed the Ring-LPN problem. There have been some previous works that
considered some relatively similar “structured” versions of LPN. The HB] authentication protocol of
Gilbert et al. [GRS08a] made the assumption that for a random Toeplitz matrix S ∈ Fm×n2 , a uniformly
random vector a ∈ Fn2 , and a vector e ∈ Fm2 whose coefficients are distributed as Berτ , the output
(a, Sa+ e) is computationally indistinguishable from (a, t) where t is uniform over Fm2 .

Another related work, as mentioned above, is the recent result of Lyubashevsky et al. [LPR10],
where it is shown that solving the decisional Ring-LWE (Learning with Errors over Rings) problem is
as hard as quantumly solving the worst case instances of the shortest vector problem in ideal lattices.
The Ring-LWE problem is quite similar to Ring-LPN, with the main difference being that the ring R is
defined as Fq[X]/(f(X)) where f(X) is a cyclotomic polynomial and q is a prime such that f(X) splits
completely into deg(f(X)) distinct factors over Fq.

Unfortunately, the security proof of our authentication scheme does not allow us to use a polynomial
f(X) that splits into low-degree factors, and so we cannot base our scheme on lattice problems. For a
similar reason (see the proof of our scheme in Section 4 for more details), we cannot use samples that
come from a Toeplitz matrix as in [GRS08a]. Nevertheless, we believe that the Ring-LPN assumption is
very natural and will find further cryptographic applications, especially for constructions of schemes for
low-cost devices.

4 In the more common description of the LPN problem, each query to the oracle produces one random sample in Fn2 . For
comparing LPN to Ring-LPN, however, it is helpful to consider the oracle as returning a matrix of n random independent
samples on each query.



2 Definitions

2.1 Rings and Polynomials

For a polynomial f(X) over F2, we will often omit the indeterminate X and simply write f . The degree
of f is denoted by deg(f). For two polynomials a, f in F2[X], a mod f is defined to be the unique poly-
nomial r of degree less than deg(f) such that a = fg+ r for some polynomial g ∈ F2[X]. The elements
of the ring F2[X]/(f) will be represented by polynomials in F2[X] of maximum degree deg(f) − 1.
In this paper, we will only be considering rings R = F2[X]/(f) where the polynomial f factors into
distinct irreducible factors over F2. For an element a in the ring F2[X]/(f), we will denote by â, the
CRT (Chinese Remainder Theorem) representation of a with respect to the factors of f . In other words,
if f = f1 . . . fm where all fi are irreducible, then

â
.
= (a mod f1, . . . , a mod fm).

If f is itself an irreducible polynomial, then â = a. Note that an element â ∈ R has a multiplicative
inverse iff, for all 1 ≤ i ≤ m, a 6= 0 mod fi. We denote by R∗ the set of elements in R that have a
multiplicative inverse.

2.2 Distributions

For a distribution D over some domain, we write r $← D to denote that r is chosen according to the
distributionD. For a domain Y , we writeU(Y ) to denote the uniform distribution over Y . Let Berτ be the
Bernoulli distribution over F2 with parameter (bias) τ ∈ ]0, 1/2[ (i.e., Pr[x = 1] = τ if x← Berτ ). For
a polynomial ring R = F2[X]/(f), the distribution BerRτ denotes the distribution over the polynomials
of R, where each of the coefficients of the polynomial is drawn independently from Berτ . For a ring R
and a polynomial s ∈ R, we write ΛR,s

τ to be the distribution over R× R whose samples are obtained by
choosing a polynomial r $← U(R) and another polynomial e $← BerRτ , and outputting (r, rs+ e).

2.3 Authentication Protocols

An authentication protocol Π is an interactive protocol executed between a Tag T and a reader R,
both PPT algorithms. Both hold a secret x (generated using a key-generation algorithm KG executed on
the security parameter λ in unary) that has been shared in an initial phase. After the execution of the
authentication protocol, R outputs either accept or reject. We say that the protocol has completeness
error εc if for all λ ∈ N, all secret keys x generated by KG(1λ), the honestly executed protocol returns
reject with probability at most εc. We now define different security notions of an authentication protocol.

PASSIVE ATTACKS. An authentication protocol is secure against passive attacks, if there exists no PPT
adversary A that can make the reader R return accept with non-negligible probability after (passively)
observing any number of interactions between reader and tag.

ACTIVE ATTACKS. A stronger notion for authentication protocols is security against active attacks. Here
the adversary A runs in two stages. First, she can interact with the honest tag a polynomial number of
times (with concurrent executions allowed). In the second phase A interacts with the reader only, and
wins if the reader returns accept. Here we only give the adversary one shot to convince the verifier.5 An
authentication protocol is (t, q, ε)-secure against active adversaries if every PPT A, running in time at
most t and making q queries to the honest reader, has probability at most ε to win the above game.

5 By using a hybrid argument one can show that this implies security even if the adversary can interact in k ≥ 1 independent
instances concurrently (and wins if the verifier accepts in at least one instance). The use of the hybrid argument looses a
factor of k in the security reduction.



3 Ring-LPN and its Hardness

The decisional Ring-LPNR (Ring Learning Parity with Noise in ring R) assumption, formally defined
below, states that it is hard to distinguish uniformly random samples in R× R from those sampled from
ΛR,s
τ for a uniformly chosen s ∈ R.

Definition 1 (Ring-LPNR). The (decisional) Ring-LPNR
τ problem is (t, q, ε)-hard if for every distin-

guisher D running in time t and making q queries,∣∣∣Pr [s $← R : DΛ
R,s
τ = 1

]
− Pr

[
DU(R×R) = 1

]∣∣∣ ≤ ε.
3.1 Hardness of LPN and Ring-LPN

One can attempt to solve Ring-LPN using standard algorithms for LPN, or by specialized algorithms that
possibly take advantage of Ring-LPN’s additional structure. Some work towards constructing the latter
type of algorithm has recently been done by Hanrot et al. [HLPS11], who show that in certain cases, the
algebraic structure of the Ring-LPN and Ring-LWE problems makes them vulnerable to certain attacks.
These attacks essentially utilize a particular relationship between the factorization of the polynomial
f(X) and the distribution of the noise.

Ring-LPN with an irreducible f(X) When f(X) is irreducible over F2, the ring F2[X]/(f) is a field.
For such rings, the algorithm of Hanrot et al. does not apply, and we do not know of any other algorithm
that takes advantage of the added algebraic structure of this particular Ring-LPN instance. Thus to the
best of our knowledge, the most efficient algorithms for solving this problem are the same ones that are
used to solve LPN, which we will now very briefly recount.

The computational complexity of the LPN problem depends on the length of the secret n and the
noise distribution Berτ . Intuitively, the larger the n and the closer τ is to 1/2, the harder the problem
becomes. Usually the LPN problem is considered for constant values of τ somewhere between 0.05 and
0.25. For such constant τ , the fastest asymptotic algorithm for the LPN problem, due to Blum et al.
[BKW03], takes time 2Ω(n/ logn) and requires approximately 2Ω(n/ logn) samples from the LPN oracle.
If one has access to fewer samples, then the algorithm will perform somewhat worse. For example, if one
limits the number of samples to only polynomially-many, then the algorithm has an asymptotic complex-
ity of 2Ω(n/ log logn) [Lyu05]. In our scenario, the number of samples available to the adversary is limited
to n times the number of executions of the authentication protocol, and so it is reasonable to assume that
the adversary will be somewhat limited in the number of samples he is able to obtain (perhaps at most 240

samples), which should make our protocols harder to break than solving the Ring-LPN problem. Levieil
and Fouque [LF06] made some optimizations to the algorithm of Blum et al. and analyzed its precise
complexity. To the best of our knowledge, their algorithm is currently the most efficient one and we will
refer to their results when analyzing the security of our instantiations.

In Section 5, we base our scheme on the hardness of the Ring-LPNR problem where the ring is
R = F2[X]/(X532 + X + 1) and τ = 1/8. According to the analysis of [LF06], an LPN problem of
dimension 512 with τ = 1/8 would require 277 memory (and thus at least that much time) to solve
when given access to approximately as many samples (see [LF06, Section 5.1]). Since our dimension is
somewhat larger and the number of samples will be limited in practice, it is reasonable to assume that
this instantiation has 80-bit security.

Ring-LPN with a reducible f(X) For efficiency purposes, it is sometimes useful to consider using
a polynomial f(X) that is not irreducible over F2. This will allow us to use the CRT representation of
the elements of F2[X]/(f) to perform multiplications, which in practice turns out to be more efficient.
Ideally, we would like the polynomial f to split into as many small-degree polynomials fi as possible,



but there are some constraints that are placed on the factorization of f both by the security proof, and the
possible weaknesses that a splittable polynomial introduces into the Ring-LPN problem.

If the polynomial f splits into f =
∏m
i=1 fi, then it may be possible to try and solve the Ring-LPN

problem modulo some fi rather than modulo f . Since the degree of fi is smaller than the degree of f , the
resulting Ring-LPN problem may end up being easier. In particular, when we receive a sample (r, rs+e)
from the distribution ΛR,s

τ , we can rewrite it in CRT form as

(r̂, r̂s+ e) = ((r mod f1, rs+ e mod f1), . . . ,

(r mod fm, rs+ e mod fm)),

and thus for every fi, we have a sample

(r mod fi, (r mod fi)(s mod fi) + e mod fi),

where all the operations are in the ring (or field) F2[X]/(fi). Thus solving the (decision) Ring-LPN
problem in F2[X]/(f) reduces to solving the problem in F2[X]/(fi). The latter problem is in a smaller
dimension, since deg(s) > deg(s mod fi), but the error distribution of (e mod fi) is quite different than
that of e. While each coefficient of e is distributed independently as Berτ , each coefficient of (e mod fi)
is distributed as the distribution of a sum of certain coefficients of e, and therefore the new error is
larger.6 Exactly which coefficients of e, and more importantly, how many of them, combine to form
every particular coefficient of e′ depends on the polynomial fi. For example, if

f(X) = (X3 +X + 1)(X3 +X2 + 1)

and e =
5∑
i=0

eiX
i, then,

e′ = e mod (X3 +X + 1) = (e0 + e3 + e5) + (e1 + e3 + e4 + e5)X + (e2 + e4 + e5)X
2,

and thus every coefficient of the error e′ is comprised of at least 3 coefficients of the error vector e, and
thus τ ′ > 1

2 −
(1−2τ)3

2 .
In our instantiation of the scheme with a reducible f(X) in Section 5, we used the f(X) such that it

factors into fi’s that make the operations in CRT form relatively fast, while making sure that the resulting
Ring-LPN problem modulo each fi is still around 280-hard.

4 Authentication Protocol

In this section we describe our new 2-round authentication protocol and prove its active security under
the hardness of the Ring-LPN problem. Detailed implementation details will be given in Section 5.

4.1 The Protocol

Our authentication protocol is defined over the ring R = F2[X]/(f) and involves a “suitable” mapping
π : {0, 1}λ → R. We call π suitable for ring R if for all c, c′ ∈ {0, 1}λ, π(c)− π(c′) ∈ R \ R∗ iff c = c′.
We will discuss the necessity and existence of such mappings after the proof of Theorem 1

– Public parameters. The authentication protocol has the following public parameters, where τ, τ ′

are constants and n depend on the security parameter λ.
R, n ring R = F2[X]/(f), deg(f) = n
π : {0, 1}λ → R mapping
τ ∈ (0, 1/2) parameter of Bernoulli distribution
τ ′ ∈ (τ, 1/2) acceptance threshold

6 If we have k elements e1, . . . , ek
$← Berτ , then a simple calculation shows that the element e′ = e1+ . . .+ek is distributed

as Berτ ′ where τ ′ = 1
2
− (1−2τ)k

2
.



Public parameters: R, π : {0, 1}λ → R, τ, τ ′

Secret key: s, s′ ∈ R

Tag T ReaderR
c←− c

$← {0, 1}λ

r
$← R∗; e $← BerRτ ∈ R

z := r · (s · π(c) + s′) + e
(r,z)−−→

if r 6∈ R∗ reject
e′ := z − r · (s · π(c) + s′)
if wt(e′) > n · τ ′ reject
else accept

Fig. 1. Two-round authentication protocol with active security from the Ring-LPNR assumption.

– Key Generation. Algorithm KG(1λ) samples s, s′ $← R and returns s, s′ as the secret key.
– Authentication Protocol. The ReaderR and the Tag T share secret value s, s′ ∈ R. To be authenti-

cated by a Reader, the Tag and the Reader execute the authentication protocol from Figure 1.

4.2 Analysis

For our analysis we define for x, y ∈]0, 1[ the following constant:

c(x, y) :=

(
x

y

)x(1− x
1− y

)1−x
.

We now state that our protocol is secure against active adversaries. Recall that active adversaries can
arbitrarily interact with a Tag oracle in the first phase and tries to impersonate the Reader in the 2nd
phase.

Theorem 1. If ring mapping π is suitable for ring R and the Ring-LPNR problem is (t, q, ε)-hard then
the authentication protocol from Figure 1 is (t′, q, ε′)-secure against active adversaries, where

t′ = t− q · exp(R) ε′ = ε+ q · 2−λ + c(τ ′, 1/2)−n (4.1)

and exp(R) is the time to perform O(1) exponentiations in R. Furthermore, the protocol has complete-
ness error εc(τ, τ ′, n) ≈ c(τ ′, τ)−n.

Proof. The completeness error εc(τ, τ ′, n) is (an upper bound on) the probability that an honestly gen-
erated Tag gets rejected. In our protocol this is exactly the case when the error e′ has weight ≥ n · τ ′,
i.e.

εc(τ, τ
′, n) = Pr[wt(e′) > n · τ ′ : e $← BerRτ ]

Levieil and Fouque [LF06] show that one can approximate this probability as εc ≈ c(τ ′, τ)−n.
To prove the security of the protocol against active attacks we proceed in sequences of games. Game0

is the security experiment describing an active attack on our scheme by an adversaryAmaking q queries
and running in time t′, i.e.

– Sample the secret key s, s′ $← R.
– (1st phase of active attack) A queries the tag T on c ∈ {0, 1}λ and receives (r, z) computed as

illustrated in Figure 1.
– (2nd phase of active attack) A gets a random challenge c∗ $← {0, 1}λ and outputs (r, z). A wins if

the readerR accepts, i.e. wt(z − r · (s · π(c∗) + s′)) ≤ n · τ ′.



By definition we have Pr[A wins in Game0] ≤ ε′.
Game1 is as Game0, except that all the values (r, z) returned by the Tag oracle in the first phase (in

return to a query c ∈ {0, 1}λ) are uniform random elements (r, z) ∈ R2. We now show that if A is
successful against Game0, then it will also be successful against Game1.

Claim. |Pr[A wins in Game1]− Pr[A wins in Game0]| ≤ ε+ q · 2−λ

To prove this claim, we construct an adversary D (distinguisher) against the Ring-LPN problem which
runs in time t = t′ + exp(R) and has advantage

ε ≥ |Pr[A wins in Game1]− Pr[A wins in Game0]| − q · 2−λ

D has access to a Ring-LPN oracle O and has to distinguish between O = ΛR,s
τ for some secret

s ∈ R and O = U(R× R).

– D picks a random challenge c∗ $← {0, 1}λ and a
$← R. Next, it runs A and simulates its view

with the unknown secret s, s′, where s ∈ R comes from the oracle O and s′ is implicitly defined as
s′ := −π(c∗) · s+ a ∈ R.

– In the 1st phase, A can make q (polynomial many) queries to the Tag oracle. On query c ∈ {0, 1}λ
to the Tag oracle, D proceeds as follows. If π(c)− π(c∗) 6∈ R∗, then abort. Otherwise, D queries its
oracle O() to obtain (r′, z′) ∈ R2. Finally, D returns (r, z) to A, where

r := r′ · (π(c)− π(c∗))−1, z := z′ + ra. (4.2)

– In the 2nd phase,D uses c∗ ∈ {0, 1}λ to challengeA. On answer (r, z),D returns 0 to the Ring-LPN
game if wt(z−r ·a) > n ·τ ′ or r 6∈ R∗, and 1 otherwise. Note that sπ(c∗)+s′ = (π(c∗)−π(c∗))s+
a = a and hence the above check correctly simulates the output of a reader with the simulated secret
s, s′.

Note that the running time of D is that of A plus O(q) exponentiations in R.
Let bad be the event that for at least one query c made by A to the Tag oracle, we have that π(c) −

π(c∗) 6∈ R∗. Since c∗ is uniform random in R and hidden fromA’s view in the first phase we have by the
union bound over the q queries

Pr[bad] ≤ q · Pr
c∗∈{0,1}λ

[π(c)− π(c∗) ∈ R \ R∗]

= q · 2−λ. (4.3)

The latter inequality holds because π is suitable for R.
Let us now assume bad does not happen. If O = ΛR,s

τ is the real oracle (i.e., it returns (r′, z′) with
z′ = r′s+ e) then by the definition of (r, z) from (4.2),

z = (r′s+ e) + ra = r(π(c)s− π(c∗)s+ a) + e = r(sπ(c) + s′) + e.

Hence the simulation perfectly simulates A’s view in Game0. If O = U(R × R) is the random oracle
then (r, z) are uniformly distributed, as in Game1. That concludes the proof of Claim 4.2.

We next upper bound the probability that A can be successful in Game1. This bound will be infor-
mation theoretic and even holds ifA is computationally unbounded and can make an unbounded number
of queries in the 1st phase. To this end we introduce the minimal soundness error, εms, which is an upper
bound on the probability that a tag (r, z) chosen independently of the secert key is valid, i.e.

εms(τ
′, n) := max

(z,r)∈R×R∗
Pr

s,s′
$←R

[wt(z − r · (s · π(c∗) + s′)︸ ︷︷ ︸
e′

) ≤ nτ ′]



As r ∈ R∗ and s′ ∈ R is uniform, also e′ = z − r · (s · π(c∗) + s′ is uniform, thus εms is simply

εms(τ
′, n) := Pr

e′
$←R

[wt(e′) ≤ nτ ′]

Again, it was shown in [LF06] that this probability can be approximated as

εms(τ
′, n) ≈ c(τ ′, 1/2)−n. (4.4)

Clearly, εms is a trivial lower bound on the advantage of A in forging a valid tag, by the following claim
in Game1 one cannot do any better than this.

Claim. Pr[A wins in Game1] = εms(τ
′, n)

To see that this claim holds one must just observe that the answers A gets in the first phase of the active
attack in Game1 are independent of the secret s, s′. Hence A’s advantage is εms(τ

′, n) by definition.
Claims 4.2 and 4.2 imply (4.1) and conclude the proof of Theorem 1.

We require the mapping π : {0, 1}λ → R used in the protocol to be suitable for R, i.e. for all c, c′ ∈
{0, 1}λ, π(c) − π(c′) ∈ R \ R∗ iff c = c′. In Section 5 we describe efficient suitable maps for any
R = F2[X]/(f) where f has no factor of degree≤ λ. This condition is necessary, as no suitable mapping
exists if f has a factor fi of degree ≤ λ: in this case, by the pigeonhole principle, there exist distinct
c, c′ ∈ {0, 1}λ such that π(c) = π(c′) mod fi, and thus π(c)− π(c′) ∈ R \ R∗.

We stress that for our security proof we need π to be suitable for R, since otherwise (4.3) is no longer
guaranteed to hold. It is an interesting question if this is inherent, or if the security of our protocol can be
reduced to the Ring-LPNR problem for arbitrary rings R = F2[X]/(f), or even R = Fq[X]/(f) (This is
interesting since, if f has factors of degree� λ, the protocol could be implemented more efficiently and
even become based on the worst-case hardness of lattice problems). Similarly, it is unclear how to prove
security of our protocol instantiated with Toeplitz matrices.

5 Implementation

There are two objectives that we pursue with the implementation of our protocol. First, we will show
that the protocol is in fact practical with concrete parameters, even on extremely constrained CPUs. Sec-
ond, we investigate possible application scenarios where the protocol might have additional advantages.
From a practical point of view, we are particularly interested in comparing our protocol to classical sym-
metric challenge-response schemes employing AES. Possible advantages of the protocol at hand are (i)
the security properties and (ii) improved implementation properties. With respect to the former aspect,
our protocol has the obvious advantage of being provably secure under a reasonable and static hardness
assumption. Even though AES is arguably the most trusted symmetric cipher, it is “merely” computa-
tionally secure with respect to known attacks.

In order to investigate implementation properties, constrained microprocessors are particularly rele-
vant. We chose an 8-bit AVR ATmega163 [Atm] based smartcard, which is widely used in myriads of
embedded applications. It can be viewed as a typical representative of a CPU used in tokens that are in
need for an authentication protocol, e.g., computational RFID tags or (contactless) smart cards. The main
metrics we consider for the implementation are run-time and code size. We note at this point that in many
lightweight crypto applications, code size is the most precious resource once the run-time constraints are
fulfilled. This is due to the fact that EEPROM or flash memory is often heavily constrained. For instance,
the WISP, a computational RFID tag, has only 8 kBytes of program memory [Wik,MSP].

We implemented two variants of the protocol described in Section 4. The first variant uses a ring
R = F2[X]/(f), where f splits into five irreducible polynomials; the second variant uses a field, i.e.,
f is irreducible. For both implementations, we chose parameters which provide a security level of λ =
80 bits, i.e., the parameters are chosen such that ε′ in (4.1) is bounded by 2−80 and the completeness
εc is bounded by 2−40. This security level is appropriate for the lightweight applications which we are
targeting.



5.1 Implementation with a Reducible Polynomial

From an implementation standpoint, the case of reducible polynomial is interesting since one can take
advantage of arithmetic based on the Chinese Remainder Theorem.

PARAMETERS. To define the ring R = F2[X]/(f), we chose the reducible polynomial f to be the
product of the m = 5 irreducible pentanomials specified by the following powers with non-zero coef-
ficients: (127, 8, 7, 3, 0), (126, 9, 6, 5, 0), (125, 9, 7, 4, 0), (122, 7, 4, 3, 0), (121, 8, 5, 1, 0)7. Hence f is
a polynomial of degree n = 621. We chose τ = 1/6 and τ ′ = .29 to obtain minimal soundness er-
ror εms ≈ c(τ ′, 1/2)−n ≤ 2−82 and completeness error εc ≤ 2−42. From the discussion of Section 3
the best known attack on Ring-LPNR

τ with the above parameters has complexity > 280. The mapping
π : {0, 1}80 → R is defined as follows. On input c ∈ {0, 1}80, for each 1 ≤ i ≤ 5, pad c ∈ {0, 1}80
with deg(fi) − 80 zeros and view the result as coefficients of an element vi ∈ F2[X]/(fi). This de-
fines π(c) = (v1, . . . , v5) in CRT representation. Note that, for fixed c, c∗ ∈ {0, 1}80, we have that
π(c)− π(c∗) ∈ R \ R∗ iff c = c∗ and hence π is suitable for R.

IMPLEMENTATION DETAILS. The main operations are multiplications and additions of polynomials that
are represented by 16 bytes. We view the CRT-based multiplication in three stages. In the first stage, the
operands are reduced modulo each of the five irreducible polynomials. This part has a low computational
complexity. Note that only the error e has to be chosen in the ring and afterwards transformed to CRT
representation. It is possible to save the secret key (s, s′) and to generate r directly in the CRT represen-
tation. This is not possible for e because e has to come from BerRτ . In the second stage, one multiplication
in each of the finite fields defined by the five pentanomials has to be performed. We used the right-to-left
comb multiplication algorithm from [HMV03]. For the multiplication with π(c) we exploit the fact that
only the first 80 coefficients can be non-zero. Hence we wrote one function for normal multiplication
and one for sparse multiplication. The latter is more than twice as fast as the former. The subsequent
reduction takes care of the special properties of the pentanomials, thus code reuse is not possible for the
different fields. The third stage, constructing the product polynomial in the ring, is shifted to the prover
(RFID reader) which normally has more computational power than the tag T . Hence the response (r, z)
is sent in CRT form to the reader. If non-volatile storage — in our case we need 2·5·16 = 160 bytes — is
available we can heavily reduce the response time of the tag. At an arbitrary point in time, choose e and
r according to their distribution and precompute tmp1 = r · s and tmp2 = r · s′+ e. When a challenge c
is received afterwards, tag T only has to compute z = tmp1 · π(c) + tmp2. Because π(c) is sparse, the
tag can use the sparse multiplication and response very quickly. The results of the implementation are
shown in Table 2 in Section 5.3. Note that all multiplication timings given already include the necessary
reductions and addition of a value according to Figure 1.

5.2 Implementation with an Irreducible Polynomial

PARAMETERS. To define the field F = F2[X]/(f), we chose the irreducible trinomial f(X) = X532 +
X + 1 of degree n = 532. We chose τ = 1/8 and τ ′ = .27 to obtain minimal soundness error εms ≈
c(τ ′, 1/2)−n ≤ 2−80 and completeness error εc ≈ 2−55. From the discussion in Section 3 the best known
attack on Ring-LPNF

τ with the above parameters has complexity > 280. The mapping π : {0, 1}80 → F
is defined as follows. View c ∈ {0, 1}80 as c = (c1, . . . , c16) where ci is a number between 1 and
32. Define the coefficients of the polynomial v = π(c) ∈ F as zero except all positions i of the form
i = 16 · (j − 1) + cj , for some j = 1, . . . , 16. Hence π(c) is sparse, i.e., it has exactly 16 non-zero
coefficients. Since π is injective and F is a field, the mapping π is suitable for F.

IMPLEMENTATION DETAILS. The main operation for the protocol is now a 67-byte multiplication. Again
we used the right-to-left comb multiplication algorithm from [HMV03] and an optimized reduction algo-
rithm. Like in the reducible case, the tag can do similar precomputations if 2·67 = 134 bytes non-volatile

7 (127, 8, 7, 3, 0) refers to the polynomial X127 +X8 +X7 +X3 + 1.



storage are available. Because of the special type of the mapping v = π(c), the gain of the sparse multi-
plication is even larger than in the reducible case. Here we are a factor of 7 faster, making the response
time with precomputations faster, although the field is larger. The results are shown in Table 3 in Sec-
tion 5.3.

5.3 Implementation Results

All results presented in this section consider only the clock cycles of the actual arithmetic functions. The
communication overhead and the generation of random bytes is excluded because they occur in every
authentication scheme, independent of the underlying cryptographic functions. The time for building e
from BerRτ out of the random bytes and converting it to CRT form is included in Overhead. Table 2 and
Table 3 shows the results for the ring based and field based variant, respectively.

Table 2. Results for the ring based variant w/o precomputation

Aspect time code size
in cycles in bytes

Overhead 17, 500 264
Mul 5× 13, 000 164
sparse Mul 5× 6, 000 170

total 112, 500 1356

The overall code size is not the sum of the other values because, as mentioned before, the same
multiplication code is used for all normal and sparse multiplications, respectively, while the reduction
code is different for every field (≈ 134 byte each). The same code for reduction is used independently
of the type of the multiplication for the same field. If precomputation is acceptable, the tag can answer
the challenge after approximately 30, 000 clock cycles, which corresponds to a 15 msec if the CPU is
clocked at 2 MHz.

Table 3. Results for the field based variant w/o precomputation

Aspect time code size
in cycles in bytes

Overhead 3, 000 150
Mul 150, 000 161
sparse Mul 21, 000 148

total 174, 000 459

For the field-based protocol, the overall performance is slower due to the large operands used in the
multiplication routine. But due to the special mapping v = π(c), here the tag can do a sparse multipli-
cations in only 21, 000 clocks cycles. This allows the tag to respond in 10.5 msec at 2 MHz clock rate if
non-volatile storage is available.

As mentioned in the introduction, we want to compare our scheme with a conventional challenge-
response authentication protocol based on AES. The tag’s main operation in this case is one AES encryp-
tion. The implementation in [LLS09] states 8, 980 clock cycles for one encryption on a similar platform,
but unfortunately no code size is given; [Tik] reports 10121 cycles per encryption and a code size of 4644
bytes.8 In comparison with these highly optimized AES implementations, our scheme is around eleven
times slower when using the ring based variant without precomputations. If non-volatile storage allows

8 An internet source [Poe] claims to encrypt in 3126 cycles with code size of 3098 bytes but since this is unpublished material
we do not consider it in our comparison.



precomputations, the ring based variant is only three times slower than AES. But the code size is by a
factor of two to three smaller, making it attractive for Flash constrained devices. The field based variant
without precomputations is 17 to 19 times slower than AES, but with precompuations it is only twice
as slow as AES, while only consuming one tenths of the code size. From a practical point of view, it is
important to note that even our slowest implementation is executed in less than 100 msec if the CPU is
clocked at 2 MHz. This response time is sufficient in many application scenarios. (For authentications
involving humans, a delay of 1 sec is often considered acceptable.)

The performance drawback compared to AES is not surprising, but it is considerably less dramatic
compared to asymmetric schemes like RSA or ECC [GPW+04]. But exploiting the special structure of
the multiplications in our scheme and using only a small amount of non-volatile data memory provides
a response time in the same order of magnitude as AES, while keeping the code size much smaller.

6 Conclusions and open Problems

We proposed a new [KPC+11]-like authentication protocol with provable security against active attacks
based on the Ring-LPN assumption, consisting of only two rounds, and having small communication
complexity. Furthermore, our implementations on an 8-bit AVR ATmega163 based smartcard demon-
strated that it has very small code size and its efficiency can be of the same order as traditional AES-
based authentication protocols. Overall, we think that its features make it very applicable in scenarios
that involve low-cost, resource-constrained devices.

Our protocol cannot be proved secure against man-in-the-middle (MIM) attacks, but using a recent
transformation from [DKPW12] we can get a MIM secure scheme with small extra cost (one application
of a universal hash function.) Still, finding a more direct construction which achieves MIM security (or
proving that the current protocol already has this property) but doesn’t require any hashing remains an
interesting open problem.

We believe that the Ring-LPN assumption is very natural and will find further cryptographic appli-
cations, especially for constructions of schemes for low-cost devices. In particular, we think that if the
LPN-based line of research is to lead to a practical protocol in the future, then the security of this pro-
tocol will be based on a hardness assumption with some “extra algebraic structure”, such as Ring-LPN
in this work, or LPN with Toeplitz matrices in the work of Gilbert et al. [GRS08a]. More research, how-
ever, needs to be done on understanding these problems and their computational complexity. In terms
of Ring-LPN, it would be particularly interesting to find out whether there exists an equivalence be-
tween the decision and the search versions of the problem similar to the reductions that exist for LPN
[BFKL93,Reg09,KS06a] and Ring-LWE [LPR10].
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A Man-in-the-Middle Attack

In this section, we sketch a man-in-the-middle attack against the protocol in Figure 1 that recovers the
secret key in time approximately O

(
n1.5 · 2λ/2

)
when the adversary is able to insert himself into that

many valid interactions between the reader and the tag. For a ring R = F2[X]/(f) and a polynomial
g ∈ R, define the vector g to be a vector of dimension deg(f) whose ith coordinate is the Xi coefficient
of g. Similarly, for a polynomial h ∈ R, let Rot(h) be a deg(f) × deg(f) matrix whose ith column

(for 0 ≤ i < deg(f)) is
−−−→
h ·Xi, or in other words, the coefficients of the polynomial h · Xi in the

ring R. From this description, one can check that for two polynomials g, h ∈ R, the product
−−→
g · h =

Rot(g) · h mod 2 = Rot(h) · g mod 2.
We now move on to describing the attack. The ith (successful) interaction between a reader R and

a tag T consists of the reader sending the challenge ci, and the tag replying with the pair (ri, zi) where
zi − ri · (s · π(ci) + s′) is a low-weight polynomial of weight at most n · τ ′. The adversary who is
observing this interaction will forward the challenge ci untouched to the tag, but reply to the reader with
the ordered pair (ri, z′i = zi + ei) where ei is a vector that is strategically chosen with the hope that the
vector z′i − ri · (s · π(ci) + s′) is exactly of weight n · τ ′. It’s not hard to see that it’s possible to choose
such a vector ei so that the probability of z′i − ri · (s · π(ci) + s′) being of weight n · τ ′ is approximately
1/
√
n. The response (ri, z′i) will still be valid, and so the reader will accept. By the birthday bound, after

approximately 2λ/2 interactions, there will be a challenge cj that is equal to some previous challenge
ci. In this case, the adversary replies to the reader with (ri, z

′′
i ), where the polynomial z′′i is just the

polynomial z′i whose first bit (i.e. the constant coefficient) is flipped. What the adversary is hoping for is
that the reader accepted the response (ri, z′i) but rejects (ri, z′′i ). Notice that the only way this can happen
is if the first bit of z′i is equal to the first bit of ri · (s · π(ci) + s′), and thus flipping it, increases the error
by 1 and makes the reader reject. We now explain how finding such a pair of responses can be used to
recover the secret key.

Since the polynomial expression z′i − ri · (s · π(ci) + s′) = z′i − ri · π(ci) · s− ri · s′ can be written
as matrix-vector multiplications as

z′
i −Rot(ri · π(ci)) · s−Rot(ri) · s

′ mod 2,

if we let the first bit of z′
i be βi, the first row of Rot(ri · π(ci)) be ai and the first row of Rot(ri) be bi,

then we obtain the linear equation
〈ai, s〉+ 〈bi, s′〉 = βi.

To recover the entire secret s, s′, the adversary needs to repeat the above attack until he obtains 2n
linearly-independent equations (which can be done withO(n) successful attacks), and then use Gaussian
elimination to recover the full secret.
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Abstract. Masking is a widely used countermeasure against side-channel attacks. The principle
is to randomly split every sensitive intermediate variable occurring in the computation into d + 1
shares, where d is called the masking order and plays the role of a security parameter. The main
issue while applying masking to protect a block cipher implementation is to design an efficient
scheme for the s-box computations. Actually, masking schemes with arbitrary order only exist for
Boolean circuits and for the AES s-box. Although any s-box can be represented as a Boolean circuit,
applying such a strategy leads to inefficient implementation in software. The design of an efficient
and generic higher-order masking scheme was hence until now an open problem. In this paper, we
introduce the first masking schemes which can be applied in software to efficiently protect any s-box
at any order. We first describe a general masking method and we introduce a new criterion for an
s-box that relates to the best efficiency achievable with this method. Then we propose concrete
schemes that aim to approach the criterion. Specifically, we give optimal methods for the set of
power functions, and we give efficient heuristics for the general case. As an illustration we apply
the new schemes to the DES and PRESENT s-boxes and we provide implementation results.

1 Introduction

Side-channel analysis is a class of cryptanalytic attacks that exploit the physical environment
of a cryptosystem to recover some leakage about its secrets. It is often more efficient than a
cryptanalysis mounted in the so-called black-box model where no leakage occurs. In particular,
continuous side-channel attacks in which the adversary gets information at each invocation of
the cryptosystem are especially threatening. Common attacks as those exploiting the running-
time [19], the power consumption [20] or the electromagnetic radiations [12] of a cryptographic
computation fall into this class.

Many implementations of block ciphers have been practically broken by continuous side-
channel analysis — see for instance [6,20,22,24] — and securing them has been a longstanding
issue for the embedded systems industry. A sound approach is to use secret sharing [3,32], often
called masking in the context of side-channel attacks. This approach consists in splitting each
sensitive variable of the implementation (i.e. variables depending on the secret key) into d + 1
shares, where d is called the masking order. It has been shown that the complexity of mounting
a successful side-channel attack against a masked implementation increases exponentially with
the masking order [7]. Starting from this observation, the design of efficient masking schemes
for different ciphers has become a foreground issue.

The DES cipher has been the focus of first designs, with the notable work of Goubin
and Patarin in [14]. Further schemes have been subsequently published, in particular for the
AES cipher, applying masking in hardware or software with different area-time-memory trade-
offs [2,4,23,25,28,31]. All these schemes deal with first-order masking, namely the intermediate



variables are split in two shares (a mask and a masked variable). As a result, they only thwart
first order side-channel attacks in which the adversary exploits the leakage of a single interme-
diate computation. During the last years, several works have demonstrated that this defense
strategy was not sufficient for long term security purpose and that higher-order attacks could
be successfully performed against cryptographic implementations (see e.g. [24]). This has raised
the need for secure and efficient higher-order masking schemes.

Higher-Order Masking. The principle of higher-order masking is to split every sensitive
variable x occurring during the computation into d+ 1 shares x0, . . . , xd in such a way that the
following relation is satisfied for a group operation ⊥:

x0 ⊥ x1 ⊥ · · · ⊥ xd = x . (1)

In the rest of the paper, we shall consider that ⊥ is the addition over some field of characteristic
2. Usually, the d shares x1, . . . , xd (called the masks) are randomly picked up and the last one
x0 (called the masked variable) is processed such that it satisfies (1). When d random masks are
involved per sensitive variable the masking is said to be of order d. The tuple (xi)i is further
called a dth-order encoding of x.

When higher-order masking is involved to protect a block cipher implementation, a so-called
masking scheme must be designed to enable the computation on masked data. Such a scheme
must ensure that the final shares correspond to the expected ciphertext on the one hand, and
it must ensure the dth-order security property for the chosen order d on the other hand. The
latter property states that every tuple of d or less intermediate variables is independent of any
sensitive variable. When satisfied, it guarantees that no attack of order lower than or equal to d
is possible.

Most block cipher structures (e.g. AES or DES) are iterative, meaning that they apply several
times a same transformation, called round, to an internal state initially filled with the plaintext.
The round itself is composed of a key addition, one or several linear transformation(s) and one
or several non-linear s-box(es). Key addition and linear transformations are easily handled as
linearity enables to process each share independently. The main difficulty in designing masking
schemes for block ciphers hence lies in masking the s-box(es).

Masking and S-Boxes. Whereas many solutions have been proposed to deal with the case of
first-order masking (see e.g. [2, 4, 23, 27]), only a few solutions exist for the higher-order case.
A scheme has been proposed by Schramm and Paar in [31] which generalizes the (first-order)
table recomputation method described in [2,23]. Although the authors apply their method in the
particular case of an AES implementation, it is generic and can be applied to protect any s-box.
Unfortunately, this scheme has been shown to be vulnerable to a 3rd-order attack whatever the
chosen masking order [8]. In other words, it only provides 2nd-order security. Further schemes
were proposed by Rivain, Dottax and Prouff in [28] with formal security proofs but still limited
to 2nd-order security.

The first scheme achieving dth-order security for an arbitrary chosen d has been designed by
Ishai, Sahai and Wagner in [15]. The here-called ISW scheme consists in masking the Boolean
representation of an algorithm which is composed of logical operations NOT and AND. Securing
a NOT for any order d is straightforward since x =

⊕
i xi implies NOT(x) = NOT(x0)⊕x1 · · ·⊕

xd. The main contribution of [15] is a method to secure the AND operation for any arbitrary
order d (the description of this scheme is recalled in Section 2.1). Although the ISW scheme
is an important theoretical result, its practical application faces some issues. At the hardware
level, the obtained circuits may have prohibitive area requirements, especially for being used
in embedded systems (privileged targets of side-channel attacks). Moreover, Mangard et al.



have shown in [21, 22] that masking at the hardware level is sensitive to glitches which induce
unpredicted flaws in masked circuits. Preventing glitches can be done thanks to synchronization
elements (e.g. registers or latches) [26] or by performing additional sharing [25] but in both
cases, the circuit size is still significantly increased. On the other hand, a direct application of
the ISW scheme to secure an s-box computation in software would consist in taking the Boolean
representation of the s-box and in processing every logical operation successively in a masked
way. Since the Boolean representation of common s-boxes involves a huge number of logical
operations, the resulting implementation would likely be inefficient.

In the particular case of AES, a solution has been proposed by Rivain and Prouff in [29]
to efficiently mask the s-box processing at any order. Specifically, the authors use the algebraic
structure of the AES s-box, which is the composition of an affine function over F8

2 with the
power function x 7→ x254 over F256, and they show that it can be expressed as a sequence of
operations involving a few linear functions over F8

2 (easy to mask) and four multiplications over
F256. The latter are secured by applying the ISW scheme (generalized to F256). Subsequently,
Kim, Hong and Lim have presented in [16] an extension of Rivain and Prouff’s scheme, which is
based on the tower-field approach from [30]. On the other hand, Genelle, Prouff and Quisquater
have proposed in [13] a higher-order scheme based on the alternate use of Boolean masking and
multiplicative masking. Although schemes in [16] and [13] achieve better performances than [29],
they are still restricted to the AES s-box and their generalization to any s-box (or subclasses)
is an open issue.

Our Contribution. The present paper introduces the first higher-order masking scheme which
can be applied to efficiently protect any s-box processing in software. We first give a general
method that extends the Rivain and Prouff approach to mask any s-box and we introduce a
new criterion for an s-box that relates to the best efficiency achievable with our method. Then
we give concrete schemes that aim to approach the so-called masking complexity. Specifically,
we give optimal methods for the set of power functions, and we give efficient heuristics for the
general case. As an illustration we apply our scheme to the DES and PRESENT s-boxes and we
provide implementation results.

2 Higher-Order Masking of any S-Box

In this section, we describe a general method to mask any s-box and we introduce a related
masking complexity criterion.

2.1 General Method

An s-box is a function from {0, 1}n to {0, 1}m with m ≤ n and n small (typically n ∈ {4, 6, 8}).
We shall use the terminology of (n,m) s-box when the dimensions need to be specified. To design
a higher-order masking scheme for such a function, our approach is to express it as a sequence
of affine functions over Fn2 , and multiplications over F2n . Such a strategy is always possible since
any (n,m) s-box can be represented by a polynomial function x 7→

∑2n−1
i=0 aix

i over F2n where
the ai are constant coefficients in F2n . The ai can be obtained from the s-box look-up table by
applying Lagrange’s Interpolation Theorem. When m is strictly lower than n, the m-bit outputs
can be embedded into F2n by padding them to n-bit outputs (e.g. by setting most significant
bits to 0). The padding is then removed after the polynomial evaluation. We recall hereafter the
Lagrange Interpolation Theorem applied to our context.



Theorem 1 (Lagrange Interpolation). Let S be a function F2n → F2n. Then, for every
x ∈ F2n, we have:

S(x) =
∑
α∈F2n

S(α)`α(x) , (2)

where, for every α ∈ F2n, `α is defined as:

`α(x) =
∏
β∈F2n
β 6=α

x− β
α− β

. (3)

Remark 1. The `α are called the Lagrange basis polynomials and satisfy `α(x) = 1 if x = α and
`α(x) = 0 otherwise. In particular, every `α is a monic polynomial of degree 2n− 1, and we have
`α(x) = (x + α)2

n−1 + 1. Moreover, the coefficients of S(x) can be directly computed from the
Mattson-Solomon polynomial by:

ai =


S(0) if i = 0∑2n−2

k=0 S(αk)α−ki if 1 ≤ i ≤ 2n − 2

S(1) +
∑2n−2

i=0 ai if i = 2n − 1

for every primitive element α of F2n .

The polynomial representation of an s-box is based on four kinds of operations over F2n :
additions, scalar multiplications (i.e. multiplications by constants), squares, and regular multi-
plications (i.e. of two different variables). Except for the latter, all these operations are Fn2 -linear
(or Fn2 -affine), that is the corresponding function over Fn2 are linear (resp. affine). The processing
of any s-box can then be performed as a sequence of Fn2 -affine functions (themselves composed
of additions, squares and scalar multiplications over F2n) and of regular multiplications over
F2n , called nonlinear multiplications in the following. Masking an s-box processing can hence
be done by masking every affine function and every nonlinear multiplication independently. We
recall hereafter how this can be done for each category.

Masking of Fn2 -affine functions. Let x =
∑

i xi be a shared variable. Every affine function g with
additive part cg satisfies:

g(x) =

{∑d
i=0 g(xi) if d is even,

cg +
∑d

i=0 g(xi) if d is odd.

The masked processing of g then simply consists in evaluating g for every share xi, and possibly
correcting one of them by addition of cg. Such a processing clearly achieves dth-order security
as the shares are all processed independently.

Masking of nonlinear multiplications. Every nonlinear multiplication can be processed by using
the ISW scheme. Let a, b ∈ F2n and let (ai)0≤i≤d and (bi)0≤i≤d be dth-order encoding of a and
b. To securely compute a dth-order encoding (ci)0≤i≤d of c = ab, the ISW method over F2n

performs as follows:5

1. For every 0 ≤ i < j ≤ d, pick up a random value ri,j in F2n .
2. For every 0 ≤ i < j ≤ d, compute rj,i = (ri,j + aibj) + ajbi.
3. For every 0 ≤ i ≤ d, compute ci = aibi +

∑
j 6=i ri,j .

5 The use of brackets indicates the order in which the operations are performed, which is mandatory for the
security of the scheme.



It can be checked that the obtained shares are a sound encoding of c. Namely, we have:

d∑
i=0

ci =
( d∑
i=0

ai
)( d∑

i=0

bi
)

= ab = c.

In [15] it is shown that the above computation achieves (d/2)th-order security. A tighter security
proof is given in [29] which shows that dth-order security is actually achieved as long as the
masks of the two inputs are independent. Therefore, we shall refresh the masks before a masked
multiplication when necessary. This can be done using a refreshing procedure as proposed in [29]
(see Algorithm 2 in appendix).

Remark 2. Another method to process a masked multiplication at an arbitrary order is used
in [10] to achieve provable security under specific leakage assumptions. However this method
requires more operations and more random bits than the ISW scheme does. For this reason, the
ISW scheme should be preferred in a usual dth-order security model.

2.2 Masking Complexity

The scheme described in the previous section secures the computation of any (n,m) s-box S
by masking its polynomial representation over F2n . The evaluation of such a polynomial is
composed of Fn2 -affine functions g and of nonlinear multiplications. The masked processing of
each Fn2 -affine function g merely involves d+ 1 evaluations of g itself, while it involves (d+ 1)2

field multiplications, 2d(d + 1) field additions and the generation of nd(d + 1)/2 random bits
for each nonlinear multiplication. The masked processing of Fn2 -affine functions hence quickly
becomes negligible compared to the masked processing of nonlinear multiplications as d grows.
This observation motivates the following definition of the masking complexity for an s-box.

Definition 1 (Masking Complexity). Let m and n be two integers such that m ≤ n. The
masking complexity of a (n,m) s-box is the minimal number of nonlinear multiplications required
to evaluate its polynomial representation over F2n.

The following proposition directly results from this definition.

Proposition 1. The masking complexity of an s-box is invariant when composed with Fn2 -affine
bijections in input and/or in output.

Remark 3. Since field isomorphisms are F2-linear bijections, the choice of the irreducible poly-
nomial to represent field elements does not impact the masking complexity of an s-box.

In the next sections, we address the issue of finding polynomial evaluations of an s-box that
aim at minimizing the number of nonlinear multiplications. Those constructions will enable us
to deduce upper bounds on the masking complexity of an s-box. We first study the case of
power functions whose polynomial representation has a single monomial (e.g. the AES s-box).
For these functions, we exhibit the exact masking complexity by deriving addition chains with
minimal number of nonlinear multiplications. We then address the general case and provide
efficient heuristics to evaluate any s-box with a low number of nonlinear multiplications.

3 Optimal Masking of Power Functions

In this section, we consider s-boxes for which the polynomial representation over F2n is a single
monomial. These s-boxes are usually called power functions in the literature. We describe a
generic method to compute the masking complexity of such s-boxes. Our method involves the
notion of cyclotomic class.



Definition 2. Let α ∈ [0; 2n − 2]. The cyclotomic class of α is the set Cα defined by:

Cα = {α · 2i mod 2n − 1; i ∈ [0;n− 1]}.

We have the following proposition.

Proposition 2. Let µ(m) denote the multiplicative order of 2 modulo m and let ϕ denote the
Euler’s totient function. For every divisor δ of 2n− 1, the number of distinct cyclotomic classes
Cα ⊆ [0; 2n− 2] with gcd(α, 2n− 1) = δ is ϕ

(
2n−1
δ

)
/µ
(
2n−1
δ

)
. It follows that the total number of

distinct cyclotomic classes of [0; 2n − 2] equals:∑
δ|(2n−1)

ϕ(δ)

µ(δ)
.

Proof. Proposition 2 can be deduced from the following facts:

– An integer α ∈ [0; 2n−2] satisfies gcd(α, 2n−1) = δ if and only if α = δβ, with gcd(β, 2
n−1
δ ) =

1. There are thus ϕ
(
2n−1
δ

)
integers α ∈ [0; 2n − 2] such that gcd(α, 2n − 1) = δ.

– For any α such that gcd(α, 2n − 1) = δ (hence of the form α = δβ with gcd(β, 2
n−1
δ ) = 1),

we have α · 2i ≡ α · 2j mod 2n − 1 if and only if β · 2i ≡ β · 2j mod 2n−1
δ , that is, if and only

if 2i ≡ 2j mod 2n−1
δ . Hence Cα has cardinality #Cα = µ

(
2n−1
δ

)
.

The set of integers α ∈ [0; 2n − 2] such that gcd(α, 2n − 1) = δ is partitioned into cyclotomic
classes, each of them having cardinality µ

(
2n−1
δ

)
. Hence the number of such cyclotomic classes

is ϕ
(
2n−1
δ

)
/µ
(
2n−1
δ

)
. It follows that the total number of distinct cyclotomic classes of [0; 2n− 2]

equals
∑

δ|(2n−1) ϕ
(
2n−1
δ

)
/µ
(
2n−1
δ

)
=
∑

δ|(2n−1) ϕ(δ)/µ(δ).
�

The study of cyclotomic classes is interesting in our context since a power xα can be computed
from a power xβ without any nonlinear multiplication if and only if α and β lie in the same
cyclotomic class. Hence, all the power functions with exponents within a given cyclotomic class
have the same masking complexity and computing the masking complexity for all the power
functions over F2n thus amounts to compute this complexity for each cyclotomic class over F2n .
In what follows, we perform such a computation for fields F2n of small dimensions n.

To compute the masking complexity for an element in a cyclotomic class, we use the following
observation: determining the masking complexity of a power function x 7→ xα amounts to find
the addition chain for α with the least number of additions which are not doublings (see [17] for
an introduction to addition chains). This kind of addition chain is usually called a 2-addition
chain.6 Let (αi)i denote some addition chain. At step i, it is possible to obtain any element
within the cyclotomic classes (Cαj )j≤i using doublings only. As we are interested in finding the
addition chain with the least number of additions which are not doublings, the problem we need
to solve is the following: given some α ∈ Cα, find the shortest chain Cα0 → Cα1 → · · · → Cαk
where Cα0 = C1, Cαk = Cα and for every i ∈ [1; k], there exists j, ` < i such that αi = α′j + α′`
where α′j ∈ Cαj and α′` ∈ Cα` .

We shall denote byMn
k the class of exponents α such that x 7→ xα has a masking complexity

equal to k. The family of classes (Mn
k)k is a partition of [0; 2n− 2] and eachMn

k is the union of
one or several cyclotomic classes. For a small dimension n, we can proceed by exhaustive search

6 This problem has been studied in the general setting where the multiplication by q (and not specifically by
2) is considered free and the obtained addition chains are called q-addition chains [33]. The purpose is to find
efficient exponentiation methods in Fq (as in such field the Frobenius map x 7→ xq is efficient). To the best
of our knowledge, apart from a specific application to the SFLASH signature algorithm in [1], the case of
2-addition chains has not been particularly investigated.



to determine the shortest 2-addition chain(s) for each cyclotomic class. We implemented such
an exhaustive search from which we obtained the masking complexity classes Mn

k for n ≤ 11
(note that in practice most s-boxes have dimension n ≤ 8). Table 1 summarizes the obtained
results for n ∈ {4, 6, 8} (usual dimensions). Results for other dimensions are summarized in
Appendix A. Additionally, Table 2 gives the optimal 2-addition chains (in exponential notation)
corresponding to every cyclotomic class for n = 8.

Table 1. Cyclotomic classes for n ∈ {4, 6, 8} w.r.t. the masking complexity k.

k Cyclotomic classes in Mn
k

n = 4

0 C0 = {0}, C1 = {1, 2, 4, 8}
1 C3 = {3, 6, 12, 9}, C5 = {5, 10}
2 C7 = {7, 14, 13, 11}

n = 6

0 C0 = {0}, C1 = {1, 2, 4, 8, 16, 32}
1 C3 = {3, 6, 12, 24, 48, 33}, C5 = {5, 10, 20, 40, 17, 34}, C9 = {9, 18, 36}
2 C7 = {7, 14, 28, 56, 49, 35}, C11 = {11, 22, 44, 25, 50, 37},

C13 = {13, 26, 52, 41, 19, 38}, C15 = {15, 30, 29, 27, 23},
C21 = {21, 42}, C27 = {27, 54, 45}

3 C23 = {23, 46, 29, 58, 53, 43}, C31 = {31, 62, 61, 59, 55, 47}
n = 8

0 C0 = {0}, C1 = {1, 2, 4, 8, 16, 32, 64, 128}
1 C3 = {3, 6, 12, 24, 48, 96, 192, 129}, C5 = {5, 10, 20, 40, 80, 160, 65, 130},

C9 = {9, 18, 36, 72, 144, 33, 66, 132}, C17 = {17, 34, 68, 136}
2 C7 = {7, 14, 28, 56, 112, 224, 193, 131}, C11 = {11, 22, 44, 88, 176, 97, 194, 133},

C13 = {13, 26, 52, 104, 208, 161, 67, 134}, C15 = {15, 30, 60, 120, 240, 225, 195, 135},
C19 = {19, 38, 76, 152, 49, 98, 196, 137}, C21 = {21, 42, 84, 168, 81, 162, 69, 138},

C25 = {25, 50, 100, 200, 145, 35, 70, 140}, C27 = {27, 54, 108, 216, 177, 99, 198, 141},
C37 = {37, 74, 148, 41, 82, 164, 73, 146}, C45 = {45, 90, 180, 105, 210, 165, 75, 150},

C51 = {51, 102, 204, 153}, C85 = {85, 170}
3 C23 = {23, 46, 92, 184, 113, 226, 197, 139}, C29 = {29, 58, 116, 232, 209, 163, 71, 142},

C31 = {31, 62, 124, 248, 241, 227, 199, 143}, C39 = {39, 78, 156, 57, 114, 228, 201, 147},
C43 = {43, 86, 172, 89, 178, 101, 202, 149}, C47 = {47, 94, 188, 121, 242, 229, 203, 151},
C53 = {53, 106, 212, 169, 83, 166, 77, 154}, C55 = {55, 110, 220, 185, 115, 230, 205, 155},
C59 = {59, 118, 236, 217, 179, 103, 206, 157}, C61 = {61, 122, 244, 233, 211, 167, 79, 158},
C63 = {63, 126, 252, 249, 243, 231, 207, 159}, C87 = {87, 174, 93, 186, 117, 234, 213, 171},
C91 = {91, 182, 109, 218, 181, 107, 214, 173}, C95 = {95, 190, 125, 250, 245, 235, 215, 175},

C111 = {111, 222, 189, 123, 246, 237, 219, 183}, C119 = {119, 238, 221, 187}
4 C127 = {127, 254, 253, 251, 247, 239, 223, 191}

It is interesting to note that for every n, the inverse function x 7→ x2
n−2 related to the

cyclotomic class C2n−1−1 always has the highest masking complexity. In particular, the inverse
function x 7→ x254 (for n = 8) used in the AES has a masking complexity of 4 as it was
conjectured in [29].

4 Efficient Heuristics for General S-Boxes

We now address the general case of an s-box having a polynomial representation
∑2n−1

j=0 ajx
j over

F2n . A straightforward solution is to successively compute every power xj using xj = (xj/2)2

if j is even and xj = xj−1x if j is odd, while updating the polynomial value by adding the
monomial ajx

j at every step. Such a method requires 2n−1 − 1 nonlinear multiplications. As



Table 2. Optimal 2-addition chains (in exponential notation) for cyclotomic classes for n = 8.

k 2-addition chains with k nonlinear multiplications

1 x3 ← x× x2 – x5 ← x× x4

x9 ← x× x8 – x17 ← x× x16

x7 ← x× x2 × x4 – x11 ← x× x2 × x8

x13 ← x× x4 × x8 – x15 ← x3 × (x3)4

2 x19 ← x× x2 × x16 – x21 ← x× x4 × x16

x27 ← x3 × (x3)8 – x37 ← x× x4 × x32

x45 ← x5 × (x5)8 – x51 ← x3 × (x3)16

x85 ← x5 × (x5)16

x23 ← x× x2 × x4 × x16 – x29 ← x× x4 × x8 × x16

x31 ← x3 × (x3)4 × x16 – x29 ← x× x2 × x4 × x32

x43 ← x× x2 × x8 × x32 – x47 ← x3 × (x3)4 × x32

3 x53 ← x× x2 × x16 × x32 – x55 ← x3 × x4 × (x3)16

x59 ← x3 × (x3)8 × x32 – x59 ← x5 × x16 × (x5)8

x63 ← x7 × (x7)8 – x87 ← x2 × x5 × (x5)16

x91 ← x3 × (x3)8 × x64 – x95 ← x5 × (x5)2 × (x5)16

x111 ← x3 × (x3)4 × (x3)32 – x63 ← x7 × (x7)16

4 x127 ← x3 × (x3)4 × (x3)16 × x64

we show hereafter, less naive methods exist that substantially lower the number of nonlinear
multiplications. We propose two different methods and then compare their efficiency.

4.1 Cyclotomic Method

Let q denote the number of distinct cyclotomic classes of [0; 2n − 2]. The polynomial represen-
tation of S can be written as:

S(x) = a0 +
( q∑
i=1

Qi(x)
)

+ a2n−1 x
2n−1 ,

where the Qi are polynomials such that every Qi has powers from a single cyclotomic class
Cαi , namely we can write Qi(x) =

∑
j ai,jx

αi2
j

for some coefficients ai,j in F2n . Let us then

denote Li the linearized polynomial Li(x) =
∑

j ai,jx
2j which is a Fn2 -linear function of x.

We have Qi(x) = Li(x
αi) by definition. The cyclotomic method simply consists in deriving

the powers xαi for each cyclotomic class Cαi as well as x2
n−1 if a2n−1 6= 0, and in evaluating

S(x) = a0 +
(∑q

i=1 Li(x
αi)
)

+ a2n−1 x
2n−1. The powers xαi can each be derived with a single

nonlinear multiplication. This is obvious for the αi lying inMn
1 . Then it is clear that every power

xαi with αi ∈Mn
k+1 can be derived with a single multiplication from the powers (xαi)αi∈Mn

k
. The

power x2
n−1 can then be derived with a single nonlinear multiplication from the power x2

n−2.
The cyclotomic method hence involves a number of nonlinear multiplications equal to the number
of cyclotomic classes, minus 2 (as x0 and x1 are obtained without nonlinear multiplication), plus
1 (to derive x2

n−1). By Proposition 2, we then have the following result.

Proposition 3 (Cyclotomic Method). Let m and n be two positive integers such that m ≤ n.
The masking complexity of every (n,m) s-box is upper-bounded by:∑

δ|(2n−1)

ϕ(δ)

µ(δ)
− 1 .



An (n,m) s-box S is said to be balanced if for every y ∈ {0, 1}m, the number of preimages of
y for S is constant to 2n−m. The following lemma gives a well-known folklore result.

Lemma 1. Let m and n be two positive integers such that m ≤ n. The polynomial representation
of every balanced (n,m) s-box has degree strictly lower than 2n − 1.

Proof. Since Lagrange basis polynomials are all monic of degree 2n − 1, the coefficient a of the
power to the 2n − 1 in the polynomial representation of S satisfies a =

∑
α∈F2n

S(α), which
equals 0 if S is balanced. �

When the polynomial representation of the s-box has degree strictly lower than 2n − 1, the
cyclotomic method saves one nonlinear multiplication since the power x2

n−1 is not required.
Namely, we have the following corollary of Proposition 3.

Corollary 1 (Cyclotomic Method). Let m and n be two positive integers such that m ≤ n
and let S be a (n,m) s-box. If S is balanced, then the masking complexity of S is upper-bounded
by: ∑

δ|(2n−1)

ϕ(δ)

µ(δ)
− 2 .

4.2 Parity-Split Method

The parity-split method is composed of two stages. The first stage derives a set of powers (xj)j≤q
for some q using the straightforward method described in the introduction of this section. The
second stage essentially consists in an application of the Knuth-Eve polynomial evaluation al-
gorithm [9,18] which is based on a recursive use of the following lemma.

Lemma 2. Let n and t be two positive integers and let Q be a polynomial of degree t over F2n [x].
There exist two polynomials Q1 and Q2 of degree upper-bounded by bt/2c over F2n [x] such that:

Q(x) = Q1(x
2) +Q2(x

2)x . (4)

By applying Lemma 2 to the polynomial representation of S, we get S(x) = Q1(x
2)+Q2(x

2)x,
where Q1 and Q2 are two polynomials of degrees upper-bounded by 2n−1 − 1. We deduce that
S can be computed based on the set of powers (x2j)j≤2n−1−1 plus a single multiplication by x.
Then, applying Lemma 2 again to the polynomials Q1 and Q2 both of degrees upper bounded
by 2n−1− 1, we get two new pairs of polynomials (Q11, Q12) and (Q21, Q22) such that Q1(x

2) =
Q11(x

4) + Q12(x
4)x2 and Q2(x

2) = Q21(x
4) + Q22(x

4)x2. The degrees of the new polynomials
are upper bounded by 2n−2 − 1. We then deduce that S can be computed based on the set
of powers (x4j)j≤2n−2−1 plus 1 multiplication by x and 2 multiplications by x2. Eventually, by

applying Lemma 2 recursively r times, we get an evaluation of S involving evaluations in x2
r

of polynomials of degrees upper-bounded by 2n−r − 1, plus
∑r−1

i=0 2i = 2r − 1 multiplications

by powers of x of the form x2
i

with i ≤ r − 1. The overall evaluation of S hence requires
2r − 1 nonlinear multiplications (the x2

i
being obtained with squares only) plus the evaluation

in x2
r

of polynomials of degrees upper-bounded by 2n−r − 1. The latter evaluation can be
performed by first deriving all the powers (x2

rj)j≤2n−r−1 and then evaluating the polynomials
(which only involves scalar multiplications and additions once the powers have been derived).
For every j ≤ 2n−r − 1, the powers (x2

rj)j≤2n−r−1 can be computed successively from y = x2
r

by yj = (yj/2)2 if j is even and yj = yj−1x if j is odd. This takes some squares plus 2n−r−1 − 1
nonlinear multiplications (i.e. one per odd integer in [3, 2n−r − 1]).

We then deduce the following proposition.



Proposition 4. Let m and n be two positive integers such that m ≤ n. The masking complexity
of every (n,m) s-box is upper-bounded by:

min
0≤r≤n

(2n−r−1 + 2r)− 2 =

{
3 · 2(n/2)−1 − 2 if n is even,

2(n+1)/2 − 2 if n is odd.
(5)

Note that the value of r for which the minimum is reached in (5) is r = bn2 c.

4.3 Comparison

Table 3 summarizes the number of nonlinear multiplications obtained by the cyclotomic method
(for balanced s-boxes) and by the parity-split method. We see that the cyclotomic method works
better for small dimensions (n ≤ 5) and the parity-split method for higher dimensions (n ≥ 6).
Furthermore, the superiority of the parity-split method becomes significant as n grows.

Table 3. Number of nonlinear multiplications w.r.t. the evaluation method.

Method \ n 3 4 5 6 7 8 9 10 11

Cyclotomic 1 3 5 11 17 33 53 105 192

Parity-Split 2 4 6 10 14 22 30 46 62

We emphasize that these bounds may not be optimal, namely they may be higher than the
maximum masking complexity of (n,m) s-boxes. We let open the issue of finding more efficient
(or provably optimal) methods in the general case for further research.

5 Application to DES and PRESENT

In this section we apply the proposed methods to the s-boxes of two different block ciphers:
the well-known and still widely used Data Encryption Standard (DES) [11], and the lightweight
block cipher PRESENT [5]. The former uses eight different (6, 4) s-boxes and the latter uses a
single (4, 4) s-box. According to Table 3, we shall prefer the parity-split method for the DES
s-boxes (10 nonlinear multiplications), and the cyclotomic method for the PRESENT s-box (3
nonlinear multiplications).

5.1 Parity-Split Method on DES S-boxes

The parity-split method on a DES s-box uses a polynomial representation of the s-box over F64

which satisfies:

S : x 7−→ Q0(x
8) +Q1(x

8) · x4 +
(
Q2(x

8) +Q3(x
8) · x4

)
· x2

+
(
Q4(x

8) +Q5(x
8) · x4 +

(
Q6(x

8) +Q7(x
8) · x4

)
· x2
)
· x (6)

where the Qi are degree-7 polynomials, namely, there exist coefficients ai,j for 0 ≤ i, j ≤ 7 such
that:

Qi(x
8) = ai,0 + ai,1x

8 + ai,2x
16 + ai,3x

24 + ai,4x
32 + ai,5x

40 + ai,6x
48 + ai,7x

56 .

We first derive the powers x8j for j = 1, 2, . . . , 7, which is done at the cost of 3 nonlinear
multiplications by:

x8 ← ((x2)2)2; x16 ← (x8)2; x24 ← x8 · x16; x32 ← (x16)2;

x40 ← x8 · x32; x48 ← (x24)2; x56 ← x8 · x48;



Then we evaluate each polynomial Qi(x
8) as a linear combination of the above powers. Finally,

we evaluate (6) at the cost of 7 nonlinear multiplications and a few additions. The nonlinear
multiplications are computed using the ISW scheme over F64 such as recalled in Section 2.1. A
detailed algorithm for the overall masked s-box evaluation is given in Appendix B. Moreover
the log/alog tables for the multiplication over F64 and for the ai,j coefficients for the first DES
s-box are given in Appendix C.

5.2 Cyclotomic Method on PRESENT S-box

The cyclotomic method on the PRESENT s-box starts from the straightforward polynomial
representation of the s-box over F16:

S : x 7−→ a0 + a1x+ a2x
2 + · · ·+ a14x

14 ,

(where the degree is indeed strictly lower than 15 by Lemma 1). We then have:

S(x) = a0 + L1(x) + L3(x
3) + L5(x

5) + L7(x
7) . (7)

where:

L1 : x 7→ a1x+ a2x
2 + a4x

4 + a8x
8

L3 : x 7→ a3x+ a6x
2 + a12x

4 + a9x
8

L5 : x 7→ a5x+ a10x
2

L7 : x 7→ a7x+ a14x
2 + a13x

4 + a11x
8

and the Li are F4
2-linear.

We first derive the powers x3, x5, and x7, which is done at the cost of 3 nonlinear multipli-
cations by: x3 ← x ·x2; x5 ← x3 ·x2; x7 ← x5 ·x2. Then we evaluate (7) which costs a few linear
transformations and additions. A detailed algorithm for the overall masked s-box evaluation is
given in Appendix B. Moreover the look-up tables for the multiplication over F16 and for the Li
transformations are given in Appendix C.

5.3 Implementation Results

In this section, we give implementation results for our scheme applied to DES and PRESENT
s-boxes. For comparison, we also give performances of some higher-order masking schemes for
the AES s-box, as well as performances of existing schemes for DES and PRESENT s-boxes at
orders 1 and 2. For the AES s-box processing, we implemented Rivain and Prouff’s method [29]
and its improvement by Kim et al. [16]. We did not implement Genelle et al. ’s scheme [13] since
it addresses the masking of an overall AES and is not interesting while focusing on a single s-box
processing. Regarding existing schemes for DES and PRESENT s-boxes, we implemented the
generic methods proposed in [27] (for d = 1) and in [28] (for d = 2). We also implemented the
improvement of these schemes described in [28, §3.3] that consists in treating two 4-bit outputs
at the same time.7 Note that we did not implement the table re-computation method (for d = 1)
since it only makes sense for an overall cipher and not for a single s-box processing.

Table 4 lists the timing/memory performances of the different implementations. We wrote the
codes in assembly language for an 8051 based 8-bit architecture with bit-addressable memory.
ROM consumptions (i.e. code sizes) are not listed since they are not prohibitive.

7 This improvement is only described in [28] for d = 2 but it can be applied likewise to the 1st-order scheme
of [27].



Table 4. Comparison of secure s-box implementations

Method Reference cycles RAM (bytes)

First Order Masking

1. AES s-box [29] 533 10
2. AES s-box [16] 320 14
3. DES s-box Simple version [27] 1096 2
4. DES s-box Improved version [27] & [28] 439 14
5. DES s-box this paper 4100 50
6. PRESENT s-box Simple Version [27] 281 2
7. PRESENT s-box Improved Version [27] & [28] 231 14
4. PRESENT s-box this paper 220 18

Second Order Masking

1. AES s-box [29] 832 18
2. AES s-box [16] 594 24
3. DES s-box Simple version [28] 1045 69
4. DES s-box Improved version [28] 652 39
5. DES s-box this paper 7000 78
6. PRESENT s-box Simple Version [28] 277 21
7. PRESENT s-box Improved Version [28] 284 15
8. PRESENT s-box this paper 400 31

Third Order Masking

1. AES s-box [29] 1905 28
2. AES s-box [16] 965 38
3. DES s-box this paper 10500 108
4. PRESENT s-box this paper 630 44

As expected, the cyclotomic method is very efficient when applied to protect the PRESENT
s-box. The small input dimension of the s-box indeed implies a low masking complexity (equal to
3). Moreover, it enables to tabulate the multiplication over F16. At first order, it is even slightly
better than the method in [27] (or its improvement). At second order, the cost of the secure
multiplications involved in the cyclotomic method is approximatively doubled, which explains
that the overall cost is multiplied by 1.8. This makes it less efficient than [27] and [28], which are
less impacted by the increase of the masking order from 1 to 2. At third order, our method is
the only one. The number of cycles staying small (630), Table 4 shows that achieving resistance
against 3rd-order side-channel analysis is realistic for an implementation of PRESENT on a
8051 architecture. For DES s-boxes, the parity-split method is less efficient than the state-of-the
art methods for d = 1, 2. This is an expected consequence of the high number of nonlinear
multiplications (here 10) achieved with the parity-split method in dimension 6 and of the fact
that the field multiplications can no longer be tabulated (and must therefore be computed thanks
to log/alog look-up tables). At third order, the timing efficiency of the method becomes very
low. The masked s-box processing is 5 (resp. 10) times slower than the efficiency of the AES
s-box protected thanks to [16] (resp. [29]), though its input dimension is smaller.

The ranking of the timing efficiencies for AES, DES and PRESENT s-boxes is correlated
to the number of nonlinear multiplications in the used scheme (3, 4-5, and 10, for PRESENT,
AES and DES respectively) which underline the soundness of the masking complexity criterion.
Therefore, while selecting an s-box for a block cipher design, one should favor an s-box with
small masking complexity if side-channel attacks are taken into account.



6 Discussion

In previous sections we have introduced the first schemes that can be used to mask any s-
box at any order with fair performances in software. In particular, these schemes enable to
apply higher-order masking on random s-boxes (e.g. the DES s-boxes) which have no specific
mathematical structure. Prior to our work, the only existing methods were the circuit-oriented
proposals of Ishai et al. [15] and of Faust et al. [10]. The main purpose of these works was a
proof of concept for applying higher-order masking to circuits with formal security proofs, but
they did not address efficient implementation. A direct application of [15] or [10] to a block
cipher consists in taking its Boolean representation and in replacing every XOR and AND with
O(d) and O(d2) logical operations respectively (where d is the masking order). Applying such a
strategy in software leads to inefficient implementation as the Boolean representation of an s-box
includes a huge number of nonlinear gates (with a O(d2) factor to be protected). Compared to
these techniques, our schemes achieve significant improvements. These are obtained by starting
from the field representation of the s-box and applying methods to significantly reduce the
number of nonlinear multiplications compared to the Boolean representation of the s-box. For
instance, we have shown that a DES s-box can be computed with 10 nonlinear multiplications
whereas its Boolean representation involves several dozens of logical AND operations.

We believe that our work opens up new avenues for research in block cipher implementa-
tions and side-channel security. In particular, the issue of designing s-boxes with low masking
complexity and good cryptographic criteria is still to be investigated. On the other hand, our
work could be extended to take into account more general definitions of the masking complexity.
Indeed Definition 1 is software oriented and hence does not encompass the hardware case. As
discussed above, the complexity of masking in hardware merely depends on the number of non-
linear gates [10, 15], that is on the number of nonlinear multiplications in the (n-variate) s-box
representation over F2, the so-called algebraic normal form. One may also want to minimize the
number of nonlinear multiplications in the (`-variate) s-box representation over F2k for some k
(and ` = dn/ke). This approach has actually already been followed in [16], where Kim et al.
speeds up the scheme in [29] by using the fact that the AES s-box can be processed with 5
nonlinear multiplications over F16 rather than 4 nonlinear multiplications over F256. Although
requiring an additional nonlinear multiplication, the resulting implementation is faster since
multiplications over F16 can be tabulated while multiplications over F256 are computed based
on the slower log/alog approach. These observations motivate the following — more general —
definition of the masking complexity.

Definition 3 (Masking Complexity). Let m, n and k be three integers such that m, k ≤
n. The masking complexity of a (n,m) s-box over F2k is the minimal number of nonlinear
multiplications required to evaluate its polynomial representation over F2k .

Here again, the masking complexity is independent of the representation of F2k since one
can go from one representation to another without any nonlinear multiplication. The issue of
finding efficient methods with respect to the masking complexity over a smaller field F2k is left
open for further researches.

7 Conclusion

In this paper we have introduced new generic higher-order masking schemes for s-boxes with effi-
cient software implementation. Specifically, we have extended the Rivain and Prouff’s approach
for the AES s-box to any s-box. The method consists in masking the polynomial representation
of the s-box over F2n where n is the input dimension. As argued, the complexity of this method



mainly depends on the number of nonlinear multiplications involved in the polynomial repre-
sentation (i.e. multiplications which are not squares nor scalar multiplications). We have then
introduced the masking complexity parameter for an s-box as the minimal number of nonlinear
multiplications required for its evaluation. We have provided the exact values of this parameter
for the set of power functions and upper bounds for all s-boxes. Namely, we have presented
optimal methods to mask power functions and efficient heuristics for the general case. Even-
tually we have applied our schemes to the DES s-boxes and to the PRESENT s-box and we
have provided implementation results. Our work stresses interesting open issues for further re-
search. Among them the design of s-boxes taking into account the masking complexity criterion
and the extension of our approach to masking over F2k with k < n (e.g. for efficient hardware
implementations) are of particular interest.
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editors, Cryptographic Hardware and Embedded Systems – CHES 2000, volume 1965 of Lecture Notes in
Computer Science, pages 238–251. Springer, 2000.
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A Masking Complexity of Power Functions

Table 5 summarizes the masking complexity classes (Mn
k)k for dimensions n in the set {3, 5, 7, 9, 10, 11}.



Table 5. Cyclotomic classes for n ∈ {3, 5, 7, 9, 10, 11} w.r.t. the masking complexity k.

k Cyclotomic classes in Mn
k

n = 3

0 C0 = {0}, C1 = {1, 2, 4}
1 C3 = {3, 6, 5}

n = 5

0 C0 = {0}, C1 = {1, 2, 4, 8, 16}
1 C3 = {3, 6, 12, 24, 17}, C5 = {5, 10, 20, 9, 18}
2 C7 = {7, 14, 28, 25, 19}, C11 = {11, 22, 13, 26, 21}, C15 = {15, 30, 29, 27, 23}

n = 7

0 C0 = {0}, C1 = {1, 2, 4, 8, 16, 32, 64}
1 C3 = {3, 6, 12, 24, 48, 96, 65}, C5 = {5, 10, 20, 40, 80, 33, 66},

C9 = {9, 18, 36, 72, 17, 34, 68}
2 C7 = {7, 14, 28, 56, 112, 97, 67}, C11 = {11, 22, 44, 88, 49, 98, 69},

C13 = {13, 26, 52, 104, 81, 35, 70}, C15 = {15, 30, 60, 120, 113, 99, 71},
C19 = {19, 38, 76, 25, 50, 100, 73}, C21 = {21, 42, 84, 41, 82, 37, 74},
C27 = {27, 54, 108, 89, 51, 102, 77}, C43 = {43, 86, 45, 90, 53, 106, 85}

3 C23 = {23, 46, 92, 57, 114, 101, 75}, C29 = {29, 58, 116, 105, 83, 39, 78},
C31 = {31, 62, 124, 121, 115, 103, 79}, C47 = {47, 94, 61, 122, 117, 107, 87},
C55 = {55, 110, 93, 59, 118, 109, 91}, C63 = {63, 126, 125, 123, 119, 111, 95}

n = 9

0 C0, C1

1 C3, C5, C9, C17

2 C7, C11, C13, C15, C19, C21, C25, C27, C35, C37, C41, C45, C51, C73, C75, C83, C85

3 C23, C29, C31, C39, C43, C47, C53, C55, C57, C59, C61,
C63, C75, C77, C79, C87, C91, C93, C95, C103, C107, C109,

C111, C117, C119, C123, C125, C127, C171, C175, C183, C187, C219

4 C191, C223, C239

n = 10

0 C0, C1

1 C3, C5, C9, C17, C33

2 C7, C11, C13, C15, C19, C21, C25, C27, C35, C37,
C41, C45, C49, C51, C69, C73, C85, C99, C147, C165

3 C23, C29, C31, C39, C43, C47, C53, C55, C57, C59, C61, C63, C71, C75, C77,
C79, C83, C87, C89, C91, C93, C95, C101, C103, C105, C107, C109, C111, C115,

C117, C119, C121, C123, C125, C149, C151, C155, C157, C167, C171, C173, C175, C179,
C181, C183, C187, C189, C205, C207, C213, C215, C219, C221, C231, C235, C237, C245,

C255, C341, C347, C363, C447, C495

4 C127, C159, C191, C223, C239, C247, C251, C253, C343,
C351, C367, C375, C379, C383, C439, C479, C511

n = 11

0 C0, C1

1 C3, C5, C9, C17, C33

2 C7, C11, C13, C15, C19, C21, C25, C27, C35, C37, C41, C45, C49, C51,
C67, C69, C73, C81, C85, C99, C137, C153, C163, C165, C293

3 C23, C29, C31, C39, C43, C47, C53, C55, C57, C59, C61, C63, C71, C75, C77,
C79, C83, C87, C89, C91, C93, C95, C101, C103, C105, C107, C109, C111, C113,
C115, C117, C119, C121, C123, C125, C139, C141, C143, C147, C149, C151, C155,
C157, C167, C169, C171, C173, C175, C179, C181, C185, C187, C189, C199, C201,

C203, C205, C207, C211, C213, C217, C219, C221, C229, C231, C243, C245,
C255, C295, C299, C301, C307, C309, C311,C315, C317, C331, C333, C335,
C343, C347, C359, C363, C365, C379, C411, C423, C427, C429, C339, C341,

C437, C439, C469, C495, C683, C703, C879, C887

4 C127, C159, C183, C191, C215, C223, C233, C235, C237, C239, C247, C249, C251,
C253, C303, C319, C349, C351, C367, C371, C373, C375, C381, C383,

C413, C415, C431, C443, C445, C447, C463, C471, C475, C477, C479, C491,
C493, C501, C503, C507, C509, C511, C687, C695, C699, C727, C731, C735, C751,

C759, C763, C767, C895, C959, C991, C1023



B Detailed Algorithms

We detail hereafter the algorithms to perform a masked DES/PRESENT s-box computation.
As in [29], both algorithms use the ISW-based masked field multiplication (SecMult) and the
mask refreshing procedure (RefreshMasks). We recall these procedures before giving the masked
s-box algorithms.

Algorithm 1 SecMult - dth-order secure multiplication over F2n

Input: shares ai satisfying
∑
i ai = a, shares bi satisfying

∑
i bi = b

Output: shares ci satisfying
∑
i ci = ab

for i = 0 to d
| for j = i + 1 to d
| | ri,j ←$ {0, 1}n
| | rj,i ← (ri,j + aibj) + ajbi
| endfor

endfor
for i = 0 to d
| ci ← aibi
| for j = 0 to d, j 6= i do ci ← ci + ri,j

endfor
return (c0, . . . , cd)

Algorithm 2 RefreshMasks
Input: shares xi satisfying

∑
i xi = x

Output: shares xi satisfying
∑
i xi = x

for i = 1 to d
| tmp←$ {0, 1}n
| x0 ← x0 + tmp
| xi ← xi + tmp

endfor

Algorithm 3 Secure higher-order PRESENT s-box evaluation

Input: a dth-order encoding (x0, . . . , xd) of x ∈ {0, 1}4, look-up tables for the Li
Output: a dth-order encoding (t0, . . . , td) of S(x)

1. for i = 0 to d do y2,i ← x2
i

2. RefreshMasks(y2,0, . . . , y2,d)
3. (y3,0, . . . , y3,d)← SecMult

(
(x0, . . . , xd), (y2,0, . . . , y2,d)

)
4. (y5,0, . . . , y5,d)← SecMult

(
(y2,0, . . . , y2,d), (y3,0, . . . , y3,d)

)
5. (y7,0, . . . , y7,d)← SecMult

(
(y2,0, . . . , y2,d), (y5,0, . . . , y5,d)

)
6. t0 ← a0 + L1(x0) + L3(y3,0) + L5(y5,0) + L7(y7,0)
7. for i = 1 to d do ti ← L1(xi) + L3(y3,i) + L5(y5,i) + L7(y7,i)
8. return (t0, . . . , td)



Algorithm 4 Secure higher-order DES s-box evaluation

Input: a dth-order encoding (x0, . . . , xd) of x ∈ {0, 1}6, a table of coefficients ai,j for Qi polynomials
Output: a dth-order encoding (t0, . . . , td) of S(x)

[Computing the x8j powers]
1. for i = 0 to d do y8,i ← x8

i

2. RefreshMasks(y8,0, . . . , y8,d)
3. for i = 0 to d do y16,i ← y2

8,i

4. RefreshMasks(y16,0, . . . , y16,d)
5. (y24,0, . . . , y24,d)← SecMult

(
(y8,0, . . . , y8,d), (y16,0, . . . , y16,d)

)
6. for i = 0 to d do y32,i ← y2

16,i

7. RefreshMasks(y32,0, . . . , y32,d)
8. (y40,0, . . . , y40,d)← SecMult

(
(y8,0, . . . , y8,d), (y32,0, . . . , y32,d)

)
9. for i = 0 to d do y48,i ← y2

24,i

10. RefreshMasks(y48,0, . . . , y48,d)
11. (y56,0, . . . , y56,d)← SecMult

(
(y8,0, . . . , y8,d), (y48,0, . . . , y48,d)

)
[Evaluating the Qi(x

8) polynomials]
12. for i = 0 to 7 do
13. | qi,0 ← ai,0
14. | for k = 1 to d do qi,k ← 0
15. | for j = 1 to 7 do
16. | | for k = 0 to d do qi,k ← qi,k + ai,j · y8j,k
17. | endfor
18. | RefreshMasks(qi,0, . . . , qi,d)
19. endfor

[Evaluating S(x)]
20. for i = 0 to d do y2,i ← x2

i

21. RefreshMasks(y2,0, . . . , y2,d)
22. for i = 0 to d do y4,i ← y2

2,i

23. RefreshMasks(y4,0, . . . , y4,d)
24. (t0, . . . , td)← SecMult

(
(y4,0, . . . , y4,d), (q7,0, . . . , q7,d)

)
25. for i = 0 to d do ti ← ti + q6,i
26. (t0, . . . , td)← SecMult

(
(y2,0, . . . , y2,d), (t0, . . . , td)

)
27. (s0, . . . , sd)← SecMult

(
(y4,0, . . . , y4,d), (q5,0, . . . , q5,d)

)
28. for i = 0 to d do ti ← ti + si + q4,i
29. (t0, . . . , td)← SecMult

(
(x0, . . . , xd), (t0, . . . , td)

)
30. (r0, . . . , rd)← SecMult

(
(y4,0, . . . , y4,d), (q3,0, . . . , q3,d)

)
31. for i = 0 to d do ri ← ri + q2,i
32. (r0, . . . , rd)← SecMult

(
(y2,0, . . . , y2,d), (r0, . . . , rd)

)
33. (p0, . . . , pd)← SecMult

(
(y4,0, . . . , y4,d), (q1,0, . . . , q1,d)

)
34. for i = 0 to d do ti ← ti + ri + pi + q0,i

35. return (t0, . . . , td)

C Look-Up Tables

We detail hereafter the different look-up tables used in our implementations (in C syntax). For
the DES s-boxes, the 4-bit outputs are embedded into F64 by padding their most significant bits
with two 0s. The used field representations are F64 ≡ F2[x]/(1 + x5 + x6) for the DES s-boxes
and F16 ≡ F2[x]/(1 + x3 + x4) for the PRESENT s-box (such that MultGF16[a||b] = a × b).
The multiplication over F64 is performed using the log/alog tables given in Figure 1 while the
multiplication over F16 is performed with the multiplication table given in Figure 2. The ai,j



coefficients for the masked computation of the first DES s-box are given in Figure 3.8 Eventually
the Li transformations for the PRESENT s-box are given in table 4.

unsigned char* LogGF64[64] = {
63, 0, 1, 58, 2, 53, 59, 39,

3, 34, 54, 18, 60, 31, 40, 48,

4, 43, 35, 22, 55, 15, 19, 26,

61, 51, 32, 29, 41, 13, 49, 11,

5, 6, 44, 7, 36, 45, 23, 8,

56, 37, 16, 46, 20, 24, 27, 9,

62, 57, 52, 38, 33, 17, 30, 47,

42, 21, 14, 25, 50, 28, 12, 10

};
unsigned char* AlogGF64[64] = {

1, 2, 4, 8, 16, 32, 33, 35,

39, 47, 63, 31, 62, 29, 58, 21,

42, 53, 11, 22, 44, 57, 19, 38,

45, 59, 23, 46, 61, 27, 54, 13,

26, 52, 9, 18, 36, 41, 51, 7,

14, 28, 56, 17, 34, 37, 43, 55,

15, 30, 60, 25, 50, 5, 10, 20,

40, 49, 3, 6, 12, 24, 48, 1

};

Fig. 1. Log/alog tables for the multiplication for the multiplication over F64.

unsigned char* MultGF16[16][16] = {
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7},
{8, 9, 10, 11, 12, 13, 14, 15, 0, 2, 4, 6, 8, 10, 12, 14, 9, 11, 13, 15},
{1, 3, 5, 7, 0, 3, 6, 5, 12, 15, 10, 9, 1, 2, 7, 4, 13, 14, 11, 8, 0, 4},
{8, 12, 9, 13, 1, 5, 11, 15, 3, 7, 2, 6, 10, 14, 0, 5, 10, 15, 13, 8, 7},
{2, 3, 6, 9, 12, 14, 11, 4, 1, 0, 6, 12, 10, 1, 7, 13, 11, 2, 4, 14, 8},
{3, 5, 15, 9, 0, 7, 14, 9, 5, 2, 11, 12, 10, 13, 4, 3, 15, 8, 1, 6, 0, 8},
{9, 1, 11, 3, 2, 10, 15, 7, 6, 14, 4, 12, 13, 5, 0, 9, 11, 2, 15, 6, 4},
{13, 7, 14, 12, 5, 8, 1, 3, 10, 0, 10, 13, 7, 3, 9, 14, 4, 6, 12, 11, 1},
{5, 15, 8, 2, 0, 11, 15, 4, 7, 12, 8, 3, 14, 5, 1, 10, 9, 2, 6, 13, 0},
{12, 1, 13, 2, 14, 3, 15, 4, 8, 5, 9, 6, 10, 7, 11, 0, 13, 3, 14, 6},
{5, 8, 12, 1, 15, 2, 10, 7, 9, 4, 0, 14, 5, 11, 10, 4, 15, 1, 13, 3, 8},
{6, 7, 9, 2, 12, 0, 15, 7, 8, 14, 1, 9, 6, 5, 10, 2, 13, 11, 4, 12, 3}

};

Fig. 2. Look-up table for the multiplication over F16.

8 Due to length constraints we could not include the coefficients for all the DES s-boxes. They will be given in
an extended version of the paper.



unsigned char* A[8][8] = {
{14, 5, 58, 31, 39, 36, 47, 54},
{52, 3, 47, 28, 1, 53, 9, 52},
{63, 7, 7, 6, 3, 1, 48, 49},
{49, 12, 0, 9, 33, 50, 49, 3},
{26, 3, 40, 0, 13, 8, 35, 59},
{35, 31, 13, 38, 27, 29, 62, 61},
{12, 27, 49, 46, 40, 50, 28, 41},
{40, 14, 36, 44, 27, 27, 33, 0}

};

Fig. 3. Look-up table for the ai,j coefficients.

unsigned char* L1[16] = {0,14,13,3,3,13,14,0,8,6,5,11,11,5,6,8};
unsigned char* L3[16] = {0,14,8,6,10,4,2,12,15,1,7,9,5,11,13,3};
unsigned char* L5[16] = {0,3,4,7,0,3,4,7,11,8,15,12,11,8,15,12};
unsigned char* L7[16] = {0,10,0,10,14,4,14,4,4,14,4,14,10,0,10,0};

Fig. 4. Look-up tables for the Li transformations.
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1 Introduction

Block ciphers are one of the most important building blocks in many security protocols. Modern
block ciphers are cascades of several rounds and each round consists of confusion and diffu-
sion layers. In many block ciphers, non-linear substitution boxes (S-boxes) form the confusion
layer, and a linear transformation provides the required diffusion. The diffusion layer plays an
efficacious role in providing resistance against the most well-known attacks on block ciphers,
such as differential cryptanalysis (DC) [2] and linear cryptanalysis (LC) [10]. The strength of
a diffusion layer is usually quantified by the notion of branch number. Block ciphers exploiting
diffusion layers with small branch number may suffer from critical weaknesses against DC and
LC, even though their substitution layers consist of S-boxes with strong non-linear properties.
Two main strategies for designing block ciphers are Feistel-like and substitution permutation
network (SPN) structures. In the last 2 decades, from these two families several structures have
been proposed with provable security against DC and LC. Three rounds of Feistel structure [11,
8], five rounds of RC6-like structure [6] and SDS (substitution-diffusion-substitution) structure
with a perfect or almost perfect diffusion layer are examples of such structures [9].

1.1 Notations

Let x be an array of s n-bit elements x = [x0(n), x1(n), · · · , xs−1(n)]. The number of non-zero
elements in x is denoted by w(x) and is known as the Hamming weight of x. For a diffusion
layer D applicable on x, we have the following definitions.

Definition 1 ([4]). The differential branch number of a linear diffusion layer D is defined as:

βd(D) = min
x 6=0
{w(x) + w(D(x))}



We know that the linear function D can be shown as a binary matrix B, and Dt is a linear
function obtained from Bt, where Bt is the transposition of B.

Definition 2 ([4]). The linear branch number of a linear diffusion layer D is defined as:

βl(D) = min
x 6=0
{w(x) + w(Dt(x))}

It is well known that for a diffusion layer acting on s-word inputs, the maximal βd and βl are
s+ 1 [4]. A diffusion layer D taking its maximal βd and βl is called a perfect or MDS diffusion
layer. Furthermore, a diffusion layer with βd = βl = s is called an almost perfect diffusion
layer [9].

The following notations are used throughout this paper:

⊕ : The bit-wise XOR operation
& : The bit-wise AND operation
Li : Any linear function
`i : The linear operator corresponding to the linear function Li

(L1 ⊕ L2)(x) : L1(x)⊕ L2(x)
L1L2(x) : L1(L2(x))
L2

1(x) : L1(L1(x))
I(·) function : Identity function, I(x) = x
x� m (x� m) : Shift of a bit string x by m bits to the right (left)
x ≫ m (x ≪ m) : Circular shift of a bit string x by m bits to the right (left)
| · | : Determinant of a matrix in GF(2)
a|b : Concatenation of two bit strings a and b
x(n) : An n-bit value x

1.2 Our contribution

In this paper, we define the notion of a recursive diffusion layer and propose a method to
construct such perfect diffusion layers.

Definition 3. A diffusion layer D with s words xi as the input, and s words yi as the output
is called a recursive diffusion layer if it can be represented in the following form:

D :


y0 = x0 ⊕ F0(x1, x2, . . . , xs−1)
y1 = x1 ⊕ F1(x2, x3, . . . , xs−1, y0)
...
ys−1 = xs−1 ⊕ Fs−1(y0, y1, . . . , ys−2)

(1)

where F0, F1,. . . , Fs−1 are arbitrary functions.

As an example, consider a 2-round Feistel structure with a linear round function L as a
recursive diffusion layer with s = 2. The input-output relation for this diffusion layer is:

D :
{
y0 = x0 ⊕ L(x1)
y1 = x1 ⊕ L(y0)

The quarter-round function of Salsa20 is also an example of a non-linear recursive diffusion
layer [1]. 

y1 = x1 ⊕ (x0 + x3)
y2 = x2 ⊕ (x0 + y1)
y3 = x3 ⊕ (y1 + y2)
y0 = x0 ⊕ (y2 + y3)

2



Also, the lightweight hash function PHOTON [5] and the block cipher LED [7] use MDS
matrices based on Eq. (1). In these ciphers, an m×m MDS matrix Bm was designed based on
the following matrix B for the performance purposes:

B =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
0 0 0 · · · 1
Z0 Z1 Z2 · · · Zm−1


By matrix B, one elements of m inputs is updated and other elements are shifted. If we use

Bm, all inputs are updated, but we must check if this matrix is MDS. One example for m = 4
is the PHOTON matrix working over GF(28) :

B =


0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 4

⇒ B4 =


1 2 1 4
4 9 6 17
17 38 24 66
66 149 100 11


In this paper, we propose a new approach to design linear recursive diffusion layers with the

maximal branch number in which Fi’s are composed of one or two linear functions and a number
of XOR operations. The design of the proposed diffusion layer is based on the invertibility of
some simple linear functions in GF(2). Linear functions in this diffusion layer can be designed
to be low-cost for different sizes of the input words, thus the proposed diffusion layer might
be appropriate for resource-constrained devices, such as RFID tags. Although these recursive
diffusion layers are not involutory, they have similar inverses with the same computational
complexity.

This paper proceeds as follows: In Section 2, we introduce the general structure of our
proposed recursive diffusion layer. Then, for one of its instances, we systematically investigate
the required conditions for the underlying linear function to achieve the maximal branch number.
In Section 3, we propose some other recursive diffusion layers with less than 8 input words and
only one linear function. We use two linear functions to have perfect recursive diffusion layer for
s > 4 in Section 4. Finally, we conclude the paper in Section 5.

2 The Proposed Diffusion Layer

In this section, we introduce a new perfect linear diffusion layer with a recursive structure. The
diffusion layer D takes s words xi for i = {0, 1, . . . , s − 1} as input, and returns s words yi for
i = {0, 1, . . . , s− 1} as output. So, we can represent this diffusion layer as:

y0|y1| · · · |ys−1 = D(x0|x1| · · · |xs−1)

The first class of the proposed diffusion layer D is represented in Fig. 1, where L is a linear
function, αk, βk ∈ {0, 1}, α0 = 1, and β0 = 0.

This diffusion layer can be represented in the form of Eq. (1) in which the Fi functions are
all the same and can be represented as

Fi(x1, x2, . . . , xs−1) =
s−1⊕
j=1

αjxj ⊕ L

s−1⊕
j=1

βjxj


3



1: Input : s n-bit words x0, . . . , xs−1

2: Output : s n-bit words y0, . . . , xs−1

3: for i = 0 to s− 1 do
4: yi = xi

5: end for
6: for i = 0 to s− 1 do

7: yi =

s−1⊕
j=0

α[(j−i) mod s]yj ⊕ L

(
s−1⊕
j=0

β[(j−i) mod s]yj

)
8: end for

Fig. 1. The first class of the recursive diffusion layers

To guarantee the maximal branch number for D, the linear function L and the coefficients
αj and βj must satisfy some necessary conditions. Conditions on L are expressed in this section
and those of αj ’s and βj ’s are expressed in Section 3. The diffusion layer described by Eq. (2) is
an instance that satisfies the necessary conditions on αj and βj with s = 4. In the rest of this
section, we concentrate on the diffusion layers of this form and show that we can find invertible
linear functions L such that D becomes a perfect diffusion layer.

D :


y0 = x0 ⊕ x2 ⊕ x3 ⊕ L(x1 ⊕ x3)
y1 = x1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ y1 ⊕ L(x3 ⊕ y1)
y3 = x3 ⊕ y1 ⊕ y2 ⊕ L(y0 ⊕ y2)

(2)

As shown in Fig. 2, this diffusion layer has a Feistel-like (GFN) structure, i.e.,

F0(x1, x2, x3) = x2 ⊕ x3 ⊕ L(x1 ⊕ x3)

and for each i > 0, yi is obtained by (xi, xi+1, . . . , xs−1) and (y0, y1, . . . , yi−1).

The inverse transformation, D−1, has a very simple structure and does not require the
inversion of the linear function L. Based on the recursive nature of D, if we start from the
last equation of Eq. (2), x3 is immediately obtained from yi’s. Then knowing x3 and yi’s, we
immediately obtain x2 from the third line of Eq. (2). x1 and x0 can be obtained in the same
way. Thus, the inverse of D is:

D−1 :


x3 = y3 ⊕ y1 ⊕ y2 ⊕ L(y0 ⊕ y2)
x2 = y2 ⊕ y0 ⊕ y1 ⊕ L(x3 ⊕ y1)
x1 = y1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
x0 = y0 ⊕ x2 ⊕ x3 ⊕ L(x1 ⊕ x3)

D and D−1 are different, but they have the same structure and properties. To show that D
has the maximal branch number, first we introduce some lemmas and theorems.

Theorem 4 ([4]). A Boolean function F has maximal differential branch number if and only
if it has maximal linear branch number.

As a result of Theorem 4, if we prove that the diffusion layer D represented in Eq. (2) has
the maximal differential branch number, its linear branch number will be maximal too. Thus,
in the following, we focus on the differential branch number.

Lemma 5. For m linear functions L1, L2, ..., Lm, the proposition

a 6= 0⇒ L1(a)⊕ L2(a)⊕ ...⊕ Lm(a) 6= 0

implies that the linear function L1 ⊕ L2 ⊕ ...⊕ Lm is invertible.

4
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Fig. 2. The proposed recursive diffusion layer of Eq. (2)

5



Proof. We know that (L1 ⊕L2 ⊕ ...⊕Lm)(x) is a linear function and it can be represented as a
binary matrix M. So, M is invertible if and only if |M| 6= 0. ut

Lemma 6. Assume the linear operator `i corresponds to the linear function Li(x). If the linear
operator `3 can be represented as the multiplication of two operators `1 and `2, then the corre-
sponding linear function L3(x) = L2(L1(x)) is invertible if and only if the linear functions L1(x)
and L2(x) are invertible.

Proof. If L1(x) and L2(x) are invertible, clearly L3(x) is invertible too. On the other hand, if
L3(x) is invertible then L1(x) must be invertible, otherwise there are distinct x1 and x2 such
that L1(x1) = L1(x2). Thus, L3(x1) = L2(L1(x1)) = L2(L1(x2)) = L3(x2) which contradicts the
invertibility of L3(x). The invertibility of L2(x) is proved in the same way.

ut

Example 1: We can rewrite the linear function L3(x) = L3(x) ⊕ x (`3 = `3 ⊕ I) as L3(x) =
L1(L2(x)), where L1(x) = L(x)⊕ x (`1 = `⊕ I) and L2(x) = L2(x)⊕L(x)⊕ x (`2 = `2⊕ `⊕ I).
Thus, the invertibility of L3(x) is equivalent to the invertibility of the two linear functions L1(x)
and L2(x).

Theorem 7. For the diffusion layer represented in Eq. (2), if the four linear functions L(x),
x⊕ L(x), x⊕ L3(x), and x⊕ L7(x) are invertible, then this diffusion layer is perfect.

Proof. We show that the differential branch number of this diffusion layer is 5. First, the 4 words
of the output are directly represented as functions of the 4 words of the input:

D :


y0 = x0 ⊕ L(x1)⊕ x2 ⊕ x3 ⊕ L(x3)
y1 = x0 ⊕ L(x0)⊕ x1 ⊕ L(x1)⊕ L2(x1)⊕ x2 ⊕ L2(x3)
y2 = L2(x0)⊕ x1 ⊕ L(x1)⊕ L3(x1)⊕ x2 ⊕ L(x2)⊕ x3 ⊕ L2(x3)⊕ L3(x3)
y3 = x0 ⊕ L2(x0)⊕ L3(x0)⊕ L(x1)⊕ L2(x1)⊕ L3(x1)⊕ L4(x1)

⊕L(x2)⊕ L2(x2)⊕ L2(x3)⊕ L4(x3)

(3)

Now, we show that if the number of active (non-zero) words in the input is m, where m =
1, 2, 3, 4, then the number of non-zero words in the output is greater than or equal to 5 −m.
The diffusion layer represented in Eq. (2) is invertible. Consider m = 4, then all of the 4 words
in the input are active, and we are sure at least one of the output words is active too. Thus
the theorem is correct for m = 4. The remainder of the proof is performed for the 3 cases of
w(∆(x)) = m, for m = 1, 2, 3 separately. In each of these cases, some conditions are forced on
the linear function L.

Case 1: w(4x) = 1

To study this case, first the subcase

(4x0 6= 0,4x1 = 4x2 = 4x3 = 0 or 4x = 4x0|0|0|0)

is analyzed. For this subcase, Eq. (3) is simplified to:

D :


4y0 = 4x0

4y1 = (I ⊕ L)(4x0)
4y2 = L2(4x0)
4y3 = (I ⊕ L2 ⊕ L3)(4x0)
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If D is a perfect diffusion layer then 4y0, 4y1, 4y2 and 4y3 must be non-zero. Clearly,
4y0 is non-zero, and based on Lemma 5, the conditions for 4y1, 4y2 and 4y3 to be non-zero
are that the linear functions I ⊕ L, L2 and I ⊕ L2 ⊕ L3 must be invertible. Note that based
on Lemma 6, the invertibility of L2 yields the invertibility of L. Considering Lemma 6, if the
other three sub-cases are studied, it is induced that the linear functions x ⊕ L(x) ⊕ L2(x) and
x⊕ L(x)⊕ L3(x) must also be invertible.

Case 2: w(4x) = 2

In this case, there exist exactly two active words in the input difference and we obtain some
conditions on the linear function L to guarantee the branch number 5 for D. In the following,
we only analyze the subcase

(4x0,4x1 6= 0 and 4x2 = 4x3 = 0 or 4x = 4x0|4x1|0|0)

With this assumption, Eq. (3) is simplified to:

D :


4y0 = 4x0 ⊕ L(4x1)
4y1 = (I ⊕ L)(4x0)⊕ (I ⊕ L⊕ L2)(4x1)
4y2 = L2(4x0)⊕ (I ⊕ L⊕ L3)(4x1)
4y3 = (I ⊕ L2 ⊕ L3)(4x0)⊕ (L⊕ L2 ⊕ L3 ⊕ L4)(4x1)

(4)

To show that w(4y) is greater than or equal to 3, we must find some conditions on L such
that if one of the 4yi’s is zero, then the other three 4yj ’s cannot be zero. Let 4y0 = 0, then:

4x0 ⊕ L(4x1) = 0⇒4x0 = L(4x1)

If 4x0 is replaced in the last three equations of Eq. (4), we obtain 4y1, 4y2 and 4y3 as
follows: 

4y1 = 4x1

4y2 = 4x1 ⊕ L(4x1)
4y3 = L2(4x1)

Obviously, 4y1 is not zero. Furthermore, for 4y2 and 4y3 to be non-zero, considering
Lemma 5, we conclude that the functions x⊕L(x) and L2(x) must be invertible. This condition
was already obtained in the Case 1. We continue this procedure for 4y1 = 0.

4y1 = 4x0 ⊕ L(4x0)⊕ x1 ⊕ L(4x1)⊕ L2(4x1) = 0⇒
4x0 ⊕ L(4x0) = x1 ⊕ L(4x1)⊕ L2(4x1)

From the previous subcase, we know that if 4y0 = 0 then 4y1 6= 0. Thus we conclude that,
4y0 and 4y1 cannot be simultaneously zero. Therefore, by contraposition we obtain that if
4y1 = 0 then 4y0 6= 0. So, we only check 4y2 and 4y3. From the third equation in Eq. (4), we
have:

(I ⊕L)(4y2) = L2(4x1)⊕L3(4x1)⊕L4(4x1)⊕4x1⊕L2(4x1)⊕L3(4x1)⊕L4(4x1) = 4x1

x ⊕ L(x) is invertible, thus we conclude that with the two active words 4x0 and 4x1 in
the input, 4y1 and 4y2 cannot be zero simultaneously. With the same procedure, we can prove
that 4y1 and 4y3 cannot be zero simultaneously.

Here we only gave the proof for the case (4x0,4x1 6= 0, 4x2 = 4x3 = 0). We performed
the proof procedure for the other cases and no new condition was added to the previous set of
conditions in Case 1.
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Case 3: w(4x) = 3

In this case, assuming three active words in the input, we show that the output has at least
2 non-zero words. Here, only the case

(4x0,4x1,4x2 6= 0 and 4x3 = 0 or 4x = 4x0|4x1|4x2|0)

is analyzed. The result holds for the other three cases with w(4x) = 3. Let rewrite the Eq. (3)
for 4x3 = 0 as follows:

D :


4y0 = 4x0 ⊕ L(4x1)⊕4x2

4y1 = (I ⊕ L)(4x0)⊕ (I ⊕ L⊕ L2)(4x1)⊕4x2

4y2 = L2(4x0)⊕ (I ⊕ L⊕ L3)(4x1)⊕ (I ⊕ L)(4x2)
4y3 = (I ⊕ L2 ⊕ L3)(4x0)⊕ (L⊕ L2 ⊕ L3 ⊕ L4)(4x1)⊕ (L⊕ L2)(4x2)

(5)

When 4y0 = 4y1 = 0, from the first 2 lines of Eq. (5), 4x0 and 4x1 are obtained as the
function of 4x2.

{
4y0 = 4x0 ⊕ L(4x1)⊕4x2 = 0
4y1 = 4x0 ⊕ L(4x0)⊕4x1 ⊕ L(4x1)⊕ L2(4x1)⊕4x2 = 0

⇒
{
4x1 = L(4x2)
4x0 = 4x2 ⊕ L2(4x2)

Now, replacing 4x0 = 4x2 ⊕ L2(4x2) and 4x1 = L(4x2) into 4y2 and 4y3 yields:

{
4y2 = L2(4x0)⊕ (I ⊕ L⊕ L3)(4x1)⊕ (I ⊕ L)(4x2) = 4x2

4y3 = (I ⊕ L2 ⊕ L3)(4x0)⊕ (L⊕ L2 ⊕ L3 ⊕ L4)(4x1)⊕ (L⊕ L2)(4x2) = (I ⊕ L)(4x2)

From Case 1, we know that the functions x ⊕ L(x) and x ⊕ L(x) ⊕ L2(x) are invertible.
Therefore, 4y2 and 4y3 are non-zero. If the other sub-cases with three active words in the
input are investigated, it is easy to see that no new condition is added to the present conditions
on L.

Finally, we conclude that the diffusion layer D presented in Fig. 1 is perfect if the linear
functions 

L1(x) = L(x)
L2(x) = x⊕ L(x)
L3(x) = x⊕ L(x)⊕ L2(x)
L4(x) = x⊕ L(x)⊕ L3(x)
L5(x) = x⊕ L2(x)⊕ L3(x)

are invertible. We know that L3(L2(x)) = x⊕ L3(x) and L5(L4(L2(x))) = x⊕ L7(x). Thus, by
Lemma 6, we can summarize the necessary conditions on the linear function L as the invertibility
of L(x), (I ⊕ L)(x), (I ⊕ L3)(x) and (I ⊕ L7)(x).

ut

Next, we need a simple method to check whether a linear function L satisfies the conditions
of Theorem 7 or not. For this purpose, we use the binary matrix representation of L. Assume
that xi is an n-bit word. Hence, we can represent a linear function L with an n × n matrix
A with elements in GF(2). By using Lemma 5, if L is invertible, A is not singular over GF(2)
(|A| 6= 0). To investigate whether a linear function L satisfies the conditions of Theorem 7, we
construct the corresponding matrix An×n from L and check the non-singularity of the matrices
A, I⊕A, I⊕A3 and I⊕A7 in GF(2). We introduce some lightweight linear functions with n-bit
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Table 1. Some instances of the linear function L satisfying Theorem 7

Length of the input Some linear functions L

4 L(x) = (x⊕ x� 3) ≪ 1

8 L(x) = (x⊕ (x & 0x2)� 1) ≪ 1

16 L(x) = (x⊕ x� 15) ≪ 1

32 L(x) = (x⊕ x� 31) ≪ 15 or L(x) = (x ≪ 24)⊕ (x & 0xFF)

64 L(x) = (x⊕ x� 63) ≪ 1 or L(x) = (x ≪ 8)⊕ (x & 0xFFFF)

inputs/outputs in Table 1 that satisfy the above conditions. Note that there exist many linear
functions which satisfy the conditions of Theorem 7.

Unlike the shift and XOR operations, rotation cannot be implemented as a single instruction
on many processors. So, to have more efficient diffusion layers, we introduce new L functions for
32-bit and 64-bit inputs in Table 2 that only use shift and XOR operations.

Table 2. Some examples for the linear function L satisfying Theorem 7 without a circular shift

Length of the input Sample linear functions L

32 L(x) = (x� 3)⊕ (x� 1)

64 L(x) = (x� 15)⊕ (x� 1)

We can use this diffusion layer with L(x) = (x� 3)⊕ (x� 1) instead of the diffusion layers
used in the block ciphers MMB [3] or Hierocrypt [12]. In MMB, the diffusion layer is a 4 × 4
binary matrix with branch number 4. If we use the proposed diffusion layer in this cipher, it
becomes stronger against LC and DC attacks. This change also prevents the attacks presented
on this block cipher in [14]. By computer simulations, we observed that this modification reduces
the performance of MMB by about 10%. Also, if we use our proposed diffusion layer with the
same L(x), instead of the binary matrix of the block cipher Hierocrypt (called MDSH [12]), we
can achieve a 2 times faster implementation with the same level of security.

Moreover, in the nested SPN structure of Hierocrypt, we replaced the MDS matrix of AES in
GF(232) (because inputs of MDSH are 4 32-bit words) with irreducible polynomial x32+x7+x5+
x3 +x2 +x+1 [13] instead of the binary matrix MDSH. We observed that the replacement of our
proposed diffusion layer instead of MDSH yields 5% better performance than the replacement
of the AES matrix in GF(232).

In Eq. (1), if Fi(x1, x2, x3) = F0(x1, x2, x3) = L(x1) ⊕ x2 ⊕ L2(x3), where L(x) = 2x and
x ∈ GF(28), PHOTON MDS matrix is obtained [5]. If we change B to Eq. (2) and define
L(x) = 2x, we have:

B =


0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 3

⇒ B4 =


1 2 1 3
3 7 1 4
4 11 3 13
13 30 6 20


3 Other Desirable Structures for the Proposed Diffusion Layer

In Section 2, the general form of the proposed diffusion layer was introduced in Fig. 1. Then by
assuming a special case of αi’s and βi’s, an instance of this diffusion layer was given in Eq. (2).
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In this section, we obtain all sets of αi’s and βi’s such that the diffusion layer of Fig. 1 becomes
perfect. We know some properties of αi’s and βi’s; for instance if all the words of the output are
directly represented as the function of input words, a function of each xi (0 ≤ i ≤ s− 1 ) must
appear in each equation. Another necessary condition is obtained for two active words of the
input. Assume there exist only two indices i, j such that xi, xj 6= 0. If we write each two output
words yp, yq in a direct form as a function of xi and xj , we obtain:{

yp = Lpi(xi)⊕ Lpj (xj)
yq = Lqi(xi)⊕ Lqj (xj)

If `pi
`qi

=
`pj

`qj
(or
∣∣∣ `pi `pj

`qi `qj

∣∣∣=0), then yp = 0 is equivalent to yq = 0. Thus, the minimum number
of active words in the input and output is less than or equal to s, and the branch number will
not reach the maximal value s+1. This procedure must be repeated for 3 and more active words
in the input. As an extension, we can use Lemma 3 of [13].

Lemma 8. Assume the diffusion layer has m inputs/outputs bits and ` is the linear operator of
L(x) and I is the linear operator of I(x). Moreover, MLD is an m ×m matrix representation
of the operator of the diffusion layer. If D is perfect, then all the sub-matrices of MLD is
non-singular.

If we construct the MLD of Eq. (2), we have:

MLD =


I ` I I ⊕ `

I ⊕ ` I ⊕ `⊕ `2 I `2

`2 I ⊕ `⊕ `3 I ⊕ ` I ⊕ `2 ⊕ `3
I ⊕ `2 ⊕ `3 `⊕ `2 ⊕ `3 ⊕ `4 `⊕ `2 `2 ⊕ `4


If we calculate 69 sub-matrix determinant of MLD, we find the result of Theorem 7. However,

by following this procedure, it is complicated to obtain all sets of αi’s and βi’s analytically. So, by
systematizing the method based on Lemma 8, we performed a computer simulation to obtain all
sets of αi’s and βi’s in the diffusion layer in Fig. 1 that yield a perfect diffusion. We searched for
all αi’s and βi’s that make the diffusion layer of Fig. 1 a perfect diffusion layer. This procedure
was repeated for s = 2, 3, . . . , 8. We found one set of (αi, βi) for s = 2, four sets for s = 3, and
four sets for s = 4. The obtained diffusion layers along with the conditions on the underlying
linear function L are reported in Table 3. We observed that for s = 5, 6, 7 the diffusion layer
introduced in Fig. 1 cannot be perfect.

Note that some linear functions in Table 1 and Table 2 such as L(x) = (x� 15)⊕ (x� 1)
cannot be used in the diffusion layers for which x⊕ L15(x) must be invertible.

As we can see in Fig. 1 and its instances presented in Table 3, there exists some kind of
regularity in the equations defining yi’s, in the sense that the form of yi+1 is determined by
the form of yi and vice versa (Fi’s are the same in Eq. (1)). However, we can present some
non-regular recursive diffusion layers with the following more general form (Fi’s are different):

where Ai,j , Bi,j ∈ {0, 1}. If Ai,j = α(j−i) mod s and Bi,j = β(j−i) mod s, then Fig. 3 is equiva-
lent to Fig. 1. The main property of this new structure is that it still has one linear function L
and a simple structure for the inverse. For example, if s = 4, then:

D :


y0 = x0 ⊕A0,1 · x1 ⊕A0,2 · x2 ⊕A0,3 · x3 ⊕ L(B0,1 · x1 ⊕B0,2 · x2 ⊕B0,3 · x3)
y1 = x1 ⊕A1,0 · y0 ⊕A1,2 · x2 ⊕A1,3 · x3 ⊕ L(B1,0 · y0 ⊕B1,2 · x2 ⊕B1,3 · x3)
y2 = x2 ⊕A2,0 · y0 ⊕A2,1 · y1 ⊕A2,3 · x3 ⊕ L(B2,0 · y0 ⊕B2,1 · y1 ⊕B2,3 · x3)
y3 = x3 ⊕A3,0 · y0 ⊕A3,1 · y1 ⊕A3,2 · y2 ⊕ L(B3,0 · y0 ⊕B3,1 · y1 ⊕B3,2 · y2)
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Table 3. Perfect regular recursive diffusion layers for s < 8 with only one linear function L

s Diffusion Layer Function that must be invertible

2 D :

{
y0 = x0 ⊕ L(x1)
y1 = x1 ⊕ L(y0)

L(x) and x⊕ L(x)

3 D :


y0 = x0 ⊕ L(x1 ⊕ x2)
y1 = x1 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ L(y0 ⊕ y1)

L(x), x⊕ L(x) and x⊕ L3(x)

3 D :


y0 = x0 ⊕ x1 ⊕ L(x1 ⊕ x2)
y1 = x1 ⊕ x2 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ L(y0 ⊕ y1)

L(x), x⊕ L(x), x⊕ L3(x) and x⊕ L7(x)

3 D :


y0 = x0 ⊕ x2 ⊕ L(x1 ⊕ x2)
y1 = x1 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y1 ⊕ L(y0 ⊕ y1)

L(x), x⊕ L(x), x⊕ L3(x) and x⊕ L7(x)

3 D :


y0 = x0 ⊕ x1 ⊕ x2 ⊕ L(x1 ⊕ x2)
y1 = x1 ⊕ x2 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ y1 ⊕ L(y0 ⊕ y1)

L(x), x⊕ L(x), and x⊕ L3(x)

4 D :


y0 = x0 ⊕ x2 ⊕ x3 ⊕ L(x1 ⊕ x3)
y1 = x1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ y1 ⊕ L(x3 ⊕ y1)
y3 = x3 ⊕ y1 ⊕ y2 ⊕ L(y0 ⊕ y2)

L(x), x⊕ L(x), x⊕ L3(x) and x⊕ L7(x)

4 D :


y0 = x0 ⊕ x1 ⊕ x2 ⊕ L(x1 ⊕ x3)
y1 = x1 ⊕ x2 ⊕ x3 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ x3 ⊕ y0 ⊕ L(x3 ⊕ y1)
y3 = x3 ⊕ y0 ⊕ y1 ⊕ L(y0 ⊕ y2)

L(x), x⊕ L(x), x⊕ L3(x) and x⊕ L7(x)

4 D :


y0 = x0 ⊕ x2 ⊕ L(x1 ⊕ x2 ⊕ x3)
y1 = x1 ⊕ x3 ⊕ L(x2 ⊕ x3 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ L(x3 ⊕ y0 ⊕ y1)
y3 = x3 ⊕ y1 ⊕ L(y0 ⊕ y1 ⊕ y2)

L(x), x⊕ L(x), x⊕ L3(x), x⊕ L7(x) and x⊕ L15(x)

4 D :


y0 = x0 ⊕ x1 ⊕ x3 ⊕ L(x1 ⊕ x2 ⊕ x3)
y1 = x1 ⊕ x2 ⊕ y0 ⊕ L(x2 ⊕ x3 ⊕ y0)
y2 = x2 ⊕ x3 ⊕⊕y1 ⊕ L(x3 ⊕ y0 ⊕ y1)
y3 = x3 ⊕ y0 ⊕ y2 ⊕ L(y0 ⊕ y1 ⊕ y2)

L(x), x⊕ L(x), x⊕ L3(x), x⊕ L7(x) and x⊕ L15(x)

1: Input : s n-bit words x0, . . . , xs−1

2: Output : s n-bit words y0, . . . , xs−1

3: for i = 0 to s− 1 do
4: yi = xi

5: end for
6: for i = 0 to s− 1 do

7: yi = yi ⊕

 s−1⊕
j=0,j 6=i

Ai,jyj

⊕ L
 s−1⊕

j=0,j 6=i

Bi,jyj


8: end for

Fig. 3. Non-regular recursive diffusion layers
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We searched the whole space for s = 3 and s = 4 (the order of search spaces are 212 and
224 respectively). For s = 3, we found 196 structures with branch number 4 and for s = 4, 1634
structures with branch number 5. The linear functions that must be invertible for each case
are different. Among the 196 structures for s = 3, the structure with the minimum number of
operations (only 7 XORs and one L evaluation) is the following:

D :


y0 = x0 ⊕ x1 ⊕ x2

y1 = x1 ⊕ x2 ⊕ L(y0 ⊕ x2)
y2 = x2 ⊕ y0 ⊕ y1

where L(x), x⊕ L(x) and x⊕ L3(x) must be invertible.

This relation is useful to enlarge the first linear function of the new hash function JH for 3
inputs [15]. For s = 4, we did not find any D with the number of L evaluations less than four.
However, the one with the minimum number of XORs is given as below:

D :


y0 = x0 ⊕ x1 ⊕ x2 ⊕ L(x3)
y1 = x1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ x3 ⊕ y0 ⊕ L(x3 ⊕ y0)
y3 = x3 ⊕ y1 ⊕ y2 ⊕ L(y0)

Searching the whole space for s = 5, 6, ... is too time consuming (note that for s = 5, the
order of search has complexity 240) and we could not search all the space for s ≥ 5.

4 Increasing the Number of Linear Functions

In Section 3, we observed that for s > 4 we cannot design a regular recursive diffusion layer
in the form of Fig. 1 with only one linear function L. In this section, we increase the number
of linear functions to overcome the regular structure of the diffusion layer of Eq. (2). A new
structure is represented in Fig. 4, where αk, βk, γk ∈ {0, 1}, k ∈ {0, 1, ..., s − 1}, α0 = 1, β0 = 0
and γ0 = 0.

1: Input : s n-bit words x0, . . . , xs−1

2: Output : s n-bit words y0, . . . , xs−1

3: for i = 0 to s− 1 do
4: yi = xi

5: end for
6: for i = 0 to s− 1 do

7: yi =

s−1⊕
j=0

α[(j−i) mod s]yj ⊕ L1

(
s−1⊕
j=0

β[(j−i) mod s]yj

)
⊕ L2

(
s−1⊕
j=0

γ[(j−i) mod s]yj

)
8: end for

Fig. 4. Non-regular recursive diffusion layers with two linear functions L

If L1 and L2 are two distinct linear functions, Fig. 4 is too complicated to easily obtain
conditions on L1 and L2 that make it a perfect diffusion layer. To obtain simplified conditions
for a maximal branch number, let L1 and L2 have a simple relation like L2(x) = L2

1(x) or
L2(x) = L−1

1 (x). For the linear functions in Table 2 and Table 3, L2(x) is more complex in
comparison with L(x). However, there exist some linear functions L(x) such that L−1(x) is
simpler than L2(x). As an example, for L(x(n)) = (x(n) ⊕ x(n) � b) ≪ a, where b < n

2 we have:

L−1(x(n)) = ((x(n) ≫ a)⊕ (x(n) ≫ a)� b)
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In Table 4, we introduce some recursive diffusion layers with (L1 = L and L2 = L−1) or
(L1 = L and L2 = L2) that have maximal branch numbers. These diffusion layers are obtained
similar to that of Table 3. In this table, for each case only y0 is presented. Other yi’s can be
easily obtained from Fig. 4, since Fi’s are all the same.

Table 4. Some perfect regular diffusion layers for s = 5, 6, 7, 8 with two linear functions

s y0 in a perfect diffusion Layer

5 y0 = x0 ⊕ x2 ⊕ x3 ⊕ L(x4)⊕ L2(x1)

5 y0 = L−1(x4)⊕ x0 ⊕ x2 ⊕ L(x1 ⊕ x3 ⊕ x4)

6 y0 = x0 ⊕ x5 ⊕ L(x3 ⊕ x5)⊕ L2(x1 ⊕ x2 ⊕ x4)

6 y0 = L−1(x2 ⊕ x5)⊕ x0 ⊕ x3 ⊕ L(x1 ⊕ x3 ⊕ x4 ⊕ x5)

7 y0 = x0 ⊕ x2 ⊕ x4 ⊕ L(x3)⊕ L2(x1 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x6)

7 y0 = L−1(x1 ⊕ x3 ⊕ x6)⊕ x0 ⊕ x6 ⊕ L(x1 ⊕ x2 ⊕ x4 ⊕ x5)

8 y0 = x0 ⊕ x1 ⊕ x3 ⊕ x4 ⊕ L(x2 ⊕ x3 ⊕ x5)⊕ L2(x1 ⊕ x5 ⊕ x6 ⊕ x7)

8 y0 = L−1(x3 ⊕ x4 ⊕ x7)⊕ x0 ⊕ x1 ⊕ x2 ⊕ x4 ⊕ L(x1 ⊕ x5 ⊕ x6 ⊕ x7)

If the 12 linear functions:

L(x) I ⊕ L(x) I ⊕ L3(x)
I ⊕ L7(x) I ⊕ L15(x) I ⊕ L31(x)
I ⊕ L63(x) I ⊕ L127(x) I ⊕ L255(x)
I ⊕ L511(x) I ⊕ L1023(x) I ⊕ L2047

are invertible (all irreducible polynomials up to degree 11), then all the diffusion layers introduced
in Table 4 are perfect. One example for a 32-bit linear function satisfying these conditions is:

L(x(32)) = (x(32) ⊕ (x(32) � 27)) ≪ 15

5 Conclusion

In this paper, we proposed a family of diffusion layers which are constructed using some rounds
of Feistel-like structures whose round functions are linear. These diffusion layers are called
recursive diffusion layers. First, for a fixed structure, we determined the required conditions for
its underlying linear function to make it a perfect diffusion layer. Then, for the number of words
in input (output) less than 8, we extended our approach and found all the instances of the perfect
recursive diffusion layers with the general form of Fig. 1. Also, we proposed some other diffusion
layers with non-regular forms which can be used for the design of lightweight block ciphers.
Finally, diffusion layers with 2 linear functions were proposed. By using two linear functions, we
designed perfect recursive diffusion layers for s = 5, 6, 7, 8 which cannot be designed based on
Fig. 1, i.e, using only one linear function.

The proposed diffusion layers have simple inverses, thus they can be deployed in SPN struc-
tures. These proposed diffusion layers can be used to improve the security or performance of
some of the current block ciphers and hash functions or in the design of the future block ciphers
and hash functions (especially the block ciphers with provable security against DC and LC).
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Abstract. We analyze the internal permutations of Keccak, one of the NIST SHA-3 competition
finalists, in regard to differential properties. By carefully studying the elements composing those
permutations, we are able to derive most of the best known differential paths for up to 5 rounds.
We use these differential paths in a rebound attack setting and adapt this powerful freedom degrees
utilization in order to derive distinguishers for up to 8 rounds of the internal permutations of the
submitted version of Keccak. The complexity of the 8 round distinguisher is 2491.47. Our results
have been implemented and verified experimentally on a small version of Keccak. This is currently
the best known differential attack against the internal permutations of Keccak.

Key words: Keccak, SHA-3, hash function, differential cryptanalysis, rebound attack.

1 Introduction

Cryptographic hash functions are used in many applications such as digital signatures, authen-
tication schemes or message integrity and they are among the most important primitives in
cryptography. Informally, a hash function H is a function that takes an arbitrarily long message
as input and outputs a fixed-length hash value of size n bits. Even if hash functions are tra-
ditionally used to simulate the behavior of a random oracle [3], classical security requirements
are collision resistance and (second)-preimage resistance. Namely, it should be impossible for an
adversary to find a collision (two distinct messages that lead to the same hash value) in less than
2n/2 hash computations, or a (second)-preimage (a message hashing to a given challenge) in less
than 2n hash computations. Of course, in the ideal case an attacker should also not be able to
distinguish the hash function from a random oracle.

Recently, most of the standardized hash functions [25, 20] have suffered from serious collision
attacks [29, 28]. As a response the NIST launched in 2007 the SHA-3 competition [21] that will lead
to the future hash function standard. 5 candidates made it to the final round, and Keccak [9]
is among them. Compared to its opponents, this hash function presents the particularity to be
a sponge function [5]. The submitted versions of Keccak to the SHA-3 competition use as main
component an internal permutation P of 1600 bits. In the original submission [6] the internal
permutation used 18 rounds and the tweaked versions [7] went up to 24 rounds.

∗Part of the work was done while the author was visiting Nanyang Technological University, supported by the
NTU NAP Startup Grant M58110000.

†Part of the work was done while the author was visiting Tsinghua University, supported by the National
Natural Science Foundation of China under grant No. 61133013 and No. 60931160442.

‡The author is supported by the Lee Kuan Yew Postdoctoral Fellowship 2011 and the Singapore National
Research Foundation Fellowship 2012.

§The author is supported by the Singapore National Research Foundation under Research Grant NRF-CRP2-
2007-03, the Singapore Ministry of Education under Research Grant T206B2204 and by the NTU NAP Startup
Grant M58110000.



Like any construction that builds a hash function from a subcomponent, the cryptographic
quality of this internal permutation is very important for a sponge construction. Therefore, this
permutation P should not present any structural flaw, or should not be distinguishable from a
randomly chosen permutation. Previous cryptanalysis have not endangered the Keccak security
so far. Zero-sum distinguishers [2] can reach an important number of rounds, but generally
with a very high complexity. For example, the latest results [11] provide zero-sum partitions
distinguishers for the full 24-round 1600-bit internal permutation with a complexity of 21575.
When looking at smaller number of rounds the complexity would decrease, but it is unclear how
one can describe the partition of a 1600-bit internal state without using the Keccak round
inside the definition of the partition. Moreover, such zero-sum properties seem very hard to
exploit when the attacker aims at the whole hash function. On the other side, more classical
preimage attack on 3 rounds using SAT-solvers have been demonstrated [19]. Finally, Bernstein
published [4] a 2511.5 computations (second)-preimage attack on 8 rounds that allows a workload
reduction of only half a bit over the generic complexity with an important memory cost of 2508.

Our contributions. In this article, we analyze the differential cryptanalysis resistance of the
Keccak internal permutation. More precisely, we first introduce a new and generic method that
looks for good differential paths for all the Keccak internal permutations, and we obtain the
currently best known differential paths. We then describe a simple method to utilize the available
freedom degrees which allows us to derive distinguishers for reduced variants of the Keccak

internal permutations with low complexity. Finally, we apply the idea of rebound attack [18]
to Keccak. This application is far from being trivial and requires a careful analysis of many
technical details in order to model the behavior of the attack. This technique is in particular much
more complicated to apply to Keccak than to AES or to other 4-bit Sbox hash functions [24,
14]. One reason for that is that Keccak has weak alignment [8]. This is why we call our attack
“unaligned rebound attack”. The model introduced has been verified experimentally on a small
version of Keccak and we eventually obtained differential distinguishers for up to 8 rounds
of the submitted version of Keccak to the SHA-3 competition. In order to demonstrate why
differential analysis is in general more relevant than zero-sum ones in regards to the full hash
function, we applied our techniques to the recent Keccak challenges [27] and managed to obtain
the currently best known practical collision attack for up to two rounds.

Outline. In Section 2, we first briefly describe the Keccak family of hash functions. We
describe our differential path search algorithm in Section 3 and we derive simple differential
distinguishers from it in Section 4. We present our theoretical model and we apply the rebound
attack on Keccak in Section 5. Finally, we present our results and draw conclusions in Section 6.

2 The Keccak Hash Function Family

Keccak [9, 10] is a family of variable length output hash functions based on the sponge construc-
tion [5]. In Keccak family, the underlying function is a permutation chosen from a set of seven
Keccak-f permutations, denoted as Keccak-f [b] where b ∈ {1600, 800, 400, 200, 100, 50, 25}
is the permutation width as well as the internal state size of the hash function. The Keccak

family is parametrized by an r-bit bitrate and c-bit capacity with b = r + c.

2.1 The Keccak-f permutations

The internal state of the Keccak family can be viewed as a bit array of 5 × 5 lanes, each of
length w = 2ℓ where ℓ ∈ {0, 1, 2, 3, 4, 5, 6} and b = 25w. The state can also be described as a



three dimensional array of bits defined by a[5][5][w]. A bit position (x, y, z) in the state is given
by a[x][y][z] where x and y coordinates are taken over modulo 5 and the z coordinate is taken
over modulo w. A lane of the internal state at column x and row y is represented by a[x][y][·],
while a slice of the internal state at width z is represented by a[·][·][z].

Keccak-f [b] is an iterated permutation consisting of a sequence of nr rounds indexed from
0 to nr − 1 and the number of rounds are given by nr = 12 + 2ℓ. A round R consists of a
transformation of five step mappings and is defined by: R = ι◦χ◦π ◦ρ◦ θ. These step mappings
are discussed below.

θ mapping. This linear mapping intends to provide diffusion for the state and is defined for

every x, y and z by: θ : a[x][y][z]← a[x][y][z] +
4
⊕

y′=0

a[x− 1][y′][z] +
4
⊕

y′=0

a[x+ 1][y′][z − 1].

That is, the bitwise sum of the two columns a[x− 1][·][z] and a[x+ 1][·][z − 1] is added to each
bit a[x][y][z] of the state.

ρ mapping. This linear mapping intends to provide diffusion between the slices of the state
through intra-lane bit translations. For every x, y and z: ρ : a[x][y][z]← a[x][y][z + T (x, y)],
where T (x, y) is a translation constant. That is, all bit positions in each lane are translated by
a constant amount that depends on the column x and row y considered.

π mapping. This linear mapping intends to provide diffusion in the state through transpo-
sition of the lanes. More precisely, it is defined for every x, y and z as: π : a[x′][y′][z] ←

a[x][y][z], with

(

x′

y′

)

=

(

0 1
2 3

)

·

(

x
y

)

.

Since this results in transposition of bits into a same slice, this mapping is an intra-slice trans-
position.

χ mapping. This is the only non-linear mapping of Keccak-f and is defined for every x, y
and z by: χ : a[x][y][z]← a[x][y][z] + ((¬a[x+ 1][y][z]) ∧ a[x+ 2][y][z]).
This mapping is similar to an Sbox applied independently to each 5-bit row of the state and
can be computed in parallel to all rows. We represent by s = 5w the number of Sboxes/rows in
Keccak internal state. Here ¬ denotes bit-wise complement, and ∧ the bit-wise AND.

ι mapping. For every round R of the Keccak-f permutation, this mapping adds constants
derived from an LFSR (see [9] for details) to the lane a[0][0][·]. These constants are different in
every round i: ι : a[0][0][·]← a[0][0][·] + RC[i].
This mapping aims at destroying the symmetry introduced by the identical nature of the re-
maining mappings in every round of the Keccak-f permutation.

We refer to the Keccak specifications document [9] for all the translation and round con-
stants.

3 Finding Differential Paths for Keccak-f Internal Permutations

Before describing how we use the freedom degrees in a rebound attack setting, we first study
how to find “good” differential paths for all Keccak variants. In this section, we describe our
differential finding algorithms. We start by recalling several special properties of the mappings θ
and χ in the round function, followed by our algorithm which provides most of the best known
differential paths for the Keccak internal permutations. In particular, we provide the currently
best known 3, 4 and 5-round differential paths for Keccak-f [1600], the internal permutation
from the submitted version of Keccak.



3.1 Special properties of θ and χ

It is noted by the Keccak designers [9, Section 2.4.3] that when every column of the state sums
ot 0, θ acts as identity. The set of such states is called column parity kernel (CP-kernel). Since
θ is linear, this property applies not only to the state values, but also to differentials. While θ
expands a single bit difference into at most 11 bits (2 columns and the bit itself), it acts as identity
on differences in the CP-kernel. This property will be intensively used in finding low Hamming
weight bitwise differentials. Another interesting property is that θ−1 diffuses much faster than
θ, i.e., a single bit difference can be propagated to about half state bits through θ−1 [9, Section
2.3.2]. However, the output of θ−1 is extremely regular when the Hamming weight of the input
is low.

The χ layer updates is a row-wise operation and can also be viewed as a 5-bit Sbox. Similar
to the analysis of other Sboxes, we build its differential distribution table (DDT). We remark
that when a single difference is present, χ acts as identity with best probability 2−2, while input
differences with more active bits tend to lead to more possible output differences, but with lower
probability. It is also interesting to note that given an input difference to χ, all possible output
differences occur with same probability (however this is not the case for χ−1).

3.2 First tools

Our goal is to derive “good” bitwise differential paths by maintaining the bit difference Hamming
weight as low as possible. The ι permutation adds predefined constants to the first lane, and hence
has no essential influences when such differentials are considered. For the rest of the paper, we
will ignore this layer. We note that θ, ρ and π are all linear mappings, while χ acts as a non-linear
Sbox. Furthermore, ρ and π do not change the number of active bits in a differential path, but
only bit positions. Hence, θ and χ are critical when looking for a “good” differential path. Since
χ is followed by θ in the next round (ignoring ι), we consider these two mappings together by
treating a slice of the state as a unit, and try to find the potential best mapping of the slice
through χ with the following two rules.

1. Given an input difference of the slice, i.e., 5 row differences, find all possible output differences
by looking into the DDT table. Then among all combinations of solutions of the 5 rows, choose
the output combinations with minimum number of columns with odd parity.

2. In case of a draw, we select the state with the minimum number of active bits.

Rule 1 aims at reducing the amount of active bits after applying θ by choosing each slice of
the output of the χ closest to the CP-kernel (i.e., with even parity for most columns), and rule
2 further reduces the amount of active bits within the columns. Although this strategy may not
lead to the minimum number of active bits after θ in the entire state (the full Keccak-f [1600]
state is too large to precompute the best mappings for the whole state), it finds the best slice-wise
mappings with help of a table of size 225 (tricks like removing the ordering of the rows reduce
the table size to about 218).

3.3 Algorithm for differential path search

Denote λ = π ◦ ρ ◦ θ (all linear mappings), and the state at round i before (resp. after) applying
the linear layer λ as ai (resp. bi). We start our search from a1, i.e., the input state to the second
round, and compute backwards for one round, and few rounds forwards, as shown below.

a0
λ−1

←−− b0
χ−1

←−− a1
λ
−→ b1

χ
−→ a2

λ
−→ b2

χ
−→ a3

λ
−→ b3 · · ·



The forward part is longer than the backward part because the diffusion of θ−1 is much better
than for θ, thus, it will be easier for us to control the bit differences Hamming weight for several
forward rounds (instead of backward rounds).

We choose a1 from the CP-Kernel. Since it is impossible to enumerate all combinations, we
further restrict to a subset of the CP-Kernel with at most 8 active bits and each column having
exactly 0 or 2 active bits. Note also that any bitwise differential path is invariant through position
rotation along the z axis, so we have to run through a set of size about 236. A brute-force search
on this set using our two rules stated previously finds 3-round differential paths with probability
2−32, 4-round differential paths with probability 2−142 and 5-round paths with probability 2−709

for Keccak-f [1600]. An example of 4 round path is given in the full version of the paper. We
provide also in Table 1 all the best differential path probabilities found for all Keccak internal
permutation sizes.

Table 1. Best differential path results for each version of Keccak internal permutations, for 1 up to 5 rounds.
The detailed differential paths for Keccak-f[1600] are shown in the full version of the paper. Paths in bold are
new results we found with the method presented in this paper.

b
best differential path probability (successive differential complexity of the rounds)

1 rd 2 rds 3 rds 4 rds 5 rds

100 2−2 (2) 2−8 (4 - 4) 2−19 (4 - 8 - 7) 2−30 (4 - 8 - 10 - 8) 2−54 (4 - 8 - 10 - 8 - 24)

200 2−2 (2) 2−8 (4 - 4) 2−20 (4 - 8 - 8) 2−46 (11 - 9 - 8 - 8) 2−108 (8 - 16 - 20 - 16 - 48)

400 2−2 (2) 2−8 (4 - 4) 2−24 (8 - 8 - 8) 2
−84 (16 - 14 - 12 - 42) 2−216 (16 - 32 - 40 - 32 - 96)

800 2−2 (2) 2−8 (4 - 4) 2
−32 (4 - 4 - 24) 2

−109 (12 - 12 - 12 - 73) 2−432 (32 - 64 - 80 - 64 - 198)

1600 2−2 (2) 2−8 (4 - 4) 2
−32 (4 - 4 - 24) 2

−142 (12 - 12 - 12 - 106) 2
−709 (16 - 16 - 16 - 114 - 547)

A better path (2−510) was found in-
dependently [23]

4 Simple Distinguishers for the Reduced Keccak Internal Permutations

Once the differential paths obtained, we can concentrate our efforts on how to use at best the
freedom degrees available in order to reduce the complexity required to find a valid pair for
the differential trails or to increase the amount of rounds attacked. We present in this section a
very simple method that allows to obtain low complexity distinguishers on a few rounds of the
Keccak internal permutations.

4.1 A very simple freedom degrees fixing method

We first describe an extremely simple way of using the available freedom degrees, which are
exactly the b-bit value of the internal state (since we already fixed the differential path). For all
the best differential paths found from Table 1, we can extend them by one round to the left or to
the right, by simply picking some valid Sboxes differential transitions. Obviously, this is going to
add a lot of new constraints because the number of active Sboxes will explode in this newly added
round and it will force the differential probability to be very low overall. However, we can use our
available freedom degrees specifically for this round so that its cost is null. One simply handles
each of the active Sboxes differential transitions for this round one by one, independently, by
fixing a valid value for the active Sboxes. In terms of freedom degrees consumption for this extra
round, in the worst case we have all s Sboxes active and a differential transition probability of 2−4

for each of them. Thus, we are ensured to have at least 25s−4s = 2s freedom degrees remaining
after handling this extra round.



Note that some more involved freedom degree methods (such as message modification [28])
might even allow to also control some of the conditions of the original differential path, thus
further reducing the complexity.

4.2 The generic case

At the present time, we are able to find valid pairs of internal state values for some differential
paths on a few rounds with a rather low complexity. Said in other words, we are able to compute
internal state value pairs with a predetermined input/output difference. A direct application
from this is to derive distinguishers. For a randomly chosen permutation of b bits, finding a
pair of inputs with a predetermined difference that maps to a predetermined output difference
costs 2b computations. Indeed, since the input and the output differences are fixed, the attacker
can not apply any birthday-paradox technique. Those distinguishers are called “limited-birthday
distinguishers” and can be generalized in the following way (we refer to [12] for more details): for
a randomly chosen b-bit permutation, the problem of mapping an input difference from a subset
of size I to an output difference from a subset of size J requires max{

√

2b/J, 2b/(I · J)} calls to
permutation (while assuming without loss of generality since we are dealing with a permutation
that I ≤ J).

Using the freedom degrees technique from the previous section and reading Table 1, we are for
example able to obtain a distinguisher for 5 rounds of the Keccak-f [1600] internal permutation
with complexity 2142 (while the generic case is 21600).

4.3 Extending the differential path

Since for many of our distinguishers, the gap between our attack and the generic case complexity
is very big, we can try to reach a few more rounds without increasing the complexity. Indeed,
by analyzing how the differences will propagate forward from the output and backward from
the input of our differential path, we will be able to determine the size of the possible input
differences set and the possible output differences set.

For the forward case (i.e. when adding a round to the right), we start from the fully determined
difference on the output of the differential path. We first apply the linear layers θ, ρ and π on this
output difference and we obtain the difference mask at the input of χ. Now, for each active Sbox,
knowing exactly its input difference, we can check with the DDT from χ that only a subset of
the 25 possibles output differences can be reached. Therefore, the size Γ out of the set of reachable
output differences after applying this extra round is bounded and this bound can be computed
exactly using the DDT from χ.

For the backward case (i.e. when adding a round to the left), we start from the fully deter-
mined difference on the input of the differential path. Then, reading at the DDT from χ−1, one
can check that one active Sbox can produce at most a certain small subset of the 25 possible
input differences. Therefore, the size Γ in of the set of reachable input differences after inverting
this χ layer is bounded and this bound can be computed exactly using the DDT from χ−1. Note
that continuing to invert the extra round by computing θ−1, ρ−1 and π−1 will not modify the
size of this set.

To conclude, using a r-round path from Table 1 with differential probability p, we extend it
by one more round in order to find valid internal state pairs for this new (r+1)-round differential
path with p−1 computations (see Section 4.1). Then, using the limited-birthday distinguishers,
one can derive a (r+3)-round distinguisher for the Keccak internal permutation with complexity
p−1, if p−1 < max{

√

2b/J, 2b/(I · J)}, where I = Γ out and J = Γ in if Γ out ≤ Γ in; I = Γ in and
J = Γ out otherwise. All the distinguishers we obtain with this method are summarized in Table 2.



Note that the reader might be concerned by the fact that the sizes Γ in and Γ out of the
reachable differences sets can be very big and might be not easy to describe in a compact way in
our distinguisher. However, we emphasize that all the reachable differences on the output (resp.
input) are actually built from the independent combinations of all the possible output differences
(resp. input differences) of all active Sboxes in the last round (resp. first round). Therefore, the
description of this set is easily done by identifying the reachable output differences (resp. input
differences) for all the Sboxes independently.

5 The Rebound Attack on Keccak

The rebound attack is a freedom degrees utilization technique that was first proposed by Mendel
et al. in [18] as an analysis of round-reduced Grøstl and Whirlpool. It was then improved in [17,
16, 12, 26] to analyze AES and AES-like permutations and also ARX ciphers [15].

With the help of rebound techniques, we show in this section how to extend the number of
attacked rounds significantly, but for a higher complexity. We will see that the application of the
rebound attack for Keccak seems quite difficult. Indeed, the situation for Keccak is not as
pleasant as the AES-like permutations case where the utilization of truncated differential paths
(i.e. path for which one only checks if one cell is active or inactive, without caring about the
actual difference value) makes the application of rebound attacks very easy to handle.

5.1 The original rebound attack

Let P denote a permutation, which can be divided into 3 sub-permutations, i.e., P = EF ◦EI◦EB.
The rebound attack works in two phases.

– Inbound phase or controlled rounds: this phase usually starts with several chosen in-
put/output differences of EI that are propagated through linear layers forward and backward.
Then, one can carry out meet-in-the-middle (MITM) match for differences through a single
Sbox layer in EI and generate all possible value pairs validating the matches.

– Output phase or uncontrolled rounds: With all solutions provided in the inbound phase,
check if any pair validates as well the differential paths for both the backward part pB and
the forward part pF .

The SuperSbox technique [16, 12] extends the EI from one Sbox layer to two Sbox layers for
an AES-like permutation, by considering two consecutive AES-like rounds as one with column-wise
SuperSboxes. This technique is possible due to the fact that one can swap few linear operations
with the Sbox in AES, so that the two layers of Sboxes in two rounds become close enough to
form one SuperSbox layer. However, in the case of Keccak, it seems very hard to form any
partition into independent SuperSboxes. For the same reason, using truncated differential paths
seems very difficult for Keccak, as it has recently been shown in [8].

5.2 Applying the rebound attack for Keccak internal permutations

Assume that we know a set of nB differential trails (called backward trails) on nrB Keccak

rounds and whose DP is higher or equal to pB. For the moment, we want all these backward
paths to share the same input difference mask ∆in

B and we denote by ∆out
B [i] the output difference

mask of the i-th trail of the set. Similarly, we consider that we also know a set of nF differential
trails (called forward trails) on nrF Keccak rounds and whose DP is higher or equal to pF . We
want all those forward paths to share the same output difference mask ∆out

F and we denote by
∆in

F [i] the input difference mask of the i-th trail of the set.
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Fig. 1. Rebound attack on Keccak

Our goal here is to build a differential path on nrB+nrF +1 Keccak rounds (thus one Sbox
layer of inbound), by connecting a forward and a backward trail with the rebound technique,
and eventually to find the corresponding solution values for the controlled round. We represent
by pmatch the probability that a match is possible from a given element of the backward set and
a given element of the forward set, and we denote by Nmatch the number of solution values that
can be generated once a match has been obtained.

For this connection to be possible, we need the inbound phase to be a valid differential path,
that is we need to find a valid differential path from a ∆out∗

B to a ∆in
F . By using random ∆out∗

B

and ∆in
F this will happen in general with very small probability, because we need the very same

set of Sboxes to be active/inactive in both forward and backward difference masks to have a
chance to get a match. Even if the set of active Sboxes matches, we still require the differential
transitions through all the active Sboxes to be possible.

We can generalize a bit this approach by allowing a fixed set of differences ∆in
B (resp. ∆out

F )
instead of just one. We call Γ in

B (resp. Γ out
B ) the size of the set of possible ∆in

B (resp. ∆out
B ) values

for the backward paths. Similarly, we call Γ in
F (resp. Γ out

F ) the size of the set of possible ∆in
F (resp.

∆out
F ) values for the forward paths. In fact, the number of possible differences in the backward or

forward parts will form a butterfly shape (see Figure 2). We call Γmid
B (resp. Γmid

F ) the minimum
number of differences in the backward (resp. forward) part.

Γ in

B Γmid

B Γ out

B Γ in

F Γmid

F Γ out

F

Inbound

Fig. 2. Number of differences for the rebound attack on Keccak.

The total complexity C to find one valid internal state pair for the (nrB + nrF + 1)-round
path is

C = nF + nB +
1

pmatch

·

⌈

1

pF · pB ·Nmatch

⌉

+
1

pB · pF
, (1)

with

Γ out
B · Γ in

F =
1

pmatch

·

⌈

1

pF · pB ·Nmatch

⌉

. (2)

The first two terms are the costs to generate the backward and forward paths. The term
⌈ 1
pF ·pB ·Nmatch

⌉ denotes the number of time we will need to perform the inbound and each in-
bound costs 1/pmatch. The last term is the cost for actually performing the outbound phase. The
condition (2) is needed since we need enough differences to perform the inbound phase.



Roadmap. For a better understanding of the behavior of the Sboxes in the rebound attack,
we will introduce some useful lemmas in Section 5.3. We explain how to prepare the forward
and backward differential paths in Section 5.4 and describe the inbound and outbound phases in
Section 5.5 and 5.6 respectively. We explain how to relate Sections 5.4, 5.5 and 5.6 in Section 5.7,
we show also how we can reduce the complexity of the attack and we give a numerical application
of our model. Finally we construct distinguishers from the differential paths in Section 5.8.

5.3 An Ordered Buckets and Balls Problem

We model the active/inactive Sboxes match as a limited capacity ordered buckets and balls

problem:the s = 5w ordered buckets (s = 320 for Keccak-f [1600]) limited to capacity 5 will
represent the s 5-bit Sboxes and the xB (resp. xF ) balls will stand for the Hamming weight of
the difference in ∆out∗

B (resp. in ∆in
F ). Given a set B of s buckets in which we randomly throw

xB balls and a set F of s buckets in which we randomly throw xF balls, we call the result a
pattern-match when the set of empty buckets in B and F after the experiment are the same.4

Before computing the probability of having a pattern-match, we need the following lemma.

Lemma 1. The number of possible combinations bbucket(n, s) to place n balls into s buckets of
capacity 5 such that no bucket is empty is

bbucket(n, s) :=















s
∑

i=⌈n/5⌉

(−1)s−i

(

s

i

)(

5i

n

)

if s ≤ n ≤ 5s

0 else.

(3)

The proof of this lemma is given in the full version of the paper.

Using (3), we can derive the probability pbucket(n, s) that every bucket contains at least one
ball when n balls are thrown into s buckets with capacity 5 and the expected number of active
buckets when n balls are thrown into s buckets. We can now relate this lemma to the more
general pattern-match problem. This model tells us that when the number of balls (i.e., active
bits) is not too small on both sides, most of the matches happen when (almost) all the Sboxes
are active. We analyze this behavior in more details in the full version of the paper.

A More General Problem. We can also look into a more general problem, i.e., we characterize
more precisely how the bits are distributed into the Sboxes.

Lemma 2. The probability pdist of distributing randomly n active bits into s 5-bit Sboxes such
that exactly Ai Sboxes contain i bits, for i ∈ [1, 5] is

pdist(A1, A2, A3, A4, A5) :=
s!
(

5
1

)A1
(

5
2

)A2
(

5
3

)A3
(

5
4

)A4
(

5
5

)A5

(s−A1 −A2 −A3 −A4 −A5)!A1!A2!A3!A4!A5!
(

5s
n

) , (4)

with n = A1 + 2A2 + 3A3 + 4A4 + 5A5.

Important Remark. Since most matches happen when all the Sboxes are active, in order to
simplify the analysis, we will use from now on only forward and backward paths such that all
Sboxes are active in the χ layer of the inbound phase.

4Note that the position of the balls in the buckets is significant. This is why we refer to an ordered buckets
and balls problem.



5.4 The differential paths sets

In this section, we explain how we generate the forward and backward paths, since this will have
an impact on the derivation of pmatch and Nmatch (this will be handled in the next two sections).

λ χ λ χ λ χ λ χ

Active bits

Active Sboxes

log DP of χ

Number of diffs

s = 320

Γ in
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= Γmid
F
· 219 · 2−1.7

∗ ← 6

6

[−24,−12]

Γmid
F

= 26

6→ 6

6

−12

Γmid
F

6→ [6, 18]

6

− −

Γmid
F
· 212

≤ 198

2408 · Γmid
F
≥ Γ out

F
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b
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n
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Fig. 3. The forward trails we are using. The distance between the two lines reflects the number of differences.

The forward paths. For the forward paths set (see Fig. 3), we start by choosing a differential
trail computed from the previous section and we derive a set from it by exhausting all the possible
Sbox differential transitions for the inverse of the χ layer in its first round (all the paths will
be the same except the differences on their input and on the input of the χ layer in the first
round). For example, we can use the 2 first rounds of the 4-round differential path we found (see
full version) which have a total success probability 2−24 and present 6 active Sboxes during the
χ layer of the first round. We randomize the χ−1 layer differential transitions for the 6 active
Sboxes of the first round, and we obtain about 219 distinct trails in total. We analyzed that all the
trails of this set have a success probability of at least 2−24 · 2−2·6 = 2−36 (this is easily obtained
with the χ−1 DDT). Moreover, note that they will all have the same output difference mask
(at the third round), but distinct input masks (at the first round). Since we previously forced
the requirement that all Sboxes must be active for the inbound match, we check experimentally
that 217.3 of the 219 members of the set fulfill this condition.5 We call τF the ratio of paths that
verify this condition over the total number of paths, i.e., τF = 2−1.7. Overall, we built a set
of 217.3 forward differential paths on nrF = 2 Keccak-f [1600] rounds, all with DP higher or
equal to pF = 2−36. We can actually generate 64 times more paths by observing that they are
equivalent by translation along the Keccak lane (the z axis). However, these paths will have
distinct output difference masks (the same difference mask rotated along the z axis), and we
have Γmid

F = 26. The total amount of input differences is Γ in
F := Γmid

F · 217.3 = 223.3 and we have
to generate in total nF = τF · Γ

in
F = 225 forward differential paths. We discuss the amount of

output differences in Section 5.8, since we extend there the path with two free additional rounds.

The backward paths. Applying the same technique to the backward case does not generate a
sufficient amount of output differences Γ out

B , crucial for a rebound-like attack. Thus, concerning
the backward paths set, we build another type of 2-round trails. We need first to ensure that
we have enough differential paths to be able to find a match in the inbound phase, i.e., we want
Γ out
B · Γ in

F = 1/pmatch · ⌈
1

pF ·pB ·Nmatch
⌉ following (2). Moreover, we will require these paths to verify

two conditions:

5The small amount of filtered forward paths (a factor 21.7) is due to the regularity of the output of θ inverse.
Thus, most of the paths have all Sboxes active when the Hamming weight of the input is low.
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(

2X

k

)

2k

∑

5

i=1
Ai

n

−2A1 − 3A2

−4(A3 + A4 + A5)

Γmid
B

(X) ·
(

2X

k

)

2kGB(n) · τ full
B

1st round 2nd round 3rd round

In
b
o
u
n
d

Fig. 4. The backward trails we are using. The distance between the two arrows reflects the number of differences.

1. First, we need to filter paths that have not all Sboxes active in the χ layer of the inbound
phase. This happens with a probability about τ fullB := bbucket(800, 320)/

(

5·320
n

)

= 2−15.9 if we
assume that about half of the bits are active. This assumption will be verified in our case (and
was verified in practice) since our control on the diffusion of the active bits will be reduced
greatly.

2. Moreover, all the paths we collect should have a DP of at least pB such that the number of
solutions Nmatch generated in the inbound phase is sufficient. Indeed, we must have Nmatch ≥
1/(pF ·pB) in order to have a good success probability to find one solution for the entire path.
We call τDP

B the probability that a path verifies this property. Hence, we need pB ≥ pmin
B =

1/(pF · Nmatch). We will show in Section 5.7 that Nmatch = 2486 and we previously showed
that pF = 2−36. Hence, pmin

B = 236−486 = 2−450.

These two filters induce a ratio τB := τ fullB · τDP
B of “good” paths. We have nB · τB = Γ out

B ,
where nB is the number of paths we need to generate. Thus, we need to generate nmin

B :=
1/(pmatch · ⌈

1
pF ·pB ·Nmatch

⌉ ·Γ in
F · τB) trails to perform the rebound. We will show in Section 5.7 that

pmatch = 2−491.47, that ⌈ 1
pF ·pB ·Nmatch

⌉ = 1 and that τB = 2−15.9. We also know that Γ in
F = 223.3.

Hence, nmin
B = 2491.47+15.9−23.3 = 2484.07.

We show now how we generated these paths. Fig. 4 can help the reading. We start at the
beginning of the second round by forcing X columns of the internal state to be active and each
active column will contain only 2 active bits (thus a total of 2X active bits). Therefore, we can

generate
(

5
2

)X
·
(

s
X

)

distinct starting differences and each of them will lead to a distinct input
difference of the backward path. Note also that all active columns are in the CP-Kernel and
thus applying the θ function on this internal state will leave all bit-differences at the same place.
Then, applying the ρ and π layers will move the 2X active bits to random locations before the
Sbox layer of the second round. If X is not too large, we can assume that for a good fraction of
the paths, all active bits are mapped to distinct Sboxes and thus we obtain 2X active Sboxes,
each with one active bit on its input. We call ǫ this fraction of paths which is given by

ǫ := pdist(2X, 0, 0, 0, 0) , (5)

where pdist is given by Lemma 2.6 We will need to take ǫ into account when we count the total
number of paths we can generate. This position in the paths, i.e., after the linear layer of the
second round, is the part with the lowest amount of distinct differences. Hence, we call the

number of differences at this point Γmid
B (X) :=

(

5
2

)X
·
(

s
X

)

· ǫ.

6Simulations verified this behavior in practice for the parameters we use in our attack.



Looking at the DDT from χ, one can check that with one active input bit in an Sbox, there
always exists:

– two distinct transitions with probability 2−2 for the Keccak Sbox such that we observe 2
active bits on its output (we call it a 1 7→ 2 transition)

– one single transition with probability 2−2 and one single active bit on its output (a 1 7→ 1
transition). This transition is in fact the identity.

We need to define how many 1 7→ 1 and 1 7→ 2 transitions we have to use, since there is a
tradeoff between the number of paths obtained and the DP of these paths. Whatever choices we
make, we always have that the success probability of this χ transition (in the second round) is
2−4X . Let k be the number of 1 7→ 2 transitions among the 2X possible ones. We will observe
2X + k active bits after χ. Before the χ transition, we have Γmid

B (X) different paths from the
initial choice. For each of these paths, we can now select

(

2X
k

)

distinct sets of 1 7→ 2 transitions
each of which can generate 2k different paths. These 2X + k bits are expanded through θ to at
most 11 · (2X + k) = 22X + 11k bits. However, this expansion factor (every active bit produces
11 one) is smaller when the number of bits increases. Let n be the number of obtained active
bits at the input of the Sboxes in the third round. At the beginning of the third round, we
have 2X + k active bits. For Keccak-f [1600], given 2X + k active bits at the input of θ, we
get n ≈ u − (u · (u − 1))/1600 bits at the output, with u := 11(2X + k) for X small enough.
Indeed, the 2X + k bits are first multiplied by 11 due to the property of θ. We suppose now
that these u active bits are thrown randomly and we check for collisions. Given u bits, we can
form u · (u− 1)/2 different pairs of bits. The probability that a pair collides is 2−1600, hence, we
have about u · (u− 1)/(2 · 1600) collisions of two bits. In a 2-collision, two active bits are wasted
(they become inactive). Hence, we can remove u · (u− 1)/1600 from the overall number of active
bits. For small X, we can neglect collisions between three, four and five active bits, since the bits
before θ are most likely separated and will not collide. Hence, we verify the equation for n. This
model has been verified in simulations for the values we are using.

We need now to evaluate the number of active Sboxes in the χ layer of the third round.
However, in order to precisely evaluate the DP of this layer (that we want to be higher than
pmin
B ) and the expansion factor we get on the amount of distinct differential paths, we also need

to look at how the bits are distributed into the input of the Sboxes. The probability pdist of
distributing randomly n active bits into s 5-bit Sboxes such that exactly Ai Sboxes contain i
bits, for i ∈ [1, 5] is given by Lemma 2.

Lemma 3. Suppose that we have n active bits before χ in the third round. Then, if n ≤ s, the
expected number of useful (i.e., which have DP ≥ pmin

B ) paths GB(n) we can generate verifies

GB(n) ≥

⌊n5 ⌋
∑

A5=0

⌊

(n−5A5)
4

⌋

∑

A4=0

⌊

(n−5A5−4A4)
3

⌋

∑

A3=0

⌊

(n−5A5−4A4−3A3)
2

⌋

∑

A2=0

F (X,A1, A2, A3, A4, A5) · 2
2A1+3A2+3.58A3+4(A4+A5) ,

(6)
where A1 := n− 5A5 − 4A4 − 3A3 − 2A2 and

F (X,A1, A2, A3, A4, A5) :=

{

pdist(A1, A2, A3, A4, A5) if 2−4X−2A1−3A2−4(A3+A4+A5) ≥ pmin
B

0 else.

(7)
Note that we use F (. . . ) to filter the paths that have a too low DP.

Proof. Given the number of active input bits in every Sbox, it is easy to compute the number
of paths we can generate by looking into the DDT.7 We find that for an input Hamming weight

7We considered the average case here since we already have a lot of paths to start with at the input of the
third round.



of 1 (resp. 2), there are always 22 (resp. 23) possible output differences. For an Hamming weight
of 3, half of the input differences can produce 23 differences and half 24 differences. Hence,
the expected value is 23.58. For input Hamming weights of 4 and 5, we can always produce 24

differences. Thus, the total expected number of paths we can generate when we have Ai Sboxes
with an input Hamming weight of i is 22A1+3A2+3.58A3+4(A4+A5).

Moreover, we count only the paths that verify pB ≥ pmin
B by discarding all the paths that

have a DP smaller than pmin
B using the filter F (. . . ). The DP of the complete path is given by

2−4X−2A1−3A2−4(A3+A4+A5) . (8)

Indeed, for the second round, we have one active bit per Sbox and, hence, a DP of 2−4X . For the
third round, an analysis of the DDT shows that, when we have 1 (resp. 2) active bit in the input,
the DP of the SBox is always 2−2 (resp. 2−3). For a Hamming weight of 3, there are two different
DPs depending on the input. We considered the worst case, which is 2−4. For a Hamming weight
of 4 and 5, the DP is always 2−4. Hence, the DP of the complete path verifies (8).

Now, using Lemma 2, we find that the paths occur with probability pdist(A1, A2, A3, A4, A5).
Hence, the expected number of paths we will get is the sum of all the probabilities of the path
that are not discarded by the filter. ⊓⊔

In practice, we compute GB(n) by summing over all possible values of A1, . . . , A5, such that
n = A1 + 2A2 + 3A3 + 4A4 + 5A5.

We have now reached the inbound round and we discard all the paths that do not have all
Sboxes active. Hence, we keep only a fraction of τ fullB = 2−15.9 paths.

It is now easy to see that

τDP
B :=

⌊n/5⌋
∑

A5=0

⌊(n−5A5)/4⌋
∑

A4=0

⌊(n−5A5−4A4)/3⌋
∑

A3=0

⌊(n−5A5−4A4−3A3)/2⌋
∑

A2=0

F (X,A1, A2, A3, A4, A5) (9)

with F (. . . ) defined in (7) since this is exactly the fraction of path we keep.
To summarize, we have now reached the inbound round and we are able to generate

Γ out
B = ǫ ·

(

5

2

)X

·

(

s

X

)

·

(

2X

k

)

· 2k ·GB(n) · τ
full
B (10)

differences that have a good DP and all Sboxes active and the total number of paths we have to
generate is nB = Γ out

B /τB = Γ out
B /(τ fullB · τDP

B ).
By playing with the filter bound, we noticed the following behavior. The stronger the filter

is (i.e., the higher we set the bound on the DP), the higher the expected value of the Hamming
weight at the input of the Sboxes of the inbound phase will be. This behavior will allow us to
reduce the complexity of our attack in Section 5.7, where we discuss the numerical application.
Hence, instead of filtering at pmin

B , we will filter at a higher value to get better results.

Summary. At this point, we started with nF (resp. nB) forward (resp. backward) paths from
which we kept only Γ in

F (resp. Γ out
B ) candidates that have a DP greater than pF (resp. pB) and

all Sboxes actives during the inbound.

5.5 The inbound phase

Now that we have our forward and backward sets of differential paths, we need to estimate the
average probability pmatch that two trails can match during the inbound phase of the rebound



attack. We recall that we already enforced all Sboxes to be active during this match, so pmatch

only takes into account the probability that the differential transitions through all the s Sboxes
of the internal state are possible.

A trivial method to estimate pmatch would be to simply consider an average case on the
Keccak Sbox. More precisely, the average probability that a differential transition is possible
through the Keccak Sbox, given two random non-zero 5-bit input/output differences is equal to
2−1.605. Thus, one is tempted to derive pmatch = 2−1.605·s. However, we observed experimentally
that the event of a match greatly depends on the Hamming weight of the input of the

Sboxes and this can be easily observed from the DDT of the χ layer (for example with an input
Hamming weight of one the match probability is 2−2.95, while for an input Hamming weight
of four the match probability is 2−0.95). Note that this effect is only strong regarding the input
of the Sbox (i.e. the backward paths), but there is no strong bias on the differential matching
probability concerning the output Hamming weight.

Therefore, in order to model more accurately the input Hamming weight effect on the match-
ing event, we first divide the backward paths depending on their Hamming weight and treat each
class separately. More precisely, we look at each possible input Hamming weight division among
the s Sboxes. To represent this division, we only need to look at the number of Sboxes having
a specific input Hamming weight (their relative position do not matter). We denote by ci the
number of Sboxes having an input Hamming weight i and we need the following equations to hold
∑5

i=1 ci = s since we forced that all Sboxes are active during a match. Moreover, for a Hamming
weight value w, we have

∑5
i=1 i · ci = w. The set of divisions ci verifying the above mentioned

equations is denoted by Cw. The number of possible 5s-bit vectors satisfying (c1, . . . , c5) (i.e., c1
Sboxes with 1 active bit, c2 with 2 etc.) is denoted bc(c1, . . . , c5) and

bc(c1, . . . , c5) =
s!

c1!c2! . . . c5!
· 5c1+c4 · 10c2+c3 . (11)

We can now compute the probability of having a match pmatch depending on the input Hamming
weight divisions:

Theorem 1. The probability pmatch of having a match is

pmatch =
5s
∑

w=s

Pr[Hwtotal = w|full]
∑

(c1,...,c5)∈Cw

bc(c1, . . . , c5)

bbucket(w, s)

5
∏

i=1

(

∑

y∈{0,1}5

∑

v∈{0,1}5:
Hw(v)=i

Pout(y) · 1DDT[v][y]
(

5
i

)

)ci

,

(12)
where Pout(y) is the measured probability distribution of having y at the output of an Sbox when
we enforce all Sboxes to be active, Pr[Hwtotal = w|full] is the measured probability distribution
of the Hamming weight of the input of the Sboxes when all Sboxes are active, bc(. . . ) is given
by (11), bbucket(w, s) by Lemma 1 and 1DDT[v][y] is set to one if the entry [v][y] is non-zero in the
DDT of the χ layer and zero otherwise.8

Proof. Let full be the event denoting that all Sboxes are active at the inbound phase. We have

pmatch := Pr[match|full] =
∑

w

Pr[match|Hwtotal = w, full] · Pr[Hwtotal = w|full] .

We define pmatch(w) := Pr[match|Hwtotal = w, full]. We have

pmatch(w) =
∑

(c1,...,c5)∈Cw

Pr[match|(c1, . . . , c5),Hwtotal = w, full] · Pr[(c1, . . . , c5)|Hwtotal = w, full] . (13)

8Note that Pr[Hwtotal = w|full] greatly depends on the backward paths we choose and that these paths depends
on pmatch. We explain how to solve this cyclic dependency in Section 5.7.



We easily find that

Pr[(c1, . . . , c5)|Hwtotal = w, full] =
bc(c1, . . . , c5)

bbucket(w, s)
, (14)

since bc(c1, . . . , c5) is the number of possible combinations of vectors verifying c1, . . . , c5 and
bbucket(w, s) the number of possible combinations of vectors for which all Sbox are active. It
remains to compute

Pr[match|(c1, . . . , c5),Hwtotal = w, full] = Pr[match|(c1, . . . , c5), full] ,

since (c1, . . . , c5) have all a total Hamming weight of w. We can now consider every Sbox inde-
pendently. Hence,

Pr[match|(c1, . . . , c5), full] =
5
∏

i=1

(Pr[match|HwSBox = i, full])ci (15)

and

Pr[match|HwSBox = i, full] =
∑

y∈{0,1}5

∑

v∈{0,1}5:
Hw(v)=i

Pout(y) · 1DDT[v][y]
(

5
i

) .

⊓⊔

We continue now with our example of the Keccak-f [1600] internal permutation. The measured
distributions along with some intermediate values will be given in the extended version of the
paper.

We require to test 1/pmatch backward/forward paths combinations in order to have a good
chance for a match. Note that in the next section, we will actually put an extra condition on
the match in order to be able to generate enough values in the worst case during the outbound
phase.

5.6 The outbound phase

Now that we managed to obtain a match with complexity 1/pmatch, we need to estimate how
many solutions can be generated from this match. Again, one is tempted to consider an average
case on the Keccak Sbox: the average number of Sbox values verifying a non-zero random
input/output difference such that the transition is possible is equal to 21.65. The overall number
of solutions would then be 21.65·s. However, as for pmatch, this number highly depends on the
Hamming weight of the input of the Sboxes and this can be easily observed from the DDT of
the χ layer (for example with an input Hamming weight of one the average number of solutions
is 23, while for an input Hamming weight of four the average number of solutions is 21).

In order to obtain the expected number of values Nmatch we can get from a match, we proceed
like in the previous section and divide according to the input Hamming weight.

Theorem 2. Let N be a random variable denoting the number of values we can generate. Let
also full be the event denoting that all the Sboxes are active for the inbound phase. Given a
Hamming weight of w at the input of the Sboxes, we can get Nw := E[N |match,Hwtotal = w, full]
values from a match, with

Nw =
1

pmatch(w)

∑

(c1,...,c5)∈Cw

5
∏

i=1

Zci ·
bc(c1, . . . , c5)

bbucket(w, s)
, (16)



with

Z :=
1
(

5
i

)2

(

∑

v∈{0,1}5:
Hw(v)=i

DDT[v]

)

∑

y∈{0,1}5

∑

v∈{0,1}5:
Hw(v)=i

Pout(y) · 1DDT[v][y] ,

where DDT[v] is the value of the non-zero entries in line v of the DDT, Pout(y) is the measured
probability distribution of having y at the output of an Sbox when we enforce all Sboxes to be
active, pmatch(w) is given by (13), bc(. . . ) is given by (11), bbucket(w, s) is given by Lemma 1
and 1DDT[v][y] is set to one if the entry [v][y] is non-zero in the DDT of the χ layer and zero
otherwise.

Proof. We have

Nw =
∑

(c1,...,c5)∈Cw

E[N |match, (c1, . . . , c5),Hwtotal = w, full] · Pr[(c1, . . . , c5)|match,Hwtotal = w, full]

=
∑

(c1,...,c5)∈Cw

Nmatch(c1, . . . , c5) ·
Pr[match|(c1, . . . , c5), full] · Pr[(c1, . . . , c5)|Hwtotal = w, full]

pmatch(w)
,

where Nmatch(c1, . . . , c5) := E[N |match, (c1, . . . , c5), full]. Note that the remaining terms can be
computed from (14) and (15). Like before, we can now consider each Sbox independently. Thus

Nmatch(c1, . . . , c5) =

5
∏

i=1

(E[NSBox|match,HwSBox = i, full])ci ,

where NSBox is a random variable denoting the number of values we can obtain for a single Sbox.
Note that no output distribution needs to be considered, since for a fixed input the non-zero
values of the DDT are always the same. We call this non-zero value DDT[v]. Then,

E[NSBox|match,HwSBox = i, full] =
1
(

5
i

)

∑

v∈{0,1}5:
Hw(v)=i

DDT [v] .

⊓⊔

One would be tempted to take the expected value of all the Nw and compute Nmatch as

∑

w

E[N |match,Hwtotal = w, full] · Pr[Hwtotal = w|match, full] .

This expectancy would be fine if we were expecting a high number of matches. This is however
not necessarily our case. Hence, we need to ensure that the number of values we can generate
from the inbound is sufficient. To do this, first note that Nw decreases exponentially while w
increases. Similarly, pmatch(w) increases exponentially while w increases. Thus, we are more likely
to obtain a match at a high Hamming weight which will lead to an insufficient Nmatch.

To solve this issue, we proceed as follows. First, we compute Nw for every w. We look then
for the maximum Hamming weight wmax we can afford, i.e., such that Nwmax ≥ 1/(pB · pF ). This
way, we are ensured to obtain enough solutions from the match. However, we need to update our
definition of a match: a match occurs only when the Hamming weight of the input is lower than
wmax. Hence, instead of summing over all possible values of w, we sum only up to wmax and (12)



becomes

pmatch =

wmax
∑

w=s

Pr[Hwtotal = w|full] ·
∑

(c1,...,c5)∈Cw

bc(c1, . . . , c5)

bbucket(w, s)
×

×











5
∏

i=1

(

∑

y∈{0,1}5

∑

v∈{0,1}5:
Hw(v)=i

Pout(y) · 1DDT[v][y]
(

5
i

)

)ci











.

(17)

The number of values we can then obtain from the inbound is Nmatch ≥ Nwmax .
We can now apply this model to the Keccak-f [1600] internal permutation. Some useful in-

termediate results and relevant Nwmax (with their associated pmatch) will be given in the extended
version of the paper.

5.7 Finalizing the Attack and Improvements

In Section 5.4, we showed how to choose the backward paths given the probability of having
a match in the inbound phase (pmatch) and the number of solution we can generate from this
match (Nmatch). In Sections 5.5 and 5.6, we showed how to compute pmatch and Nmatch. However,
in these computations, we needed the probability distribution of the Hamming weight of the
input of the Sbox, Pr[Hwtotal = w|full]. This probability depends greatly on the paths we select
in Section 5.4.

To solve this circular dependency, we performed several iterations of the following algorithm
until we found some parameters that verify all equations. First, we estimated roughly Pr[Hwtotal =
w|full] by taking some random backward paths with limited complexity. Using the worst case cost
of these paths, we were able to select wmax such that the number of values generated from the
inbound is sufficient. Then, we computed pmatch and Nmatch. With this first guess, we searched
for an X and a k such that the we can find a match with a good probability and such that we can
generate enough values from the inbound. Then, we computed Pr[Hwtotal = w|full] using these
new paths generated by X, k and pB and started our algorithm again with this new distribution.
After some iterations, we found a set of filtered backwards paths that provided a sufficient pmatch

and Nmatch.
As discussed in Section 5.4, we noticed the following interesting behavior. By increasing pB,

the expectation of Pr[Hwtotal = w|full] is higher. This leads then to a smaller Nmatch and a greater
pmatch. Furthermore, less values need to be generated from the inbound phase since the worst
case cost of the backward paths is lower. By taking advantage of this behavior, we were able to
reduce significantly the complexity of our attack.

When (X, k) = (8, 8), we have ǫ = 0.736 and Γmid
B =

(

5
2

)X
·
(

s
X

)

·ǫ = 277.26. If we filter all paths
that have a DP smaller than 2−450, i.e., we set pB = 2−450, we get for (X, k) = (8, 8) at least

ǫ ·
(

5
2

)X
·
(

s
X

)

·
(

2X
k

)

· 2k ·GB(n) · τ
full
B = 2493.88−15.9 = 2477.98 distinct differences using (10) for the

inbound (for these parameters, the difference Hamming weight at the input of the χ layer in the
third round is n = 227.9). With these parameters, since we remove the paths with a DP lower than
pB, we keep τDP

B ≈ 1−10−10 of the paths, following (9), i.e., we have almost no filtering on the DP.
Hence, we filter the backward paths with a ratio τB = τ fullB · τDP

B ≈ 2−15.9 · (1− 10−10) = 2−15.9.
We have also pB = 2−450 and pF = 2−36. Therefore, we need Nmatch ≥ 2486. Computations
show that we have to set wmax = 1000. This leads to pmatch = 2−491.47. This implies that the
minimum total number of backward paths we need to generate is nmin

B = 1/(pmatch · Γ
in
F · τB) =

1/(pmatch · Γ
in
F · τ

full
B ) = 2484.07. All these paths apply on nrB = 2 Keccak-f [1600] rounds, all

with DP higher or equal to pmin
B = 236−486 = 2−450.



To summarize, we have that the number of backward output differences is Γ out
B = nmin

B · τB =
2484.07−15.9 = 2468.17 and that the number of forward input differences is Γ in

F = 223.3. Hence,
there is a total of 2491.47 couples of (∆out

B , ∆in
F ) for the inbound phase, which is enough since it

is equal to 1/pmatch. Once a match is found, the worst case complexity of the connected path is
1/(pB · pF ) ≤ 2450+48 = 2486 which is lower or equal to Nmatch. Hence, we can generate enough
values from the inbound phase to find with a good probability values verifying the differential
path.

The overall complexity for the rebound attack given by (1) is C = 2491.47.
This model was verified on the Keccak-f [100] internal permutation. By applying this attack

on it, we found a 4-round result together with solution pairs. This gives a 6-round distinguisher
with complexity 228.76 which is higher than the simple distinguishers for 6 rounds. However, our
goal for Keccak-f [100] was to verify our model in practice, so that we can be confident for
applying it to the Keccak-f [1600] version. Moreover, finding such a solution is hard since all s
Sboxes are active in the middle of the path.

5.8 The distinguisher

We will use exactly the same type of limited-birthday distinguishers as in Section 4. Our rebound
attack finds pairs of internal state values such that the input and output difference masks are
fully predetermined and we already showed that this should require 2b operations in the generic
case. Therefore, we obtain a (nrB + nrF + 1)-round distinguisher for the b-bit Keccak internal
permutation considered if the total cost of the rebound attack to find one solution is lower than
2b.

In the case of Keccak-f [1600], we have nrB = nrF = 2 but note that the backward paths
utilized do not have the same input difference ∆in

B and the forward paths do not have the same
output difference ∆out

F . We can attack three more rounds by adding two extra rounds to the right
of the forward paths exactly as we did for the distinguishers in Section 4.2 and one more round
to the left of the backwards paths (see Fig. 3 and 4).

Relaxing the Forward Paths. We analyze now the impact of this two additional paths on Γ out
F , the

set of reachable output differences. At the entrance of the third round, every Sbox has one single
active bit. Hence, according to the DDT, there are only 4 different possibilities at the output of
the Sboxes. Since we have 6 active Sboxes in the third round, the number of possible differences
at the output of the third round is multiplied by 46 = 212. Thus, the number of differences at
the output of the third round is Γmid

F · 212 = 26 · 212 = 218.
We need now to look at the fourth round to obtain Γ out

F and compute the generic complexity
of the distinguisher. In the third round, every active Sbox can produce at most 3 active bits at its
output, since each active Sbox has only one single active bit at its input. Hence, the maximum
Hamming weight at the output is 3 · 6 = 18. Each of these active bits can be expanded to at
most 11 bits through θ and hence, we have at most 11 · 18 = 198 active bits at the input of the
Sboxes of the fourth round. In the worst case, each of these bits will be in a different Sbox and
will produce four possible differences. Hence, we have Γ out

F ≤ Γmid
F · 212 · 4198 = 218 · 2396 = 2414.

Relaxing the Backward Paths. Each Sbox with one single active bit at its output can have 9
possible input differences and the maximum possible of input differences that can occur for a
given input difference is 12 (see χ−1 DDT). Since we have 2X active Sboxes, the number of
possible input differences is increased by a factor of at most 92X . Therefore, Γ in

B ≤ Γmid
B · 92X/ǫ

and we reduced the complexity by a factor 24X .
We have Γ in

B ≤ Γmid
B (8) · 92·8/ǫ = 277.7+50.7 = 2128.4 and Γ out

F ≤ 2414. The generic complexity
of the distinguisher is, hence, greater than 21057.6. This is much greater than the complexity of
the rebound attack C = 2491.47.



6 Results and Conclusion

Table 2. Best differential distinguishers complexities for each version of Keccak internal permutations, for 1 up
to 8 rounds. Note that due to its technical complexity when applied on Keccak, the rebound attack has only
been applied to Keccak-f [100] and Keccak-f [1600].

b
best differential distinguishers complexity

1 rd 2 rds 3 rds 4 rds 5 rds 6 rds 7 rds 8 rds

100 1 1 1 22 28 219 - -

200 1 1 1 22 28 220 246 -

400 1 1 1 22 28 224 284 -

800 1 1 1 22 28 232 2109 -

1600 1 1 1 22 28 232 2142 2491.47

In this article, we analysed the internal permutations used in the Keccak family of hash
functions in regards to differential cryptanalysis. We first proposed a generic method that looks
for the best differential paths using CP-kernel considerations and better χ mapping. This new
method provides some of the best known differential paths for the Keccak internal permutations
and we derived distinguishers with rather low complexity exploiting these trails. In particular we
were able to obtain a practical distinguisher for 6 rounds of the Keccak-f [1600] permutation.
Then, aiming for attacks reaching more rounds, we adapted the rebound attack to the Keccak

case. This adaptation is far from trivial and contains many technical details. Our model was
verified by applying the attack on the reduced version Keccak-f [100]. The main final result is a
8-round distinguisher for the Keccak-f [1600] internal permutation with a complexity of 2491.47.
All our distinguisher results are summarized in Table 2. Note that our attack does not endanger
the security of the full Keccak. We believe that this work will also help to apply the rebound
attack on a much larger set of primitives.

This work might be extended in many ways, in particular by further refining the differential
path search or by improving the inbound phase of the rebound attack such that the overall cost
is reduced. Moreover, another research direction would be to analyse how the differential paths
derived in this article can lead to collision attacks against reduced versions of the Keccak hash
functions. Also, the bottleneck of our attack is now pmatch. Using the techniques presented in [22]
could help reducing the complexity of it.

Acknowledgements. The authors would like to thank the anonymous referees for their helpful
comments. We are extremely grateful to Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles
Van Assche for their remarks on the first drafts of this paper. Finally, we are very grateful to
Praveen Gauravaram, Tao Huang, Phuong Ha Nguyen, Wun-She Yap, Przemyslaw Sokolowski
and Wenling Wu for useful discussions.

References

1. Masayuki Abe, editor. Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference on the

Theory and Application of Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings,
volume 6477 of LNCS. Springer, 2010.

2. Jean-Philippe Aumasson and Willi Meier. Zero-sum distinguishers for reduced Keccak-f and for the core
functions of Luffa and Hamsi. Presented at the rump session of CHES 2009, 2009.



3. Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols. In CCS, pages 62–73. ACM, 1993.

4. Daniel J. Bernstein. Second preimages for 6 (7? (8??)) rounds of Keccak?, November 2010. Available at
http://ehash.iaik.tugraz.at/uploads/6/65/NIST-mailing-list_Bernstein-Daemen.txt.

5. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Sponge functions. ECRYPT Hash
Workshop 2007, May 2007.

6. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Keccak specifications. Submission to
NIST (Round 1), 2008. Available at http://keccak.noekeon.org/Keccak-specifications.pdf.

7. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Keccak specifications. Submission to
NIST (Round 2), 2009. Available at http://keccak.noekeon.org/Keccak-specifications-2.pdf.

8. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On alignment in Keccak. ECRYPT
II Hash Workshop, 2011.

9. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. The KECCAK Reference. Submission
to NIST (Round 3), 2011. Available at http://keccak.noekeon.org/Keccak-reference-3.0.pdf.

10. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. The KECCAK SHA-3 Submission.
Submission to NIST (Round 3), 2011. Available at http://keccak.noekeon.org/Keccak-submission-3.pdf.

11. Christina Boura, Anne Canteaut, and Christophe De Cannière. Higher-Order Differential Properties of Keccak
and Luffa. In Antoine Joux, editor, FSE, volume 6733 of Lecture Notes in Computer Science, pages 252–269.
Springer, 2011.

12. Henri Gilbert and Thomas Peyrin. Super-Sbox Cryptanalysis: Improved Attacks for AES-Like Permutations.
In Hong and Iwata [13], pages 365–383.

13. Seokhie Hong and Tetsu Iwata, editors. Fast Software Encryption, 17th International Workshop, FSE 2010,

Seoul, Korea, February 7-10, 2010, Revised Selected Papers, volume 6147 of LNCS. Springer, 2010.
14. Dmitry Khovratovich, María Naya-Plasencia, Andrea Röck, and Martin Schläffer. Cryptanalysis of Luffa v2

Components. In Alex Biryukov, Guang Gong, and Douglas R. Stinson, editors, Selected Areas in Cryptography,
volume 6544 of Lecture Notes in Computer Science, pages 388–409. Springer, 2010.

15. Dmitry Khovratovich, Ivica Nikolic, and Christian Rechberger. Rotational Rebound Attacks on Reduced
Skein. In Abe [1], pages 1–19.

16. Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and Martin Schläffer. Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. In Mitsuru Matsui, editor, ASIACRYPT,
volume 5912 of LNCS, pages 126–143. Springer, 2009.

17. Florian Mendel, Thomas Peyrin, Christian Rechberger, and Martin Schläffer. Improved Cryptanalysis of the
Reduced Grøstl Compression Function, ECHO Permutation and AES Block Cipher. In Michael J. Jacobson
Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, Selected Areas in Cryptography, volume 5867 of
LNCS, pages 16–35. Springer, 2009.

18. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In Orr Dunkelman, editor, FSE, volume 5665 of LNCS,
pages 260–276. Springer, 2009.

19. Pawel Morawiecki and Marian Srebrny. A SAT-based preimage analysis of reduced Keccak hash functions.
Presented at Second SHA-3 Candidate Conference, Santa Barbara 2010, 2010.

20. National Institute of Standards and Technology. FIPS 180-1: Secure Hash Standard. http://csrc.nist.gov,
April 1995.

21. National Institute of Standards and Technology. Announcing Request for Candidate Algorithm Nominations
for a New Cryptographic Hash Algorithm (SHA-3) Family. Federal Register, 27(212):62212–62220, November
2007. Available: http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf(2008/10/17).

22. María Naya-Plasencia. How to Improve Rebound Attacks. In Phillip Rogaway, editor, CRYPTO, volume
6841 of Lecture Notes in Computer Science, pages 188–205. Springer, 2011.

23. María Naya-Plasencia, Andrea Röck, and Willi Meier. Practical analysis of reduced-round keccak. In Daniel J.
Bernstein and Sanjit Chatterjee, editors, INDOCRYPT, volume 7107 of Lecture Notes in Computer Science,
pages 236–254. Springer, 2011.

24. Vincent Rijmen, Deniz Toz, and Kerem Varici. Rebound Attack on Reduced-Round Versions of JH. In Hong
and Iwata [13], pages 286–303.

25. Ronald L. Rivest. The MD5 message-digest algorithm. Request for Comments (RFC) 1320, Internet Activities
Board, Internet Privacy Task Force, April 1992.

26. Yu Sasaki, Yang Li, Lei Wang, Kazuo Sakiyama, and Kazuo Ohta. Non-full-active Super-Sbox Analysis:
Applications to ECHO and Grøstl. In Abe [1], pages 38–55.

27. Keccak team. Keccak Crunchy Crypto Collision and Pre-image Contest, 2011. See http://keccak.noekeon.

org/crunchy_contest.html.
28. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-1. In Victor Shoup,

editor, CRYPTO, volume 3621 of LNCS, pages 17–36. Springer, 2005.
29. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In Ronald Cramer, editor,

EUROCRYPT, volume 3494 of LNCS, pages 19–35. Springer, 2005.



Differential propagation analysis of Keccak

Joan Daemen and Gilles Van Assche

STMicroelectronics

Abstract. In this paper we introduce new concepts that help read and understand low-weight
differential trails in Keccak. We then propose efficient techniques to exhaustively generate all 3-
round trails in its largest permutation below a given weight. This allows us to prove that any 6-round
differential trail in Keccak-f [1600] has weight at least 74. In the worst-case diffusion scenario where
the mixing layer acts as the identity, we refine the lower bound to 82 by systematically constructing
trails using a specific representation of states.

Keywords: cryptographic hash function, Keccak, differential cryptanalysis, computer-aided
proof

1 Introduction

The goal of cryptanalysis is to assess the security of cryptographic primitives. Finding attacks
or properties not present in ideal instances typically contributes to the cryptanalysis of a given
primitive. Building upon previous results, attacks can be improved over time, possibly up to a
point where the security of the primitive is severely questioned.

In contrast, cryptanalysis can also benefit from positive results that exclude classes of attacks,
thereby allowing research to focus on potentially weaker aspects of the primitive. Interestingly,
weaknesses are sometimes revealed by challenging the assumptions underlying positive results.
Nevertheless, both attacks and positive results can be improved over time and together con-
tribute to the understanding and estimation of the security of a primitive by narrowing the gap
between what is possible to attack and what is not.

Differential cryptanalysis (DC) is a discipline that attempts to find and exploit predictable
difference propagation patterns to break iterative cryptographic primitives [6]. For ciphers, this
typically means key retrieval, while for hash functions, this is the generation of collisions or of
second preimages. The basic version makes use of differential trails (also called characteristics or
differential paths) that consist of a sequence of differences through the rounds of the primitive.
Given such a trail, one can estimate its differential probability (DP), namely, the fraction of all
possible input pairs with the initial trail difference that also exhibit all intermediate and final
difference when going through the rounds.

A more natural way to characterize the power of trails in unkeyed primitives is by their
weight w. In general the weight of a trail is is the sum of the weight of its round differentials,
where the latter is the negative of its binary logarithm. For many round functions, including that
of Keccak-f and Rijndael, the weight equals the number of binary equations that a pair must
satisfy to follow the specified differences. Assuming that these conditions are independent, the
weight of the trail relates to its DP as DP = 2−w and exploiting such a trail becomes harder as
the weight increases. For a primitive with, say, b input and output bits, the number of pairs that
satisfy these conditions is then 2b−w. The assumption of independence does not always apply.
For instance, a trail with w > b implies redundant or contradictory conditions on pairs, for which
satisfying pairs may or may not exist. Another example where this independence assumption
breaks down are the plateau trails that occur in Rijndael [9]. These trails, with weight starting
from w = 30 for 2 rounds, have a DP equal to 2z−w with z > 0 for a fraction 2−z of the keys



and zero for the remaining part. In general, they occur in primitives with strong alignment [4]
and a mixing layer based on maximum-distance separable (MDS) codes.

In the scope of DC, positive results can be established by finding a lower bound on the weight
of any trail over a specified number of rounds. For instance, the structure of Rijndael and the
properties of its diffusion operations allow to analytically derive such lower bounds [8]. Such
results can be transposed to the permutations underlying the hash function Grøstl [12]. Other
examples include a lower bound on the number of active S-boxes in JH [17] or computer-aided
proofs on the weight of trails in Noekeon [7] and on the minimum number of active AND gates
in MD6 [16,13].

Keccak is a sponge function submitted to the SHA-3 contest [15,5,2]. Recently, new results
were published on the differential resistance of this function and among those heuristic techniques
were proposed to build low-weight differential trails [11,14]. These gave the currently best trails
for 3, 4 and 5 rounds of the underlying permutation Keccak-f [1600]. In particular, Duc et
al. found a trail of weight 32 for 3 rounds, and this motivated us to systematically investigate
whether trails of lower weight exist. Also, there are some similarities between Keccak and
MD6, but unlike MD6, the permutation used in the proposed SHA-3 candidate Keccak has no
significant lower bounds on the weight of trails. So the philosophy behind [16,13] was another
source of inspiration and motivation for our research.

Lower bounds on symmetric trails were already proven in [5]. They provide lower bounds
with weight above the permutation width on Keccak-f [25] to Keccak-f [200] but only partial
bounds in the case of Keccak-f [1600]. Thanks to the Matryoshka structure [5], a lower bound
W on trails in Keccak-f [25w] implies a lower bound W ′ = W w′

w on w-symmetric trail in
Keccak-f [25w′] for w′ > w. These are summarized in Table 1.

w Lower bound for Keccak-f [25w] Lower bound for Keccak-f [1600]
1 30 per 5 rounds 1920 per 5 rounds tight
2 54 per 6 rounds 1728 per 6 rounds tight
4 146 per 16 rounds 2336 per 16 rounds non-tight
8 206 per 18 rounds 1648 per 18 rounds non-tight

Table 1. Lower bounds above the permutation width on 1- to 8-symmetric trails [5].

In this paper, we report on techniques to efficiently generate all the trails in Keccak-f [1600]
up to a given weight. We implemented these techniques in a computer program, which allowed
us at this point to completely scan the space of 3-round differential trails up to weight 36. This
confirmed that the trail found by Duc et al. has minimum weight and allowed us to demon-
strate that there are no 6-round trails with weight below 74. These results are summarized in
Table 2. The source code of the program will be made available in an updated version of the
KeccakTools package [3].

As a by-product of this trail search, this paper proposes new techniques to relate the proper-
ties of the θ mapping in Keccak to the weight of differential trails. In the worst-case diffusion
scenario where θ acts as the identity, we build upon the results of [5] and [14] to systematically
construct so-called in-kernel trails using an efficient representation of states.

Further discussions on how to exploit differential trails in Keccak can be found in [4]. Also,
the attacks in [10] combine algebraic techniques with a differential trail.

The paper is organized as follows. In Section 2, we recall the structure of Keccak and map-
pings inside its round function. Section 3 focuses on how to represent and extend the differential
trails of Keccak. Section 4 sets up the overall strategy and Section 5 introduces a basic trail
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Rounds Lower bound Best known
3 32 (this work) 32 [11]
4 - 134 (Appendix B)
5 - 510 [14]
6 74 (this work) 1360 [5]

24 296 (this work) -

Table 2. Weight of differential trails in Keccak-f [1600].

generation technique. The advanced techniques are covered in Sections 6 and 7, which address
two complementary cases. Finally, Section 8 extends the results from 3 to 6 rounds.

2 Keccak

Keccak combines the sponge construction with a set of seven permutations denoted Keccak-f [b],
with b ranging from 25 to 1600 bits [1,5]. In this paper, we concentrate on the permutation used
in the SHA-3 submission, namely, Keccak-f [1600].

The state of Keccak-f [1600] is organized as a set of 5×5×64 bits with (x, y, z) coordinates.
The coordinates are always considered modulo 5 for x and y and modulo 64 for z. A row is a set
of 5 bits with given (y, z) coordinates, a column is a set of 5 bits with given (x, z) coordinates
and a slice is a set of 25 bits with given z coordinate.

The round function of Keccak-f [1600] consists of the following steps, which are only briefly
summarized here. For more details, we refer to the specifications [5].
– θ is a linear mixing layer, which adds a pattern that depends solely on the parity of the

columns of the state. Its properties with respect to differential propagation will be detailed
and exploited in Section 6.

– ρ and π displace bits without altering their value. Jointly, their effect is denoted by (x, y, z)
π◦ρ−→

(x′, y′, z′), with (x, y, z) a bit position before ρ and π and (x′, y′, z′) its coordinates afterward.
– χ is a degree-2 non-linear mapping that processes each row independently. It can be seen as

the application of a translation-invariant 5-bit S-box. The differential propagation properties
will be detailed below.

– ι adds a round constant. As it has no effect on difference propagation, we will ignore it in
the sequel.

3 Representing and extending trails

In general, for a function f with domain Zb
2, we define the weight of a differential (u′, v′) as

w(u′
f→ v′) = b− log2

∣∣{u : f(u)⊕ f(u⊕ u′) = v′
}∣∣ .

If the argument of the logarithm is non-zero (i.e., the DP is non-zero), we say that u′ and v′ are
compatible. Otherwise, the weight is undefined.

The weight of a trail is the sum of the weight of the differentials that compose this trail.
In Keccak-f , we specify differential trails with the differences before each round function. For
clarity, we adopt a redundant description by also specifying the differences before and after the
linear steps λ = π ◦ ρ ◦ θ. An n-round trail is of the following form, where each bi must be equal
to λ(ai),

Q = a0
π◦ρ◦θ−→ b0

χ→ a1
π◦ρ◦θ−→ b1

χ→ a2
π◦ρ◦θ−→ . . .

χ→ an, (1)

and has weight w(Q) =
∑

i w(ai
χ◦π◦ρ◦θ−→ ai+1). Since bi = λ(ai), this expression simplifies to

w(Q) =
∑

i w(bi
χ→ ai+1).
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3.1 Extending forward and trail prefixes

Given a trail as in (1), it is possible to characterize all states that are compatible with bn = λ(an)
through χ and thus to find all n+1-round trails Q′ that have Q as its leading part. This process
is called forward extension.

The χ mapping has algebraic degree 2 and, for a given input difference bn, the space of
compatible output differences forms a linear affine variety A(bn) with |A(bn)| elements [5]. For
a compatible an+1, the weight w(bn

χ→ an+1) depends only on bn and is equal to w(bn) ≜
log2 |A(bn)|, with the symbol ≜ denoting a definition. As χ operates on each row independently,
the weight w(b) can also be computed on each row independently and summed. To construct
A(b), the bases resulting from each active row are gathered. Table 3 displays offsets and bases
for the affine spaces of all single-row differences.

forward propagation
Difference offset base elements w(·) wrev(·) || · ||
00000 00000 0 0 0
00001 00001 00010 00100 2 2 1
00011 00001 00010 00100 01000 3 2 2
00101 00001 00010 01100 10000 3 2 2
10101 00001 00010 01100 10001 3 3 3
00111 00001 00010 00100 01000 10000 4 2 3
01111 00001 00011 00100 01000 10000 4 3 4
11111 00001 00011 00110 01100 11000 4 3 5

Table 3. Space of possible output differences, weight, minimum reverse weight and Hamming
weight of all row differences, up to cyclic shifts.

As a consequence, the weight of a n-round trail Q is w(Q) =
∑n−1

i=0 w(bi) and depends only
on the n-tuple (b0, . . . , bn−1). We call the latter a trail prefix. All n-round trails sharing this trail
prefix and with an compatible with bn−1 through χ have the same weight.

3.2 Extending backward and trail cores

Similarly, given a trail as in (1), it is possible to construct all states that are compatible with
a0 through χ−1 and thus to find all n+ 1-round trails Q′ that have Q as its trailing part. This
process is called backward extension. In contrast to χ, its inverse has algebraic degree 3 and the
space of compatible differences is not an affine variety in general. Yet, compatible values can be
identified per active row and combined.

For a difference a after χ, we define the minimum reverse weight wrev(a) as the minimum
weight over all compatible b before χ. Namely,

wrev(a) ≜ min
b : a∈A(b)

w(b).

Like for the restriction weight, the minimum reverse weight wrev(a) can be computed on each
row independently and summed. Values are also shown in Table 3.

Given a n − 1-round trail prefix Q = (b1, . . . , bn−1), it is easy to construct a difference b0
such that the trail prefix Q′ = b0||Q has weight given by w(Q′) = w(Q) +wrev(λ−1(b1)). This is
the smallest possible weight a n-round trail can have with Q as its trailing part. It follows that
a sequence of n− 1 state values Q̃ = (b1, . . . , bn−1) defines a set of n-round trails with a weight
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at least

w̃(Q̃) ≜ wrev(λ−1(b1)) +

n−1∑
i=1

w(bi).

We denote the former by the term trail core and the latter by its weight. Note that a n-round
trail core is determined by only n− 1 states, although its weight takes n individual weights into
account.

4 Towards a bound for trails in Keccak-f [1600]

To find a lower bound on differential trail weights in Keccak-f [1600], our strategy is the
following.
– First, we exhaustively generate all 3-round trails up to a given weight T3. There exists a

trail of weight 32 as found by Duc et al. [11]. So by scanning the space of trails up to weight
T3 ≥ 32, we are sure to hit at least one trail and the trail with minimum weight yields a
tight lower bound on 3-round trails.

– Second, we derive a lower bound, not necessarily tight, on the weight of 6-round trails by
using the 3-round trails found. Any 6-round trail of weight 2T3 + 1 or less satisfies either
w(b0)+w(b1)+w(b2) ≤ T3 or w(b3)+w(b4)+w(b5) ≤ T3. We thus use forward and backward
extension from 3-round trails up to weight 2T3+1. If such trails are found, the one with the
smallest weight defines the lower bound, which is naturally tight. Otherwise, this establishes
a lower bound for the weight of 6-round trails to 2T3 + 2. In the latter case no trail with
weight 2T3 + 2 is known so the bound is not necessarily tight.

The reason for targeting 3-round trails in the first phase is the following. The minimum weight
of a 1-round trail is 2, with a single active bit in b0. For the 24 rounds of Keccak-f [1600], this
amounts to a lower bound of 24 × 2 = 48. Constructing a state a with only two active bits in
the same column leads to 2-round trail core with weight 8. Hence, if we base ourselves only on
2-round trail, we reach a lower bound of 12× 8 = 96. If the 3-round trail of weight 32 found by
Duc et al. [11] has minimum weight, this would mean that a 24-round trail has weight at least
8 × 32 = 256. Also, 3-round trail cores can be constructed by taking into account conditions
across one layer of χ. Generating exhaustively trails of 4 rounds or more up to some weight
would probably yield better bounds, but at the same time it is more difficult as several layers of
χ must be dealt with. Instead, the two-step approach described above can take advantage of the
exhaustive set of trails covered (i.e., all up to weight T3) to derive a bound based on T3 instead
of on the minimum weight over 3 rounds.

4.1 Generating all 3-round trails up to a given weight

In our approach we generate all 3-round differential trails of the form

Q = a0
π◦ρ◦θ−→ b0

χ→ a1
π◦ρ◦θ−→ b1

χ→ a2
π◦ρ◦θ−→ b2

χ→ a3, (2)

up to some weight limit w(Q) ≤ T3. We call this the target space. We do this by searching for
all trail cores (b1, b2) with weight below T3. Each such trail core (b1, b2) thus represents a set
3-round trails of the form of Eq. (2) with weight not below that of its core. In the scope of this
paper, we limited ourselves to T3 = 36.

We covered the set of all 3-round trails up to weight T3 in three sub-phases:
1. In Section 5, we start with all cores such that wrev(λ−1(b1)) ≤ 7, w(b1) ≤ 7 or w(b2) ≤ 7.
2. In Section 6, we generate all remaining cores, except where both a1 and a2 are in the kernel.
3. In Section 7, we finish by generating all cores where both a1 and a2 are in the kernel.
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4.2 Too many states to generate and extend, even when exploiting symmetry

A way to generate all trails in the target space is to first generate all states up to a given weight
and then do backward and forward extensions to obtain trail cores. If we define T1 ≜

⌊
T3
3

⌋
, then

for w̃(b1, b2) ≤ T3 either wrev(λ−1(b1)) ≤ T1, w(b1) ≤ T1 or w(b2) ≤ T1. To cover the target
space, we need to consider these cases:

– wrev(λ−1(b1)) ≤ T1, so we have to generate all states a1 with wrev(a1) ≤ T1, compute
b1 = λ(a1) and extend forward the 2-round trail cores (b1) to get 3-round trail cores.

– w(b1) ≤ T1, so we have to generate all states b1 with w(b1) ≤ T1 and extend forward the
2-round trail cores (b1).

– w(b2) ≤ T1, so we have generate all states b2 with w(b2) ≤ T1 and extend backward the
2-round trail cores (b2).

Unfortunately, this brute-force strategy requires a high number of states to cover the whole
space for an interesting target weight. E.g., if T3 = 36, then T1 = 12 and there are about
1.42× 1015 ≈ 250 states with weight up to 12 in Keccak-f [1600].

We can reduce this number by taking the z symmetry into account. Except for ι, which
does not influence difference propagation, all the step mappings of Keccak-f are invariant
when translated along z. Hence, for each trail Q = (b0, b1, . . . , bn) there exists a trail Q′ =
(z(b0), z(b1), . . . , z(bn)) of same weight, with z the translation operator along the z axis. In the
sequel, we will always consider trails up to translations in z. This reduces the search space by
approximately a factor w = 64—not exactly a factor w because of states that are periodic in z.
Yet, the number of states to extend forward and backward is still about 244.

5 Generating trails with a low number of active rows

In this section, we generate and extend states with weight up to T ′
1 = 7. This does not cover

the whole target space with T3 = 36 but the remaining portion of the target space is limited to
trails with a more flat weight profile, i.e., they satisfy w(bi) ≥ T ′

1 +1 = 8 for all i ∈ {0, 1, 2} and
w(bi) + w(bi+1) ≤ T ′

2 = T3 − (T ′
1 + 1) = 28 for all i ∈ {0, 1}.

More specifically, in this phase we look at the number of active rows in order to generate all
trail cores such that wrev(λ−1(b1)) ≤ T ′

1, w(b1) ≤ T ′
1 or w(b2) ≤ T ′

1, for T ′
1 = 7. According to

Table 3, each active row contributes for at least 2 to the weight. Hence,

w(b) ≥ 2∥b∥row and wrev(b) ≥ 2∥b∥row,

and we can cover all the states up to weight 7 by generating all states with up to ⌊T
′
1
2 ⌋ = 3 active

rows.
This approach can be refined by looking at the number of active rows not only for one state

but for two consecutive states. With χ, the minimum weight a round differential can have is 2.
So, wrev(λ−1(b1)) ≥ 2 implies that wrev(λ−1(b2)) + w(b2) ≤ w(b1) + w(b2) ≤ T3 − 2 = 34 and
similarly w(b2) ≥ 2 implies that wrev(λ−1(b1)) + w(b1) ≤ T3 − 2 = 34. Hence,

wrev(λ−1(bi)) + w(bi) ≤ T3 − 2 = 34 ⇒ ∥λ−1(bi)∥row + ∥bi∥row ≤
⌊
T3 − 2

2

⌋
= 17.

In practice, what we did was the following.

– Generate B = {b : (∥b∥row ≤ 3 or ∥λ−1(b)∥row ≤ 3) and ∥λ−1(b)∥row + ∥b∥row ≤ 17}. This is
done by first generating all states b with up to 3 active rows and filter on ∥λ−1(b)∥row, and
then generate all states a with up to 3 active rows, compute b = λ(a) and filter on ∥b∥row.
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– Do forward extension of all b1 ∈ B and keep the cores Q̃ = (b1, b2) with w̃(Q̃) ≤ T3.
– Do backward extension of all b2 ∈ B and keep the cores Q̃ = (b1, b2) with w̃(Q̃) ≤ T3.

We found a trail core (b1, b2) with wrev(λ−1(b1)) + w(b1) + w(b2) = 4 + 4 + 24 = 32 (see
also Table 4). It contains the 3-round trail found by Duc et al. [11], of which a trail prefix is
displayed in Figure 2 in Appendix A.

There are
(
320
n

)
(31)n states with n active rows. As this function grows very quickly, it was

not reasonable to extend this search beyond 3 active rows.

6 Generating trails using the properties of θ

To investigate the remaining part of the target space, we look at the properties of states a with
respect to θ, and specifically the parity of its columns, to limit the weight of two-round trails. An
important parameter to classify the states a is their column parity, so as to study states in sets
of parities. From the column parity, we derive the θ-gap, defined below. With θ-gap g, the effect
of θ is to flip 10g bits. There are thus at least 10g active bits, each either in a or in θ(a). So, the
higher the θ-gap the higher wrev(a)+w(λ(a)) is likely to be. We can efficiently compute a lower
bound for wrev(a) + w(λ(a)) over all a with a given parity. For the target weights considered in
this paper, this allows us to limit the states to consider to those with a parity belonging to a
mere handful of values.

We then use the generated states a are to build trail cores by forward and backward extension.
As the θ-gap increases, the number of states a to consider decreases since more states a can
immediately be excluded. An important case is when all the columns of a have even parity, i.e.,
a is in the kernel. In this case, the θ-gap is zero and a high number of states must be generated
and extended. For this reason, this section focuses only the case where either a1 or a2 is not in
the kernel. The complementary case is covered in Section 7.

6.1 Properties of θ

As θ is a linear function, its properties are the same whether applied on a state absolute value
or on a difference, so we just write “value”. The following definitions are from [5].

The column parity (or parity for short) P (a) of a value a is defined as the parity of the
columns of a, namely P (a)[x][z] =

∑
y a[x][y][z]. A column is even (resp. odd) if its parity is

0 (resp. 1). The parity can also be defined on a slice, namely P (az)[x] =
∑

y a[x][y][z]. When
the parity of a state or of a slice is zero (i.e., all its columns are even), we say it is in the
column-parity kernel (or kernel for short).

The mapping θ consists in adding a pattern to the state, which we call the θ-effect. The
θ-effect of a value a is E(a)[x][z] = P (a)[x− 1][z]+P (a)[x+1][z− 1]. For a fixed θ-effect e[x][z],
θ comes down to adding the y-symmetric pattern e[x][y][z] ≜ e[x][z](∀y). So θ depends only on
column parities and always affects columns symmetrically in y.

A column of coordinates (x, z) is affected iff E(a)[x][z] = 1; otherwise, it is unaffected. Note
that the θ-effect always has an even Hamming weight so the number of affected columns is even.

The θ-gap is defined as the Hamming weight of the θ-effect divided by two. Hence, if the
θ-gap of a value at the input of θ is g, the number of affected columns is 2g and applying θ to
it results in 10g bits being flipped.

We have introduced the θ-gap via the θ-effect, but it can be defined directly using the parity
itself. For this we introduce an alternative, single-dimensional, representation of a parity p[x][z].
We map the (x, z) coordinates to a single coordinate t as t → (x, z) = (−2t, t) and denote
the result by p[t]. In this representation a run is a sequence of ones delimited by zeroes. As
illustrated on Figure 1, each run induces two affected columns. First, if it starts in coordinates

7



z

x

Fig. 1. Example of parity pattern. Each square represents a column. An odd column contains
a circle, while an affected column is denoted by a dot. A column can be both odd and affected.
The odd columns of a run are connected with a line. The affected columns due to a run are
located at the right (resp. top left) of the start (resp. end) column of the run.

(x, z), it implies an affected column in its right neighbor (x + 1, z). And if it ends in (x′, z′) it
implies an affected column in its top-left neighbor (x′−1, z′+1). Another example can be found
in Figure 2. The following lemma links the number of runs to the θ-gap.

Lemma 1. The parity p has θ-gap g iff p[t] has g runs.

6.2 The propagation branch number

The propagation branch number of a parity p is the minimum weight of the 2-round trail core
(b) among states with this parity. More formally,

B(p) ≜ min{w̃(b) : P (λ−1(b)) = p}.

Owing to the portion of the target space already covered in Section 5, we can limit the propa-
gation branch number to T ′

2 = 28. The strategy is as follows:

– First, we identify and exclude parity patterns p such that the propagation branch number
can be proven to exceed T ′

2 = 28.
– Then, for the remaining parity patterns p we look for all states b = λ(a) with P (a) = p and

w̃(b) ≤ T ′
2 = 28.

– Finally, we forward and backward extend the states seen as 2-round trail cores up to weight
T3 = 36.

Clearly, the kernel states, i.e., states such that P (a) = 0 must be considered. For instance,
a state a with just two active bits in the same column will have wrev(a) = 4. Then, b = λ(a) =
π(ρ(a)) since θ has no effect in this case, and b also has two active bits. For Keccak-f [1600], all
the rotation constants in ρ are different and these two bits will not be in the same slice, so not
in the same row and wrev(a) + w(b) = 8. Hence, the propagation branch number of the all-zero
parity is at least 8 and thus the all-zero parity pattern must be included.
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States that are out of the kernel are likely to have a higher propagation branch number. We
now concentrate on how to find a lower bound on the propagation branch number of a given
parity pattern.

6.3 Bounding the row branch number

The row branch number of a parity p is the minimum number of active rows before and after λ
among states with this parity. More formally,

Brows(p) ≜ min{∥λ−1(b)∥row + ∥b∥row : P (λ−1(b)) = p}.

Since an active row has at least propagation weight 2, this means that B(p) ≥ 2Brows(p). We
can thus use the row branch number as a way to limit the search to parity patterns for which
w̃(b) ≤ T ′

2.
For a given parity pattern, we classify the columns as either affected, unaffected odd or

unaffected even. We make use of the following properties to find a lower bound on the row
branch number.
Lemma 2. In terms of active rows, θ satisfies the following properties:

– An active bit in an affected column before θ will be passive after θ, and vice-versa. So, for
each bit (x, y, z) π◦ρ−→ (x′, y′, z′) of an affected column, at least one of row (y, z) in λ−1(b) and
row (y′, z′) in b will be active.

– An odd unaffected column always contains at least one active bit and this bit stays active
after θ. So, for at least one bit (x, y, z) π◦ρ−→ (x′, y′, z′) of an odd unaffected column, both rows
(y, z) in λ−1(b) and (y′, z′) in b will be active.

These properties are translated into Algorithm 1, which returns a lower bound of Brows(p).
The algorithm avoids counting twice an active row by marking (in the sets a and b) the row
positions already encountered.

6.4 Looking for candidate parity patterns

To find trails such that any two consecutive rounds have weight up to T ′
2 = 28, we have to

consider the parity patterns listed in Lemma 3.

Lemma 3. A 2-round differential trail Q = (b0, b1, b2) in Keccak-f [1600] with w(Q) ≤ 28
necessarily satisfies one of the following properties on the parity of a1 = λ−1(b1):

– a1 is in the kernel, i.e., P (a1) = 0;
– the θ-gap of a1 is 1 with a single run of length 1 or 2; or
– the θ-gap of a1 is 2 or 3 with runs of length 1 each, all starting in the same slice.

If parities are considered up to translation along z, we can restrict ourselves to parity patterns
with runs starting in slice z = 0.

To prove this result, we conducted a recursive search as follows. Each parity is represented
as a set of runs. First, all parity patterns p with a single run (so θ-gap 1) are investigated.
All p with Brows(p) ≤ T ′

2
2 = 14 are stored into a set S. Then, we recursively add runs not

overlapping the already added ones (so as to cover θ-gaps higher than 1), and all found p with
Brows(p) ≤

T ′
2
2 = 14 are stored into a set S.

To limit the search, we use the following monotonicity property on the number of active
rows. Using Lemma 2, changing an unaffected even column into either an unaffected odd or an
affected column cannot decrease the number of active rows.

9



Algorithm 1 Computing a lower bound of Brows(p)
Let a and b be sets of row positions, which are initially empty
B ← 0
for each affected column (x, z) do

for y ∈ Z5 do
Let (x, y, z)

π◦ρ−→ (x′, y′, z′)
if (y, z) /∈ a and (y′, z′) /∈ b then

B ← B + 1
a← a ∪ {(y, z)} and b← b ∪ {(y′, z′)}

end if
end for

end for
for each unaffected odd column (x, z) do

Let (x, i, z)
π◦ρ−→ (x′

i, y
′
i, z

′
i) for i ∈ Z5

if {(i, z), i ∈ Z5} ∩ a = ∅ then
B ← B + 1
a← a ∪ {(i, z), i ∈ Z5}

end if
if {(y′

i, z
′
i), i ∈ Z5} ∩ b = ∅ then

B ← B + 1
b← b ∪ {(y′

i, z
′
i), i ∈ Z5}

end if
end for
return B

In the recursive search described above, adding a run to a parity pattern p can turn an un-
affected odd column into an affected column. Hence, we cannot use the monotonicity property
directly on the runs. However, adding a run never turns an affected column back into an unaf-
fected one. So, before recursively adding a run to p, we apply a modified version of Algorithm 1
that does not take unaffected odd columns into account; this modified algorithm is monotonic
in the runs. If the value returned by this modified algorithm is already above T ′

2
2 = 14, then

there is no need to further add runs. This efficiently cuts the search.
Before being added to the candidate set S, the parity pattern p is tested with the unmodified

Algorithm 1. For the remaining parity patterns, we explicitly generated all states a with these
parities up to w̃(λ(a)) ≤ T ′

2 = 28. This allowed us to prove Lemma 3.

6.5 Starting from out-of-kernel states

For a given parity pattern p, we can construct all states b = λ(a) with P (a) = p and w̃(b) ≤
T ′
2 = 28. We proceed in two phases.

– In a first phase, we generate all states a such that P (a) = p by assigning all possible 16 values
to affected (odd or even) columns and by assigning a single active bit in each unaffected odd
column. These states are such that ||a|| + ||λ(a)|| is exactly 10g + 2c, with g the θ-gap and
c the number of unaffected odd columns.

– In a second phase, we take the states generated in the first phase and add pairs of bits to all
unaffected columns. By adding a pair of bits, we do not alter P (a).

In both phases, we keep only the states b = λ(a) for which w̃(b) ≤ T ′
2 = 28. As can be seen in

Table 3, both the weight and the reverse minimum weight are monotonic, i.e., adding an active
bit to the state cannot decrease them. We can therefore limit the search by stopping adding
pairs of bits when w̃(b) is above T ′

2 = 28.
In practice, what we did was the following.

– Let P be the set of parity patterns satisfying one of the conditions of Lemma 3 except p = 0.
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– By the method described above, we construct all states in the set B = {b : P (λ−1(b)) ∈
P and w̃(b) ≤ T ′

2 = 28}.
– Finally, we forward and backward extend the states in B to 3-round trail cores up to weight

T3 = 36.

We again found the same trail core as in Section 5. The trail prefix of weight 32 has P (a1) = 0
(so a1 is in the kernel) and P (a2) has one run of length 2 (so a2 has θ-gap 1). No other trail
cores were found.

When extending the states in B, we exhaustively scan all compatible states, thereby including
cases where P (a1) = 0 or P (a2) = 0. Hence, we covered the whole target space, except for trails
such that both P (a1) = 0 and P (a2) = 0.

7 Generating in-kernel trails

To close the target space, we must look at in-kernel trails of the form in Eq. (2) with both
P (a1) = 0 and P (a2) = 0. In the case of in-kernel trails, we were able to be completely cover
the space up to weight T3 = 40, and we expect the techniques presented here can cover trails of
higher weight. As P (a1) = P (a2) = 0, the θ operation has no effect and therefore bi = π(ρ(ai)).
So this comes down to looking for states a = a1, b = b1, c = a2 and d = b2 connected as:

a
π◦ρ−→ b

χ→ c
π◦ρ−→ d, with P (a) = P (c) = 0. (3)

We now summarize how we can efficiently generate all in-kernel three-round trail cores up to
some weight and provide more details in following subsections. The key element in our method
is the observation that any state b with P (a) = 0 and for which there exists a state c with
P (c) = 0 can be represented in a specific way. The states a and b are iteratively constructed by
adding active bits in the form of bit sequences called chains and vortices, defined in Section 7.2
below. Chains and vortices have an even number of active bits per column in a by construction
and hence ensure P (a) = 0.

In b, there can be zero, one or more slices called knots, which contain three or more active
bits. Each of these active bits is the end point of a chain that leads to another knot or that
connects back to the same knot. The intermediate active bits of a chain appear pairwise in slices
holding exactly two active bits in one column (called orbital slices, see Section 7.1). On top of
chains connecting knots, a state b can exhibit a vortex, i.e., a cyclic sequence of active bits that
appear pairwise both in the columns of a and in the columns of b.

By starting with an empty state and progressively adding chains, knots and vortices, one
can quickly build states a and b that satisfy P (a) = 0 and for which there exist c with P (c) = 0,
leading to 3-round in-kernel trail cores. Any state leading to a in-kernel trail can be represented
in this way, and care is taken so that all possible states are generated, up to a given target
weight. At each step, a lower bound on the weight of 3-round trail cores containing a and b is
computed so as to efficiently limit the search.

As a final step, the generated states a and b are forward-extended to states c and d, limiting
to c values in the kernel. Thanks to the properties of χ (see Section 3.1), the compatible states c
can be expressed as a linear affine space. It is thereby easy to take the intersection of this affine
space with the set of states such that P (c) = 0.

7.1 Characterizing the slices in b

Definition 1. A state b is tame if P (λ−1(b)) = 0 and such that there exists at least one state
c compatible with b through χ such that P (c) = 0.

11



To characterize states b such that P (c) = 0, we can reason on the slices bz of b since χ and
P can be jointly described in terms of slices. In particular, each slice cz of c must be in the
kernel, namely, P (cz) = 0, and we have to characterize the slices bz under that constraint. First,
if bz = 0 then cz = 0 and P (cz) = 0. Then, a slice bz with a single active bit cannot be in the
kernel after χ, as at least one column of cz will have a single active bit. Finally, a slice bz with
two active bits must have its two active bits in the same column for cz to be in the kernel. By
inspection of Table 3, a row with a single active bit at coordinate x, e.g., 00100 transforms into
an active row of the form uv100 with u, v ∈ {0, 1}, so the active bit stays active at x and zero,
one or two active bits can appear at x− 2 and x− 1 of the same row. So, if the two bits are not
in the same column, one of the active bits that stays after χ will not find another active bit in
the same column. We summarize this in the next lemma.

Lemma 4. If b is tame, then each of its slices has either
– no active bit,
– two active bits in the same column, or
– three or more active bits.

We call an empty slice a slice with no active bit, and an orbital slice is a slice with two active
bits in the same column. A slice that is neither empty not an orbital slice is called a knot. We say
that a knot is tame if it can transform after χ into a slice in the kernel. According to Lemma 4,
a tame knot has at least three active bits.

7.2 Characterizing the set of active bits
Since in the kernel θ acts as the identity, the active bits of a are just moved to other positions in
b and their number remains the same, i.e., ||a|| = ||b||. We can therefore represent a and b by a
list of active bit positions (pi)i=1...||a|| in either the coordinates (xi, yi, zi) in a or the coordinates
(x′i, y

′
i, z

′
i) in b, with (xi, yi, zi)

π◦ρ−→ (x′i, y
′
i, z

′
i).

First, we start with the active bits in a. We say that active bits pi and pj are peer if they
are in the same column in a, i.e., xi = xj and zi = zj . Since each column has an even number
of active bits when P (a) = 0, an active bit thus always has a peer.1

Then, we move to the active bits in b. We say that the two active bits pi and pj are chained
if they both lie in the same orbital slice in b. So x′i = x′j and z′i = z′j and no other active bit is
in slice z′i.

A chain is a sequence of bit positions of even length (p0, p1, p2, . . . , p2n−1) such that p2k and
p2k+1 are peer (∀k ∈ {0, . . . , n− 1}) and that p2k+1 and p2k+2 are chained (∀k ∈ {0, . . . , n− 2}).
In addition, the first and last active bits p0 and p2n−1 must be in knots (either the same one
or different ones). The simplest possible chain has length 2 and consists only in two peer active
bits.

The definition of a vortex is the same as that of a chain (p0, p1, p2, . . . , p2n−1), except that
the first and last active bits p0 and p2n−1 must be chained. In other words, a vortex forms a
cycle of bit positions linked alternatively by peer and chained relationships, all in orbital slices.

In a tame state, each active bit position has exactly one peer position. The active bit positions
in knots are the end points of chains, while the active bits in orbital slices are chained and belong
to chains or vortices. Therefore, any tame state can be represented as a set of vortices and chains
connecting knots.

1 While for columns with two active bits, the peer relationship is unambiguous, in the case of columns with four
active bits, we choose which pairs of active bits are peer. Thus we can see the representation of the states as
being augmented with additional attributes specifying the peer relationship and there may be several ways to
represent the same state. By generating states via this representation, the only risk is to generate more states
than necessary.
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7.3 Generating all tame states

To generate all tame states up to a target weight T3, we generate states a and b by representing
them using the concepts of Sections 7.1 and 7.2. The generation builds (initially empty) states
a and b by iterating the following nested loops:

– In the outer loop, we add chains to the existing state. When adding a chain (p0, p1, p2, . . . , p2n−1),
the slices that receive the end points p0 and p2n−1 must become knots if they are not already.
If n > 1, the pairs of (chained) active bits (i2k+1, i2k+2) are added to empty slices, which
become orbital slices. Active bits cannot be added to already constructed orbital slices, as it
would contradict the definition of an orbital slice. Enough chains must be added such that
each knot contains at least 3 active bits (see Lemma 4).

– For a fixed set of chains produced in the previous step, the inner loop iterates on the number
and position of vortices. In a vortex, all active bits are chained, so they must be added to
empty slices, which become orbital slices.

With the monotonic lower bound function defined in the next section, we add chains and vortices
until this lower bound exceeds T3.

7.4 Lower-bounding the weight of in-kernel trails

We wish to determine a lower bound on the weight of 3-round in-kernel trail cores (b, d), namely,
on wrev(a) + w(b) + w(d) with a = λ−1(b), from a and b only, for use in our trail generation.
Since only d is unknown, this implies finding a lower bound on w(d). This can be done by first
determining a lower bound on the Hamming weight ||d|| and then bounding the weight of any
state with given Hamming weight.

To determine a lower-bound on ||d||, we work on each slice of b. If slice bz has u = ∥bz∥row
active rows, then the slice cz has at least u active bits. In addition, P (cz) = 0 implies that the
number of active bits must be even, so ||cz|| ≥ 2⌈u2 ⌉. Finally, we have ||d|| = ||c|| so

||d|| ≥ 2
∑
z

⌈
∥bz∥row

2

⌉
.

From Table 3, it is easy to verify the following lower bound:

w(d) ≥ ŵ(||d||) ≜
⌈
4||d||
5

⌉
+ [1 if ||d|| = 1 or 2 (mod 5)].

Hence, we define the lower weight of b as

L(b) ≜ wrev(λ−1(b)) + w(b) + ŵ
(
2
∑
z

⌈
∥bz∥row

2

⌉)
.

The lower weight yields a lower bound on the weight of 3-round in-kernel trail cores (b, d)
regardless of d.

7.5 Limiting the search by lower-bounding the weight

At each level of the loop described in Section 7.3, the corresponding iteration is aborted, and
elements are not further added, if we can be sure that the lower weight L(b) will become larger
than the target weight T3. Adding a chain to the state can potentially bring new knots and/or
new orbital slices. Adding a vortex necessarily brings new orbital slices. Therefore, there is a
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Number w̃(·) wrev(b1) w(b1) w(b2) P (a1) P (a2) Structure of a1, b1

1 32 4 4 24 kernel θ-gap 1

1 35 12 12 11 kernel kernel vortex of length 6

7 36 12 12 12 kernel kernel vortex of length 6

7 39 12 12 15 kernel kernel vortex of length 6
2 39 12 11 16 kernel kernel 2 knots connected by 3 chains

41 40 12 12 16 kernel kernel vortex of length 6
4 40 12 12 16 kernel kernel 2 knots connected by 3 chains

Table 4. Summary of all 3-round differential trail cores found in Keccak-f [1600] up to weight
36, and up to weight 40 for in-kernel trails. The number indicates the number of cores with the
same properties indicated in the other columns.

limit in the number of knots and orbital slices that must be considered for the generation to be
complete up to the target weight.

As a preliminary step, the minimum reverse weight satisfies the following inequality (see
Table 3):

wrev(a) ≥ ŵrev(||a||) ≜
⌈
3||a||
5

⌉
.

We see from Lemma 4 that each tame knot contributes to at least 3 active bits in a and in b.
Furthermore, the number of bits in each slice of a must be even (P (a) = 0), so ||a|| ≥ 2

⌈
3k
2

⌉
and

wrev(a) ≥ ŵrev(||a||), with k the number of knots. In b, each tame knot has at least 3 active bits
on at least 2 different active rows, hence contributing at least 5 to the weight, and so w(b) ≥ 5k.
Each active row in b contributes to at least one active bit in d so ||d|| ≥ 2k and w(d) ≥ ŵ(||d||).

For instance, k = 5 knots implies that ||a|| ≥ 16 and wrev(a) ≥ ŵrev(16) = 10, that w(b) ≥ 25
and that ||d|| ≥ 10 and w(d) ≥ ŵ(10) = 8, so a lower weight of at least 43. If T3 ≤ 42, looking
for configurations with from 0 to 4 knots is therefore sufficient, not even counting the orbital
slices that also compose chains.

We found cores of weight 35, 36, 39 and 40, as detailed in Table 4. For illustration purposes,
examples of trail prefixes are shown in Figures 3, 4 and 5 in Appendix A.

8 Extension to six-round trails

Table 4 summarizes all the 3-round cores found. These trail cores completely represent all the
3-round trails up to weight 36 (or 40 for in-kernel trails).

The second phase introduced in Section 4 consists in exhaustively extending forward and
backward all the 3-round trail cores into 6-round trails cores. As no 6-round trail of weight up
to 73 were found, we conclude that a 6-round differential trail in Keccak-f [1600] has at least
weight 74. In the specific case of in-kernel trails, no 6-round trail of weight up to 81 were found
and we conclude that a 6-round in-kernel differential trail in Keccak-f [1600] has at least weight
82.

For the 24 rounds of Keccak-f [1600], a differential trail has at least weight 296, and an
in-kernel trail has at least weight 328.

9 Conclusions

We studied and implemented the exhaustive generation of 3-round differential trails in the
Keccak-f [1600] permutation, which allowed us to prove a lower bound on the weight of differ-
ential trails. The techniques developed in this paper exploit the properties of the mixing layer
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in its round function to provide better bounds than what a brute-force method could provide.
Table 2 shows that there remains a gap between the best known trails and the lower bound
beyond three rounds that calls for future work. Finally, the concepts introduced in this paper,
such as chains, vortices, knots and parity runs, help read trails and understand them.
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A Some three-round differential trails

In this section, we give some examples of trails for illustration purposes. In the figures, trail
prefixes are depicted with b0, a1, b1, a2, b2 from top to bottom as in Eq. (2) and the weight of
each round is given before χ. The difference b0 was taken such that w(b0) = wrev(a1). At each
step, only the slices with non-zero difference are shown with their z coordinate. The x coordinate
goes from left to right with x = 0 at the center, while the y coordinate goes from bottom to top
with y = 0 at the center. Active bits are depicted in black.

When P (a1) = 0, the peer and chained relationships are shown with straight and dashed
lines, respectively. Examples of structures include a vortex of length 6, two knots connected by
three chains, and one knot connected to itself by two chains. In Figure 2, P (a2) ̸= 0 and the
effect of θ is illustrated in details.

B A four-round differential trail

Figure 6 shows a 4-round differential trail of weight 134. This is the differential 4-round trail
on Keccak-f [1600] with the lowest known weight at this time of writing. The uneven weight
profile (16, 13, 12, 93) suggests that trails with lower weight exist.
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z = 0

weight: 4

χ

z = 0

θ, ρ, π

z = 55 z = 56

weight: 4

χ

z = 55 z = 56 z = 57

θ

z = 55 z = 56 z = 57

ρ, π

z = 0 z = 6 z = 14 z = 18 z = 21 z = 34

z = 48 z = 49 z = 52 z = 53 z = 57 z = 61

weight: 24

parity and θ-effect:
z

x

odd column
affected column

Fig. 2. Trail prefix of weight 32. It contains the 3-round trail core with smallest weight. The state
a1 is in the kernel. A chain of length 2 connects the knots in z′ = 55 and z′ = 56. However, these
knots are not tame and a2 cannot be in the kernel. Instead, a2 has θ-gap 1 and contains a run
of length 2 with odd columns in (x, z) ∈ {(1, 55), (4, 56)}. The columns (x, z) ∈ {(2, 55), (3, 57)}
are affected and hence are flipped by θ.
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z = 9 z = 43 z = 56

weight: 12

χ

z = 9 z = 43 z = 56

θ, ρ, π

z = 0 z = 6 z = 7

weight: 12

χ

z = 0 z = 6 z = 7

θ, ρ, π

z = 25 z = 26 z = 28 z = 33 z = 43

weight: 11

Fig. 3. Trail prefix of weight 35. It contains a vortex of length 6 in orbital slices z′ ∈ {0, 6, 7}.
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z = 3 z = 21 z = 46

weight: 12

χ

z = 3 z = 21 z = 46

θ, ρ, π

z = 0 z = 18

weight: 11

χ

z = 0 z = 18

θ, ρ, π

z = 9 z = 20 z = 26 z = 38

z = 39 z = 43 z = 62

weight: 16

Fig. 4. Trail prefix of weight 39. It contains two knots, one in z′ = 0 and the other in z′ = 18.
The knots are connected with three chains of length 2, ensuring that each knot has three active
bits. There are no orbital slices.
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z = 0 z = 21 z = 43 z = 54

weight: 16

χ

z = 0 z = 21 z = 43 z = 54

θ, ρ, π

z = 0 z = 18 z = 34

weight: 13

χ

z = 0 z = 18 z = 34

θ, ρ, π

z = 15 z = 35 z = 36 z = 38 z = 57 z = 62

weight: 12

Fig. 5. Trail prefix of weight 41. It contains a single knot in z′ = 0. Two chains of length 4 connect
this knot to itself, which has four active bits. The chains go through orbital slices z′ = 18 and
z′ = 34.
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z = 8 z = 19 z = 28 z = 49

weight: 16

χ

z = 8 z = 19 z = 28 z = 49

θ, ρ, π

z = 0 z = 46 z = 63

weight: 13

χ

z = 0 z = 46 z = 63

θ, ρ, π

z = 0 z = 1 z = 2 z = 21 z = 55

weight: 12

χ

z = 0 z = 1 z = 2 z = 21 z = 55

θ, ρ, π

z = 1 z = 2 z = 3 z = 4 z = 6 z = 10 z = 15 z = 18 z = 19

z = 20 z = 21 z = 23 z = 27 z = 28 z = 29 z = 30 z = 33 z = 34

z = 35 z = 37 z = 39 z = 41 z = 42 z = 44 z = 45 z = 46 z = 48

z = 49 z = 52 z = 53 z = 56 z = 57 z = 58 z = 59 z = 60 z = 61

weight: 93

Fig. 6. A 4-round trail prefix of weight 134.
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New attacks on Keccak-224 and Keccak-256
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Abstract. The Keccak hash function is one of the five finalists in NIST’s SHA-3 competition, and
so far it showed remarkable resistance against practical collision finding attacks: After several years
of cryptanalysis and a lot of effort, the largest number of Keccak rounds for which actual collisions
were found was only 2. In this paper we develop improved collision finding techniques which enable
us to double this number. More precisely, we can now find within a few minutes on a single PC
actual collisions in standard Keccak-224 and Keccak-256, where the only modification is to reduce
their number of rounds to 4. When we apply our techniques to 5-round Keccak, we can get in a few
days excellent near collisions, where the Hamming distance is 5 in the case of Keccak-224 and 10
in the case of Keccak-256. Our new attack combines differential and algebraic techniques, and uses
the fact that each round of Keccak is only a quadratic mapping in order to efficiently find pairs of
messages which follow a high probability differential characteristic.
Keywords: Cryptanalysis, SHA-3, Keccak, collision, near-collision, practical attack.

1 Introduction

The Keccak hash function [4] uses the sponge construction [3] to map arbitrary long inputs into
fixed length outputs, and is one of the five finalists of NIST’s SHA-3 competition. The Keccak
versions submitted to the SHA-3 competition have an internal state size of b = 1600 bits, and
an output size n of either 224, 256, 384 or 512 bits. The internal permutation of Keccak consists
of 24 application of a non-linear round function, applied to the 1600-bit state. Previous papers
on Keccak, such as [13], include analysis of Keccak versions with a reduced internal state size,
or with different output sizes. However, in this paper, we concentrate on the standard Keccak
versions submitted to the SHA-3 competition, and the only way in which we modify them is by
reducing their number of rounds.

Previous results on Keccak’s internal permutation include zero-sum distinguishers presented
in [1], and later improved in [5, 6, 8]. Although zero-sum distinguishers reach a significant num-
ber of rounds of Keccak’s internal permutation, they have very high complexities, and they seem
unlikely to threaten the core security properties of Keccak (namely, collision resistance, preim-
age resistance and second-preimage resistance). Other results on Keccak’s internal permutation
include a differential analysis given in [9]. Using techniques adapted from the rebound attack
[12], the authors construct differential characteristics which give distinguishers on up to 8 rounds
of the permutation, with complexity of about 2491. However, in their method it is not clear how
to reach the starting state differences of these characteristics from valid initial states of Kec-
cak’s internal permutation, since in sponge constructions a large portion of the initial state of
the permutation is fixed and cannot be chosen by the cryptanalyst. Thus, although the results
of [9] seem to be more closely related to the core security properties of Keccak than zero-sum
distinguishers, they still do not lead to any attacks on the Keccak hash function itself.

Currently, there are very few results that analyze reduced-round variants of the full Keccak
(rather than its building blocks): in [2], Bernstein described preimage attacks which extend up
to 8 rounds of Keccak, but are only marginally faster than exhaustive search, and use a huge
amount of memory. More recently, Naya-Plasencia, Röck and Meier presented practical attacks
on Keccak-224 and Keccak-256 with a very small number of rounds [14]. These attacks include
a preimage attack on 2 rounds, as well as collisions on 2 rounds and near-collisions on 3 rounds.



In this paper, we extend these collision attacks on Keccak-224 and Keccak-256 by 2 additional
rounds: we find actual collisions in 4 rounds and actual near-collisions in 5 rounds of Keccak-224
and Keccak-256, with Hamming distance 5 and 10, respectively.

The collisions and near-collisions of [14] were obtained using low Hamming weight differential
characteristics, starting from the initial state of Keccak’s permutation. Such low Hamming
weight characteristics are also the starting point of our new attacks, but we do not require
the characteristics to start from the initial state of the permutation. Given a low Hamming
weight starting state difference of a characteristic, we can easily extend it backwards by one
round, and maintain its high probability (as done in [9]). However, due to the very fast diffusion
of the inverse linear mapping used by Keccak’s permutation, the new starting state difference
of the extended characteristic has a very high Hamming weight. We call this starting state
difference a target difference, since our goal is to find message pairs which have this difference
after one round of the Keccak permutation (after the fixed round, this difference will evolve
according to the characteristic with high probability).1 One of the main tools we develop in this
paper is an algorithm that aims to achieve this goal, namely, to find message pairs which satisfy
a given target difference after one Keccak permutation round. We call this algorithm a target
difference algorithm, and it allows us to extend our initial characteristic by two additional rounds
(as shown in Figure 1): we first extend the characteristic backwards by one round to obtain the
target difference (while maintaining the characteristic’s high probability). Then, we use the
target difference algorithm to link the characteristic to the initial state of Keccak’s permutation,
through an additional round. We note that the final link, which efficiently bypasses Keccak’s
first Sbox layer, uses algebraic techniques rather than standard probabilistic techniques.

The target difference algorithm is related to several hash function cryptanalytic techniques
that were developed in recent years. In particular, it is related to the work of Khovratovich,
Biryukov and Nikolic [11], where, similarly to our algorithm, the authors use linear algebra to
quickly satisfy many conditions of a differential characteristic. However, these techniques seem
to work best on byte-oriented hash functions, whose internal structure can be described using
a few sparse equations, which is not the case for Keccak. Our algorithm is also closely related
to the work of Khovratovich [10] that exploits structures (which aggregate internal states of
the hash function) in order to reduce the amortized complexity of collision attacks: the attacker
first finds a truncated differential characteristic and searches for a few pairs of initial states
that satisfy it. Then, using the structures and the initially found pairs, the attacker efficiently
obtains many additional pairs that satisfy the truncated characteristic. However, in the case of
Keccak, there are very few characteristics that can lead to a collision with high probability, and
it seems unlikely that they can be joined in order to form the truncated differential characteristic
required in order to organize the state differences into such structures. Moreover, it seems difficult
to find even one pair of initial states that satisfy the target difference for Keccak. Another
attack related to the target difference algorithm is the rebound attack [12]. In this attack, the
cryptanalyst uses the available degrees of freedom to efficiently link and extend two truncated
differential characteristics, both forwards and backwards, from an intermediate state of the hash
function. However, once again, such high probability truncated characteristics are unlikely to
exist for Keccak. Moreover, it is not clear how to use the rebound attack to link the backward
characteristic to the initial state of the permutation. Thus, our target difference algorithm can
be viewed as an asymmetric rebound attack, where one side of the characteristic is fixed.

Our full attacks have two parts, where in the first part we execute the target difference
algorithm in order to obtain a sufficiently large set of message pairs that satisfy the target

1 We note that the target difference is not a valid initial difference of the permutation, which fixes many of the
state bits to pre-defined values. As a result, the high probability characteristic cannot be used to extend the
results of [14] by an additional round.
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difference after the first round. In the second part of the attack, we try different message pairs
in this set in order to find a pair whose difference evolves according to a characteristic whose
starting state is the target difference. Since the target difference algorithm does not control
the differences beyond the first round, the second part of the attack is a standard probabilistic
differential attack (which only searches for collisions or near-collisions obtained from message
pairs within a specific set). The high probability differential characteristic beyond the first round
ensures that the time complexity of the second part of the attack is relatively low.

Although the target difference algorithm is heuristic, and there is no provable bound on its
running time, it was successfully applied with its expected complexity to many target differences
defined by the high probability differential characteristics. Consequently, we were able to find
actual collisions for 4 rounds of Keccak-224 and Keccak-256 within minutes on a standard
PC. By using good differential characteristics for an additional round, we found near-collisions
for 5 rounds of Keccak-224 and Keccak-256. However, this required more computational effort
(namely, a few days on a single PC), since the extended characteristics have lower probabilities.

The paper is organized as follows. In Section 2, we briefly describe Keccak, and in Section
3 we introduce our notations. In Section 4, we give a comprehensive overview of the target
difference algorithm and describe the properties of Keccak that it exploits. In Section 5, we
present our results on round-reduced Keccak. In Appendix A, we describe the full details of the
target difference algorithm, and in Appendix B, we propose an alternative algorithm, which has
a better understood time complexity. Since the original algorithm gave us very good results in
practice, we did not use this alternative version. However, it may be more efficient in some cases,
especially if someone finds longer high probability characteristics for Keccak’s permutation.

4-Round Keccak

1 Round

Target Difference
Algorithm

1 Round

Characteristic
extended
backwards

2 Rounds

High Probability
Differential Characteristic

1

Fig. 1. Extending a 2-Round Differential Characteristic by Two Additional Rounds

2 Description of Keccak

In this section we give short descriptions of the sponge construction and the Keccak hash func-
tion. More details can be found in the Keccak specification [4].

The sponge construction [3] works on a state of b bits, which is split into two parts: the first
part contains the first r bits of the state (called the outer part of the state) and the second part
contains the last c = b− r bits of the state (called the inner part of the state).

Given a message, it is first padded and cut into r-bit blocks, and the b state bits are initialized
to zero. The sponge construction then processes the message in two phases: In the absorbing
phase, the message blocks are processed iteratively by XORing each block into the first r bits of
the current state, and then applying a fixed permutation on the value of the b-bit state. After
processing all the blocks, the sponge construction switches to the squeezing phase. In this phase,

3



n output bits are produced iteratively, where in each iteration the first r bits of the state are
returned as output and the permutation is applied.

The Keccak hash function uses multi-rate padding: given a message, it first appends a single
1 bit. Then, it appends the minimum number of 0 bits followed by a single 1 bit, such that the
length of the result is a multiple of r. Thus, multi-rate padding appends at least 2 bits and at
most r + 1 bits.

The Keccak versions submitted to the SHA-3 competition have b = 1600 and c = 2n, where
n ∈ {224, 256, 384, 512}. The 1600-bit state can be viewed as a 3-dimensional array of bits,
a[5][5][64], and each state bit is associated with 3 integer coordinates, a[x][y][z], where x and y
are taken modulo 5, and z is taken modulo 64.

The Keccak permutation consists of 24 rounds, which operate on the 1600 state bits. Each
round of the permutation consists of five mappings R = ι◦χ◦π ◦ρ◦θ. Keccak uses the following
naming conventions, which are helpful in describing these mappings:

– A row is a set of 5 bits with constant y and z coordinates, i.e. a[∗][y][z].
– A column is a set of 5 bits with constant x and z coordinates, i.e. a[x][∗][Z].
– A lane is a set of 64 bits with constant x and y coordinates, i.e. a[x][y][∗].
– A slice is a set of 25 bits with a constant z coordinate, i.e. a[∗][∗][z].

The five mappings are given below, for each x,y, and z (where the state addition operations
are over GF (2)):

1. θ is a linear map, which adds to each bit in a column, the parity of two other columns.

θ: a[x][y][z]← a[x][y][z] +
4∑

y′=0

a[x− 1][y′][z] +
4∑

y′=0

a[x+ 1][y′][z − 1]

In this paper, we also use the inverse mapping, θ−1, which is more complicated and provides
much faster diffusion: for θ−1, flipping the value of any input bit, flips the value of more than
half of the output bits.

2. ρ rotates the bits within each lane by T(x,y), which is a predefined constant for each lane.
ρ: a[x][y][z]← a[x][y][z + T (x, y)]

3. π reorders the lanes.

π: a[x][y][z]← a[x′][y′][z], where

(
x
y

)
=

(
0 1
2 3

)
·
(
x′

y′

)
4. χ is the only non-linear mapping of Keccak, working on each of the 320 rows independently.
χ: a[x][y][z]← a[x][y][z] + ((¬a[x+ 1][y][z]) ∧ a[x+ 2][y][z])
Since χ works on each row independently, in can be viewed as an Sbox layer which simulta-
neously applies the same 5 bits to 5 bits Sbox to the 320 rows of the state. We note that the
Sbox function is an invertible mapping, and we will use the extremely important observation
that the algebraic degree of each output bit of χ as a polynomial in the five input bits is only
2. We also note that the algebraic degree the inverse mapping χ−1 is 3 (as noted in [4]).

5. ι adds a round constant to the state.
ι: a← a+RC[ir]
We omit the values of RC[ir], as they are not needed for our analysis.

3 Notations

Given a message M , we denote its length in bits by |M |. Unless specified otherwise, in this
paper we assume that |M | = r − 8, namely we consider only single-block messages of maximal
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length such that |M |(modulo 8) ≡ 0 (which give us the maximal number of degrees of freedom,
for single-block messages containing an integral number of bytes). Given M , we denote the
initial state of the Keccak permutation as the 1600-bit word M , M ||p||02n, where || denotes
concatenation, and p denotes the 8-bit pad 10000001.

The first three operations of Keccak’s round function are linear mappings, and we denote
their composition by L , ρ ◦ π ◦ θ. We denote the Keccak nonlinear function on 5-bit words
defined by varying the first index by χ|5. The difference distribution table (DDT ) of this function
is a two-dimensional 32×32 integer table, where all the differences are assumed to be over GF (2).
The entry DDT (δin, δout) specifies the number of input pairs to this Sbox with difference δin that
give the output difference δout (i.e., the size of the set {x ∈ {0, 1}5 | χ|5(x)+χ|5(x+δin) = δout}).

We denote the 1600-bit target difference, which is the input of the target difference algo-
rithm, by ∆T . The output of the algorithm is a subset of ordered pairs of single block mes-
sages {(M1

1 ,M
2
1 ), (M1

2 ,M
2
2 ), ..., (M1

k ,M
2
k )} that satisfy this difference after one round R, namely

R(M
1
i ) +R(M

2
i ) = ∆T ∀i ∈ {1, 2, ..., k}.

4 Overview of the Target Difference Algorithm

When designing the target difference algorithm, we face two problems: first, the target difference
extends backwards, beyond the first Keccak Sbox layer, with very low probability (due to its
high Hamming weight). The second problem is that the initial state of the permutation fixes
many of the state bits to pre-defined values, and the initial states that we use must satisfy these
constraints. On the other hand, Keccak has several useful properties that we can exploit in our
target difference algorithm. In this section, we describe these properties in detail and give an
overview of the algorithm.

4.1 The Properties of Keccak Exploited by the Target Difference Algorithm

The First Property Keccak-224 and Keccak-256 allow the user to control many of the 1600
state bits of the initial state of the permutation. Thus, given a target difference, we expect many
solutions to exist (namely, one-block message pairs which have the 1600-bit target difference
after one permutation round): since we consider message pairs, where each message is of length
r − 8 = 1600− 8− 2n bits (1144 for Keccak-224, and 1080 for Keccak-256), given an arbitrary
1600-bit target difference, there is an expected number of 22(1600−8−2n)−1600 = 21584−4n message
pairs of this length that satisfy this difference (regardless of the value of the inner part of the
state). Thus, the algorithm has 704 and 560 degrees of freedom for Keccak-224 and Keccak-256,
respectively.

Despite the large number of available degrees of freedom, the number of possible solutions
varies significantly according to the target difference. To demonstrate this, we use the fact that
L−1 has very fast diffusion (i.e., even an input with one non-zero bit is mapped by L−1 into a
roughly balanced output). We consider the case where t > 0 out of the 320 Sboxes of the target
difference are active (i.e., they have a non-zero output difference). Each one of the 320− t non-
active Sbox zero output differences is uniquely mapped backwards to a zero input difference into
the first Sbox layer. Using the Keccak Sbox DDT , it is easy to see that each one of the t active
Sbox output differences is mapped to more than 8 possible input differences. Thus, the number
of possible state differences after the first linear layer (or before the first Sbox layer) is more
than 8t = 23t. Since L is invertible and acts deterministically on the differences, the number of
possible input differences to the Keccak compression function remains the same. We now recall
from the first difference constraint in Section 4, that we require that the 2n + 8 MSBs of ∆I

are zero. However, for t large enough, we still expect more than 23t−2n−8 valid solutions. When
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the target difference is chosen at random, we have t ≈ 310 (since the probability that an Sbox
output difference is zero is 1

32). This gives more than 2930−448−8 = 2474 expected solutions for
Keccak-224, and more than 2930−512−8 = 2410 expected solutions for Keccak-256. On the other
hand, consider the extreme case of t = 1 (i.e., the target difference has only one active Sbox).
Clearly, this Sbox cannot contribute more than 31 possible differences after the first linear layer.
Since L−1 has very fast diffusion, these possible differences are mapped to at most 31 roughly
balanced non-zero possible input differences, and we do not expect the 2n + 8 MSBs of any of
them to be zero. To conclude, target differences with a small number of active Sboxes are likely
to have no solutions at all. On the other hand, a majority of the target differences have a very
large number of expected solutions for Keccak-224 and Keccak-256. Note that having a large
number of solutions does not imply that it is easy to find any one of them, since their density is
still minuscule.

The Second Property The algebraic degree of the Keccak Sboxes is only 2. This implies that
given a 5-bit input difference δin and a 5-bit output difference δout, the set of values {v1, v2, ..., vl}
such that χ|5(vi) + χ|5(vi + δin) = δout is an affine subset. Since (vi + δin) + δin = vi, then
vi + δin ∈ {v1, v2, ..., vl}, implying {v1, v2, ..., vl} = {v1 + δin, v2 + δin, ..., vl + δin}. Thus, both
coordinates of the ordered pairs give the same subset, and we denote it by A(δin, δout) (note that
|A(δin, δout)| = DDT (δin, δout)). On the other hand, since the algebraic degree of the inverse
Sbox is 3, which is reduced to 2 (rather than 1) after differentiation, the output values that
satisfy an input and an output difference do not necessarily form an affine subset.

The Third Property For any non-zero 5-bit output difference δout to a Keccak Sbox, the
set of possible input differences, {δin|DDT (δin, δout) > 0}, contains at least 5 (and up to 17)
2-dimensional affine subspaces. These affine subspaces can be easily pre-computed using the
DDT , for each one of the 31 possible non-zero output differences. However, we note that there
is no output difference for which the set of possible input differences contains an affine subspace
of dimension 3 or higher.

4.2 Formulating the Problem

Given ∆T , an arbitrary message pair (M1,M2) in which |M1| = |M2| = r − 8 is a solution to

our problem if R(M
1
) + R(M

2
) = ∆T . This can be formulated using two constraints on the

1600-bit words (M1,M2):

1. The 2n+8 MSBs of M
1

and M
2

are equal to p||02n, where p denotes the 8-bit pad 10000001.

2. R(M
1
) +R(M

2
) = ∆T (where R is the permutation round of Keccak).

We can easily formulate the first constraint using linear equations on the bits of M1 and
M2. Since Keccak’s Sbox has an algebraic degree of 2 over GF (2), we can formulate the second
constraint as a system of quadratic equations on these bits. Standard heuristic techniques for
solving such systems include using the available degrees of freedom to fix some message values
(or values before the first Sbox layer) in order to linearize the system. However, these techniques
require many more than the available number of degrees of freedom. For example, in order to
get linear equations after one round of Keccak’s permutation, we can fix 3 out of the 5 bits
entering an Sbox (after the first linear layer), such that there are no two consecutive unknown
input bits entering the Sbox. Using this technique reduces the single quadratic term in the
symbolic form of each of the Sbox’es output bits to a linear term. However, this requires fixing
320 · 3 = 960 bits per massage, and 2 · 960 = 1920 bits in total, which is significantly more
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than the 704 available degrees of freedom for Keccak-224 (and clearly more than the available
number of degrees of freedom for the other Keccak versions). Consequently, we have to repeat
the linearization procedure a huge number of times, with different fixed values, in order to find
a solution.

A Two-Phase Algorithm Although we expect our quadratic system to have many solutions,
solving all the equations at once seems difficult. Thus, we split the problem into easier tasks by
exploiting the low algebraic degree of Keccak’s Sbox to a greater extent than in the standard
techniques: as described in the second property of Section 4.1 given an input difference and an
output difference to an Sbox, all the pairs of input values that satisfy them form an affine subset.2

This suggests an algorithm with two phases, where in the first phase (called the difference phase)
we find an input difference to all the Sboxes, and in the second phase (called the value phase)
we obtain the actual values of the message pairs that lead to the target difference.

Using this two-phase approach, the ordered pairs produced by our algorithm satisfy two
additional properties: the 1600-bit input difference of the initial states is fixed to some 1600-bit

value ∆I (i.e. M
1
i + M

2
i = ∆I ∀i ∈ {1, 2, ..., k}), and the set composed of all the initial states

defined by the first message in each ordered pair (i.e.
⋃
{M1

i } ∀i ∈ {1, 2, ..., k}), forms an affine
subset. The algorithm outputs the ordered pairs as the fixed 1600-bit input difference ∆I , and

some basis for the affine subset
⋃
{M1

i } ∀i ∈ {1, 2, ..., k}. We note that the large number of
degrees of freedom allows us to restrict the set of solutions (i.e. the set of message pairs that
satisfy the target difference) to a smaller subset (but still large enough for our purposes) that
can be found relatively easily. In particular, the algorithm considers only message pairs with a
fixed difference ∆I , for which all the solutions can be found by solving linear equations.

The two constraints above, which define our quadratic equation system, are broken into two
sets of constraints, since we have to simultaneously enforce two difference constraints (given as
constraints on the 1600-bit word ∆I):

Difference Constraint 1 The 2n+ 8 most significant bits (MSBs) of ∆I are equal to zero.
Difference Constraint 2 L(∆I) is a valid input difference to the Sbox layer, i.e. there exists
some 1600-bit word W such that χ(W ) + χ(W + L(∆I)) = ∆T (note that since L is a linear
function, L(∆I) is well-defined).

The first difference constraint simply equates bits of the input difference ∆I to zero (456 bits
for Keccak-224 and 520 bits for Keccak-256), while the second difference constraint assigns to
every 5 bits of L(∆I) that enter an Sbox, several possible values which are not related by simple
affine equations.

In the second phase, we enforce additional value constraints (given on the 1600-bit word M
1
):

Value Constraint 1 The 2n + 8 MSBs of M
1

are equal to p||02n, where p denotes the 8-
bit pad 10000001.

Value Constraint 2 R(M
1
) +R(M

1
+∆I) = ∆T .

Note that the first difference constraint and the first value constraint on each M
1
i also en-

sure that the same value constraint holds for M
2
i (i.e., the 2n + 8 MSBs of M

2
i are equal to

p||02n).

2 Similar observations were used in [7] to suggest that when DDT (δin, δout) = 2 or 4, the same holds. In
the specific case of Keccak, we also use 3-dimensional affine subsets of pairs that satisfy the Sbox difference
transition (δin, δout), for which DDT (δin, δout) = 8.
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Given a single 1600-bit Sbox layer input difference, the second property of Section 4.1 implied
that enforcing the two value constraints simply reduces to solving a union of two sets of linear
equations. On the other hand, it is not clear how to simultaneously enforce both of the difference
constraints, since given an output difference to an Sbox δout, all the possible input differences
δin such that DDT (δin, δout) > 0, are not related by simple affine relations.

4.3 The Difference Phase

Unsuccessful Attempts to Enforce the Difference Constraints We can try to enforce
both difference constraints by assigning the undetermined 1600 − 2n − 8 bits of ∆I , in such a
way that the second difference constraint will hold. This usually involves iteratively constructing
an assignment for ∆I , by guessing several undetermined bits at a time, and filtering the guesses
by verifying the second difference constraint. However, this is likely to have a very large time
complexity, since L diffuses the bits of ∆I in a way that forces us to guess many bits before we
can start filtering the guesses. Moreover, for any ∆T , the fraction of input differences satisfying
the first difference constraint that also satisfy the second difference constraint is very small.
Thus, most of the computational effort turns out to be useless, since the guesses are likely to
be discarded at later stages of the algorithm. Another approach is to guess L(∆I) by iteratively
guessing the 5-bit Sbox input differences, and filtering the guesses by verifying the first difference
constraint. For similar reasons, this approach is likely to have a very large time complexity.

A Better Approach Both of these approaches are very strict, since each guess made by the
algorithm commits to a specific value for some of the bits of ∆I , or L(∆I), and restricts the
solution space significantly. Thus, we use the third property of Section 4.1, which gives us more
flexibility, and significantly reduces the time complexity: given any non-zero 5-bit output differ-
ence to a Keccak Sbox, the set of possible input differences contains at least five 2-dimensional
affine subspaces. Consequently, in order to enforce the second difference constraint, for each
Sbox with a non-zero output difference (i.e., an active Sbox), we choose one of the affine sub-
sets (which contains 4 potential values for the 5 Sbox input bits of L(∆I)), instead of choosing
specific values for these bits. This enables us to maintain an affine subspace of potential values
for L(∆I), starting with the full 1600-dimensional space, and iteratively reducing its dimension
by adding affine equations in order to enforce the second difference constraint for each Sbox. In
addition to these affine equations that we add per active Sbox, we also have to add the linear
equations for the non-active Sboxes (which equate their 5 input difference bits to zero), and
the additional 2n + 8 linear equations that enforce the first difference constraint. All of these
equations are added to a linear system of equations that we denote by E∆.

Since the 2n+ 8 equations that enforce the first difference constraint do not depend on the
target difference, we add them to E∆ before we iterate the Sboxes. While iterating over the
active Sboxes, we add equations on L(∆I) in order to enforce the second difference constraint
and hope that for each Sbox, we can add equations such that E∆ is consistent. Note that
the equations in E∆ in each stage of the algorithm depend on the order in which we consider
the active Sboxes, and on the order in which we consider the possible affine subsets of input
differences for each Sbox. Thus, if we reach an Sbox for which we cannot add equations in order
to enforce the second constraint (while maintaining the consistency of E∆), it does not imply
that it is impossible to satisfy the difference constraints. In this case, we can simply change the
order in which we consider the active Sboxes, or the order in which we consider the affine subsets
for each Sbox, and try again. Since we cannot predict in advance the orderings that give the
best result, we choose them heuristically, as described in Appendix A.
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4.4 The Value Phase

In case the difference phase procedure described above succeeds, it actually outputs an affine
subspace of candidate input differences, rather than a single value for ∆I . Next, we can commit
to a specific value for ∆I and run the value phase, hoping that the set of all linear equations
defined by the value constraints has a solution. Namely, we allocate another system of equations,

which we denote by EM , and add the equations on M
1

that enforce the first value constraint.
We then add the additional linear equations that enforce the second value constraints for all the
Sboxes, and output the solution to the system, if it exists. However, once again, this approach
is too strict, and may force us to repeat the value phase a huge number of times with different
values for ∆I , until we find a solution. Thus, we do not choose a single value for ∆I in advance.
Instead, we reduce the linear subset of candidates for ∆I gradually by fixing the input difference
to each one of the active Sboxes, until a single value for ∆I remains. Thus, we continue to
maintain E∆ throughout the value phase, and iteratively add the additional 2 equations which
are required to uniquely specify a 5-bit input difference for each active Sbox, among the 2-
dimensional affine subsets chosen in the difference phase. Once we fix the input difference to an

Sbox, we immediately obtain linear equations on M
1
, and we can check their consistency with

the current equations in EM . In case the equations in EM are not consistent for a certain Sbox,

we can try to choose another input difference for it. This gives different equations on M
1
, which

may be consistent and allow us to continue the process.

Similarly to the difference phase, the equations in EM in each stage of the algorithm depend
on the order in which we consider the active Sboxes, and on the order in which we consider the
possible input differences for each Sbox. Thus, once again, if at some stage of the value phase
we cannot add any consistent equations to EM , we can change one of these orderings and try
again, hoping to obtain a valid solution.

We stress again that both phases of the algorithm are not guaranteed to succeed. The success
of each phase depends on the target difference, and on orderings which are chosen heuristically.
As a result, we may have to iterate both phases of the algorithm an undetermined number of
times with modified orderings, hoping to obtain better results.

5 Application of the Target Difference Algorithm to Round-Reduced
Keccak

Since we would like to use the target difference algorithm in order to find collisions and near-
collisions in Keccak, it is crucial to verify the algorithm’s success on target differences which
lead to these results. Thus, before we run the algorithm, we have to find such high probabil-
ity differential characteristics, and to obtain the target differences which are likely to be the
most successful inputs to the algorithm. As described in the introduction, once we find a high
probability differential characteristic with a low Hamming weight starting state difference, we
extend it backwards to obtain the target difference (while maintaining its high probability).
We then use the target difference algorithm to link the extended characteristic backwards to
the initial state of Keccak’s permutation, with an additional round. Thus, any low Hamming
weight characteristic for r rounds of Keccak’s permutation can be used to obtain results on a
round-reduced version of Keccak with r + 2 round. Specifically, in this section we demonstrate
how we use 2-round characteristics in order to find collisions for 4 rounds of Keccak-224 and
Keccak-256, and how to use 3-round characteristics in order to find near-collisions for 5 rounds
of these Keccak versions.
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5.1 Searching for Differential Characteristics

We reuse the notion of a column parity kernel or CP-kernel that was defined in the Keccak
submission document [4]: a 1600-bit state difference is in the CP-kernel if all of its columns have
even parity. It is easy to see that such state differences are fixed points of the function θ, which
does not increase their Hamming weight. Since ρ and π just reorder the bits of the state, the
application of L to a CP-kernel does not change its total Hamming weight. In addition, there
is a high probability that such low Hamming weight differential states are fixed points of χ.
Thus, when we start a differential characteristic from a low Hamming weight CP-kernel, we can
extend it beyond the Sbox layer, χ, to one additional round of the Keccak permutation, with
relatively high probability and without increasing its Hamming weight. However, extending such
a characteristic to more rounds in a similar way is more challenging, since we have to ensure
that the state difference before the application of θ remains in the CP-kernel at the beginning
of each round.

Using Previous Results In [9] and [14], the authors propose algorithms for constructing low
Hamming weight differential characteristics for Keccak. Both of these algorithms successfully find
differential characteristics that stay in the CP-kernel for 2 rounds (named double kernel trails
in [14]), some of which lead to collisions on the n-bit extract taken from the final state after 2
rounds, with high probability. However, when trying to extend each one of these characteristics
by another round, the state difference is no longer in the CP-kernel and thus its Hamming weight
increases significantly (from less than 10 to a few dozen bits). Nevertheless, the Hamming weight
of the characteristics is still relatively low, and they can lead with reasonably high probability
to near-collisions on the n output bits extracted. Beyond 3 rounds, the Hamming weight of
the characteristics becomes very high (more than 100), and it seems unlikely that they can be
extended to give collisions or near-collisions with reasonable probability. The currently known
double kernel differential trails only extend forward to at most three rounds with reasonably
high probability (higher than 2−100). Finding new high probability differential characteristics,
starting from a low Hamming weight state difference and extending forwards more than 3 rounds,
remains a challenging task, which we do not deal with in this paper.

Our attacks on round-reduced Keccak make use of the type of differential characteristics that
were found in [9] and [14], namely low Hamming weight characteristics that stay in the CP-kernel
for 2 rounds. The double kernel trails with the highest probability have Hamming weight of 6
at the input to the initial round, and due to their low hamming weight, we could easily find all
these characteristics within a minute on a standard PC. There are 571 such characteristics out of
which, 128 can give collisions for Keccak-224 and 64 can give collisions for Keccak-256. However,
when trying to extend the characteristics by an additional round, we were not able to find any
characteristic that gives collisions for Keccak-224 (or Keccak-256) with reasonable probability.
Thus, our best 3-round characteristics lead only to near-collisions, rather than collisions. The
characteristics that give the near-collisions with the smallest difference Hamming weight for
Keccak-224 and Keccak-256 are, again, double kernel trails with 6 non-zero input bits. The best
3-round characteristics for Keccak-224 lead to near-collisions with a difference Hamming weight
of 5, and for Keccak-256, the best 3-round characteristics leads to a near-collision difference
Hamming weight of 8. Examples of these characteristics are found in Appendix C.

Extending the characteristics Backwards Since the characteristics that we use start with
a low Hamming weight state difference, we can extend them backwards by one round without
reducing their probability significantly (as done in [9]): we take this low Hamming weight initial
state difference, and choose a valid state difference input to the previous Sbox layer which
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could produce it. We then apply L−1, and obtain a new initial state difference for the extended
characteristic, which serves as a target difference for our new algorithm. Note that the target
difference is not in the CP-kernel (otherwise, we would have found a low Hamming weight
differential characteristic that stays in the CP-kernel for 3 rounds). Thus, when we apply L−1

to the state difference that enters the Sbox layer, we usually obtain a roughly balanced target
difference, with only a few non-active Sboxes. This is significant to the success of the target
difference algorithm, which strongly depends on the number of active Sboxes in the target
difference.3 In case the target difference obtained from a characteristic has too many non-active
Sboxes, we can try to select another target difference for the characteristic, by tweaking the
state difference input to the second Sbox layer.

Assuming that the algorithm succeeds and we obtain a sufficiently large linear subspace of
message pairs (such that it contains at least one pair whose difference evolve according to the
characteristic), we can find collisions for 4 rounds and near-collisions for 5 rounds of Keccak-224
and Keccak-256. For example, if we have an extended characteristic which can give collisions for
3 round of Keccak-256 with probability 2−24, we need a linear subspace which contains at least
224 message pairs in order to find a collision on 4-round Keccak-256 with high probability.

5.2 Applying the Target Difference Algorithm to the Selected Differential
Characteristics

We tested our target difference algorithm using a standard PC, on dozens of double-kernel trails
with Hamming weight of 6. For each one of them, after tweaking the state difference input to the
second Sbox layer at most once, we could easily compute a target difference where all of the 320
Sboxes are active. We then ran the target difference algorithm on each one of these targets. For
both Keccak-224 and Keccak-256, the target difference algorithm eventually succeeded: the basic
procedure of the difference phase always succeeded within the first two attempts (after changing
the order in which we considered the Sboxes), while the value phase was more problematic,
and we had to iterate its basic procedure dozens to thousands of times in order to find a good
ordering of the Sboxes and obtain results. For Keccak-224, the algorithm typically returned an
affine subspace of message pairs with a dimension of about 100 within one minute. For Keccak-
256, the dimension of the affine subspaces of message pairs returned was typically between 35
and 50, which is smaller compared to the typical result size for Keccak-224 (as expected since
we have fewer degrees of freedom). In addition, unlike Keccak-224, for Keccak-256 we had to
rerun the algorithm (starting from the difference phase) a few times, when the value phase did
not seem to succeed for the choice of candidate input difference subset. Hence, the running time
of the algorithm was typically longer – between 3 and 5 minutes, which is completely practical.

5.3 Obtaining Actual Collisions and Near-Collisions for Round-Reduced
Keccak-224 and Keccak-256

Obtaining Collisions After successfully running the target difference algorithm, we were able
to find collisions for 4-round Keccak for each tested double-kernel trail with Hamming weight of
6 (which leads to a collision). Since the probability of each one of these differential characteristics
is greater than 2−30, the probability that a random pair which satisfies its corresponding target
difference leads to a collision, is greater than 2−30. Thus, we expect to find collisions quickly
for both Keccak-224 and Keccak-256, once the target difference algorithm returns a set of more
than 230 message pairs. However, even though the subsets we used contained more than 230

3 As demonstrated in Section 4.1, we expect a large number of non-active Sboxes to foil the target difference
algorithm. This should be contrasted to differential attacks, where the attacker searches for differential charac-
teristics with many non-active Sboxes, which ensure that the differential transitions occur with high probability.
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message pairs, we were not able to find collisions within several of these subsets for Keccak-224,
and for many of the subsets for Keccak-256. As a result, we had to rerun the target difference
algorithm and obtain additional sets of message pairs, until a collision was found. Thus, the
entire process of finding a collision typically takes about 2–3 minutes for Keccak-224, and 15–30
minutes for Keccak-256. The reason that there were no 4-round collisions within many of the
subsets of message pairs, is the incomplete diffusion of the Keccak permutation within the first
two rounds. Since our subsets of message pairs are relatively small (especially for Keccak-256),
and the values of all the message pairs within a subset are closely related, some close relations
between a small number of bits still hold before the Sbox layer of the second round (e.g., the
value of a certain bit is always 0, or the XOR of two bits is always 1). Some of these non-
random relations make the desired difference transition into the second Sbox layer impossible,
for all the message pairs within a subset. We note that we were still able to find collisions rather
quickly, since it is easy to detect the cases where the difference transition within the second Sbox
layer is impossible4(which allowed us to immediately rerun the target difference algorithm). In
addition, when this difference transition is possible, we were always able to find collisions within
the subset. Two concrete example of colliding message pairs for Keccak-224 and Keccak-256 are
given in Appendix D.

Obtaining Near-Collisions In order to obtain near-collisions on 5-round Keccak-224 and
Keccak-256, we again start by choosing suitable differential characteristics. Out of all the char-
acteristics that we searched, we chose the differential characteristics described in Appendix C,
which lead to near-collisions of minimal Hamming weight for the two versions of Keccak. The
results of the target difference algorithm when applied to targets chosen according to these
characteristics, were similar to the results described in Section 5.2. However, compared to the
probability of the characteristics leading to a collision, the probability of these longer charac-
teristics is lower: the probability of the characteristics are 2−57 and 2−59 for Keccak-224 and
Keccak-256, respectively. Thus, obtaining message pairs whose differences propagate according
to these characteristics, and lead to 5-round near-collisions, is more difficult than obtaining col-
lisions for 4 rounds of Keccak-224 and Keccak-256. However, for each such main characteristic,
there are several secondary characteristics which diverge from the main one in final two rounds
and give similar results. Thus, the probabilities of finding near collisions with a small Hamming
distance for 5 rounds of Keccak-224 and Keccak-256, are higher than the ones stated above.
In addition, by using some simple message modification techniques within the subsets returned
by the target difference algorithm, we were able to improve these probabilities further. Thus,
for Keccak-224, we obtained near-collisions with a Hamming distance of 5, which is the same
as the output Hamming distance of the main characteristic that we used. For Keccak-256, the
main characteristic that we used has an output Hamming distance of 8, but we were only able
to find message pairs which give a near-collision with a slightly higher Hamming distance of 10.
All of these near-collisions were found within a few days on a standard PC. Examples of such
near-collisions are given in Appendix D.

6 Conclusions and Future Work

In this paper, we presented practical collision and near-collision attacks on reduced-round vari-
ants of Keccak-224 and Keccak-256. Our attacks are based on a novel target difference algorithm,

4 In order to detect that the difference transition within the second Sbox layer is impossible for all the pairs in
our subset, we try several arbitrary pairs in the subset, and observe if at least one has the desired difference
after two rounds. Since we only need to check one Sbox layer transition, we expect that if this transition is
indeed possible, we will find a corresponding message pair very quickly. Otherwise, we have to find a different
set of message pairs by running the difference phase again.
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which is used to link high probability differential characteristics for the Keccak internal permu-
tation to legal initial states of the hash function. Consequently, we were able to significantly
improve the best known previous results on Keccak, by doubling (from 2 to 4) the number of
rounds for which collisions can be found in a practical amount of time.

Our target difference algorithm is clearly limited by the number of available degrees of
freedom, and it seems difficult to extend it to reach target differences spanning 2 or more rounds
of the Keccak permutation. However, it seems very likely that the algorithm will be useful in the
future if longer high probability differential characteristics are found for the Keccak permutation.
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A Details of the Target Difference Algorithm

In this section, we give the full details of the target difference algorithm. The general structures
of the difference phase and the value phase of the algorithm are similar: both include a main
procedure, which iterates a basic procedure, until it succeeds.

A.1 Calculating a Set of Candidate Input Differences

We give the details of the difference phase, which finds a set of candidate input differences
(∆I1 , ∆I2 , ...∆Ii , ...), given a target difference ∆T . To find such a set, we have to simultaneously
enforce the two difference constraints. As described in Section 4, we maintain a linear system of
equations, which we denote by E∆, whose solution basis spans some affine subspace of potential
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values for L(∆I). We can easily obtain a basis for the set of potential values for ∆I by multiplying
each element of the basis for L(∆I) by the matrix which defines L−1.

We assume that ∆T contains t active Sboxes and 320 − t non-active Sboxes whose input
and output differences are zero. Before executing the algorithm, we have to initialize a data
structure that is used repeatedly in both phases of the target difference algorithm. This data
structure stores the subsets of input differences for each active Sbox (which are precalculated
per possible non-zero Sbox output difference, as described in the third property in Section 4.1).
In addition, it specifies the order in which we consider the specific subsets for each one of the
t active Sboxes, and the order in which we consider the active Sboxes themselves. As described
in Section 4, these orderings have a significant effect on the success and running time of the
algorithm.

The input difference subsets, for each of the t active Sboxes, are stored in a sorted input
difference subset list, or IDSL. The heuristic algorithm we use to pick the sorting order of each
IDSL is specified in Appendix A.3, but since it is irrelevant in this section, we assume some
arbitrary ordering of each one of the IDSLs. In addition, each one of the IDSLs contains a
pointer to an input difference subset, initialized to point at the first element in the list. The
IDSLs are stored in the main input difference subset data structure, or IDSD. The IDSD contains
t entries (one entry per active Sbox), sorted according to an IDSD order (which may differ from
the natural order of the Sboxes). The initial IDSD order is chosen randomly, and is updated
during both phases of the algorithm.

The Basic Procedure The steps of the basic procedure of the difference phase are given below:

1. Initialize an empty linear equation system E∆ with 1600 variables for the unknown bits of
L(∆I).

2. By inverting L, compute the coefficients of the 2n+8 linear equations that equate the 2n+8
MSBs of ∆I to zero, and add the equations to E∆.

3. For each of the 320 − t non-active SBoxes, add to E∆ the 5 equations which equate the
corresponding bits to zero.

4. Check if E∆ is consistent, and if not, output “Fail”.

5. Iterate over the t active SBoxes according to the IDSD order, and for each one of them:

(a) Obtain the current 2-dimensional subset from the Sbox IDSL according to the pointer,
and obtain the 5− 2 = 3 affine equations that define this subset.

(b) If E∆ is consistent after adding the 3 equations, add the equations and continue to the
next Sbox. Otherwise, continue to the next subset in the Sbox IDSL, by incrementing
the pointer and going to step a. If the end of the IDSL is reached, output “No Solution”.

6. Output E∆.

Our initial linear equation system contains 2n+ 8 linear equations. Since each 2-dimensional
subset of an active Sbox contributes 3 affine equations, the active Sboxes contribute a total of 3t
equations. The non-active Sboxes contribute 5(320 − t) linear equations, since each non-active
Sbox contributes 5 equations. Altogether, we have 2n+ 8 + 3t+ 5(320− t) = 1600 + 8 + 2n− 2t
linear equations in E∆. Thus, for t large enough, if the algorithm succeeds, the solution subset
is of dimension at least 1600 − (1600 + 8 + 2n − 2t) = 2t − 2n − 8 (for example, for t = 310,
n = 224 we get a solution subset of dimension at least 620−448−8 = 164). If all the coefficients
of the equations were chosen uniformly at random, then for t > n+4 we expect no dependencies
among the equations, and thus the dimension of the solution subset is exactly 2t − 2n − 8.
However, our equations are clearly not random, and thus we can only verify the procedure’s
success experimentally.
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Note that the equations added in step 2 are independent, since L is invertible (and thus all
the 1600 linear equations that define L−1 are independent) and equating each bit to zero reduces
the remaining dimension by 1. In addition, the equations of all the Sboxes are independent, since
each Sbox gives equations on a distinct set of 5 variables. However, there is no guarantee that
the combined equation set is independent, or consistent. In addition, note that dependencies
among the equations may foil the procedure in case they are inconsistent. On the other hand, in
case the dependent equations are consistent, they do not decrease the dimension of the solution
subset, which gives us more flexibility in the value phase.

The Main Procedure In case the basic procedure outputs “Fail”, then clearly there are
no 1600-bit valid state pairs that satisfy the target difference, and the algorithm aborts. If
the procedure outputs “No Solution”, then our current choice of 2-dimensional subsets gives
inconsistent equations, and we change our choice, using a heuristic algorithm, hoping to obtain
better results. The main idea behind the heuristic is to change the order in which we consider the
Sboxes, such that the “problematic” groups of Sboxes (which tend to produce the inconsistent
equations) are pushed to the front of the IDSD order. When considering the first few Sboxes, the
number of equations in E∆ is relatively small, and we have more options to choose consistent
equations for these Sboxes. Thus, when the “problematic” Sbox groups are considered first, it
seems more likely that the basic procedure will succeed. The main procedure of the difference
phase is given below, where T1 is some fixed constant threshold:

1. Initialize a counter to 0. Initialize the IDSD by resetting all the IDSL pointers to the begin-
ning of the lists, and randomizing the IDSD Sbox order.

2. Execute the basic procedure. If the procedure succeeds, output the current E∆. If the pro-
cedure outputs “Fail”, abort. Otherwise (i.e., when the procedure outputs “No Solution”),
go to step 3.

3. Increment the counter. If the counter’s value is equal to T1, go to step 1.
4. Reset the pointer of the failed Sbox IDSL to its value before the last basic procedure.
5. Change the IDSD order by bringing the failed Sbox to the front (and pushing the rest of the

Sboxes one position backwards).
6. Go to step 2.

Since there is nothing that ensures that the main procedure of the difference phase halts, it
may run a very long time without finding a solution (either because there is no solution, or it
is extremely difficult to find one). The procedure may even enter a loop by setting the state of
the IDSD in steps 4 and 5 to a previously considered state. Thus, after T1 executions of the
basic procedure which output “No Solution”, we start over by re-randomizing the IDSD order
and resetting all the IDSL pointers.

A.2 Choosing ∆I and the Set of Message Pairs

After we successfully enforce the difference constraints on the input difference ∆I in the differ-
ence phase and obtain a set of candidate input differences, we are ready to execute the value
phase. As described in Section 4, in this phase we iteratively narrow down the dimension of the
set of candidate input differences, until only one candidate for ∆I remains. While doing so, we
simultaneously narrow down the set of pairs of possible initial states: we start with a set contain-
ing all the possible 1600-bit initial state pairs with the 2n+ 8 MSBs equal to p||02n, and finally

obtain the set {(M1
1,M

2
1), (M

1
2,M

2
2), ..., (M

1
k,M

2
k)}, where all pairs have the difference ∆I and

satisfy the target difference (the actual message can be easily obtained from the corresponding
1600-bit value, by removing these fixed 2n+ 8 MSBs).
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Similarly to the procedure that we use for the difference phase, we continue to maintain the
set of linear equations which define the set of possible input differences, E∆. We iterate over
the active Sboxes according to the current IDSD order, and for each Sbox we choose a 5-bit
input difference that is consistent with the current equations in E∆. We then narrow the set of
possible input differences down by adding the additional 5 − 3 = 2 equations that define this
5-bit input difference to E∆.

In addition to maintaining E∆, we maintain another system of linear equations, whose solu-

tion basis spans the set of possible values for L(M
1
) (the 1600-bit state obtained by invoking L

on the first message in each one of the ordered pairs). This set of equations is used to simulta-
neously enforce the two value constraints given in Section 4, and is denoted by EM . Given EM ,

we can easily obtain a basis for the set M
1
i ∀i ∈ {1, 2, ..., k}, by multiplying each element of the

basis for L(M
1
i ) by the matrix that defines L−1.

Initially, we add to EM all the 2n+ 8 linear equations that enforce the first value constraint
on the first initial state of the ordered pairs. We then enforce the second value constraint on
each Sbox independently: for each Sbox with output difference δout (computed from ∆T ), once
we determine its input difference δin, we also obtain the linear equations that restrict the values

of the 5 variables of L(M
1
) to the affine subset A(δin, δout). We then enforce the second value

constraint on the Sbox by adding these linear equations to EM . Note that in the difference phase,
we ensured that in each stage of the value phase, for each Sbox with a fixed output difference,
there exists some input difference whose equations can be added to E∆, while maintaining its
consistency. In addition, we ensured that the affine subset of values that corresponds to these
input and output differences is non-empty. However, we did not ensure that the equations that

restrict the values of the variables of L(M
1
) to this subset are consistent with the equations that

are currently in EM .

The Basic Procedure The steps of the basic procedure of the value phase are given below:

1. Initialize an empty linear equation system EM with 1600 variables for the unknown bits of

L(M
1
).

2. By inverting L, compute the coefficients of the 2n+8 linear equations that equate the 2n+8

MSBs of L(M
1
) to p||02n (p is the 8-bit pad 10000001), and add the equations to EM .

3. Iterate the t active SBoxes according to the IDSD order:

(a) Using ∆T , obtain δout for the Sbox.

(b) Obtain all the Sbox input differences that are consistent with E∆ (denoted by {δini }), and
sort them in descending order according to the size of the affine subset of values that sat-
isfy the input-output difference (i.e., make sure that DDT (δini , δ

out) ≥ DDT (δini+1, δ
out)).

(c) Iterate the sorted input differences obtained in the previous step, starting with δin1 (which
gives the largest affine subset of values):

i. Using the current input difference, δini obtain the linear equations that define the
affine subset A(δini , δ

out).
ii. If EM is consistent with these linear equations, add the equations to EM . In addition,

add the additional equations on the input difference (that were not added in the
difference phase), which are defined by δini , to E∆, and continue to the next Sbox in
step 3.

iii. Otherwise, continue to the next input difference in step c. If no more input differences
remain, output “No Solution”.

4. Output the fully determined 1600-bit value of ∆I , in addition to the equation system that
defines the message values, EM .
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The algorithm makes a heuristic choice in step c, by considering the input differences for
each Sbox, starting with the one that gives the largest affine subset of values. The idea is to keep
the number of equations in EM as small as possible, in order to reduce the probability of failure.
In addition, when we generate fewer independent equations in EM at the end of the process, we
get a larger set of pairs that satisfy the target difference.

The Main Procedure Similarly to the basic procedure of the difference phase, there is no
guarantee that this procedure succeeds. Hence, we may need to repeat it several times with
different choices of input differences for each Sbox, which result in different systems of equations,
EM . The steps of the main procedure of the value phase are given below, where T2 is some fixed
constant threshold:

1. Initialize a counter to 0.

2. Set E∆ to the equation system returned by the last successful execution of the difference
phase.

3. Execute the basic procedure of the value phase. If the procedure succeeds, output ∆I and
EM . Otherwise (i.e., the procedure outputs “No Solution”), continue to step 4.

4. Increment the counter. If the counter’s value is equal to T2, output “No Solution”.

5. Change the IDSD order by bringing the failed Sbox to the front (and pushing the rest of the
Sboxes one position backwards).

6. Go to step 2.

Note the difference between the structures of the two phases of the algorithm: the only
input to the difference phase is the value of ∆T (which we assume to be fixed). Thus, unless
it returns “Fail”, there is no reason to stop its execution at any point. On the other hand, the
value phase depends on the output of the difference phase, E∆. Since the particular choice of
candidate set for ∆I may foil the procedure, we terminate the value phase after the number
of unsuccessful executions of its basic procedure reaches some threshold, T2. In this case, we
restart the difference phase, hoping that another choice of candidate set for ∆I will give better
results.

A.3 Sorting the Input Difference Subset Lists

In this section, we give the details of how we sort the IDSLs, by specifying how to compare two
input difference subsets in the list. Given a non-zero Sbox output difference, all the maximal
possible input difference subsets are of dimension 2, and add 3 linear equations to E∆. This does
not give an obvious reason to prefer one subset over another in the difference phase. However, the
input differences within each input difference subset give affine subsets of different sizes: there
are 20 specific non-zero Sbox output differences, δout, whose DDT entries DDT (δin, δout), have
values of 2, 4 and 8. For the remaining 11 output differences, the non-zero DDT entries attain
only the values 2 and 4. In the value phase, we prefer input differences that give large subsets
of values. Thus, in the difference phase, we give precedence to input difference subsets contain-
ing such input differences: assume that ∆T assigns a specific Sbox an output difference δout,
and we want to compare two input difference subsets {δin1 , δin2 , δin3 , δin4 } and {δin5 , δin6 , δin7 , δin8 }
such that DDT (δin1 , δ

out) ≥ DDT (δin2 , δ
out) ≥ DDT (δin3 , δ

out) ≥ DDT (δin4 , δ
out) > 0 and

DDT (δin5 , δ
out) ≥ DDT (δin6 , δ

out) ≥ DDT (δin7 , δ
out) ≥ DDT (δin8 , δ

out) > 0. We first compare
the sizes of the largest subsets of values, DDT (δin1 , δ

out) and DDT (δin5 , δ
out), and give prece-

dence to the input difference subset for which the size is bigger. If the sizes are equal, we compare
DDT (δin2 , δ

out) and DDT (δin6 , δ
out), and so forth.
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B Appendix: An Alternative Value Phase

The value phase presented in section A.2 chooses ∆I and the set of message pairs iteratively,
which gives it more options, and reduces its running time compared to more restrictive algorithms
which choose ∆I in advance. However, it has two disadvantages: it restricts the messages to one
block (by assuming a zero initial value for the inner part of the state), and more significantly, has
no known bound on its expected running time. We can easily overcome the first disadvantage by
choosing a prefix of m− 1 arbitrary blocks, and calculating the inner part of the state obtained
after running the permutation on the prefix. We then use the value of the inner state in order
to apply the algorithm on an additional final block (which is the only one in which we use a
difference between the two messages). The only change from the single-block version is that we
initialize the values of the equations in step 2 of the basic procedure of the value phase according
to the new inner state value.

Given that we choose a common prefix of several blocks for all message pairs, and run the
target difference algorithm only on the last block, the difference in the inner states obtained
after the prefix for each pair, is zero. Thus, the difference phase of the multi-block variant
presented above is completely identical to the original single-block version. In fact, since the
difference phase is completely independent of the inner state value, we can apply it and obtain
suggestions for ∆I before we even choose the prefix. This simple observation allows us to design
a completely different value phase, whose expected complexity can be easily calculated using
reasonable assumptions (and given that the difference phase succeeds).

In the alternative value phase, we first pick a fixed ∆I from the input difference candidate
set computed in the difference phase. This fixed input difference gives many linear equations
that involve message bits which we can easily control, and thus we can satisfy a large portion of
the equations regardless of the value of the inner part of the state. However, after fixing many
message bits in order to satisfy equations, we may remain with some linear equations which
only involve the inner part of the state, that cannot be directly controlled. Thus, we compute
the inner part of the state for arbitrary message prefixes, hoping that one of them satisfies the
remaining equations by chance. The complexity of the value phase is measured by the expected
number of invocations of Keccak’s internal permutation, which depends on the number of linear
equations that cannot be satisfied by the message bits (i.e., involve only the variables of the
inner part of the state). Thus, in the alternative value phase, we exploit the possibility to vary
the inner part of the state, instead of varying the input difference ∆I (as we do in the original
value phase). The steps of the alternative value phase are given below:

1. Choose an input difference ∆I from the candidate input differences outputted by the differ-
ence phase.

2. Initialize an empty linear equation system EM with 1600 variables for the unknown bits of

L(M
1
).

3. For each Sbox:
(a) Using ∆I and ∆T , compute the Sbox input and input differences (δin, δout).
(b) Add the equations that define A(δin, δout) to EM .

4. By inverting L, compute the coefficients of the 8 linear equations that define the padding. If
these equations are consistent with EM , add them and continue to the next step. Otherwise,
go to step 1.

5. Compute the coefficients of the 2n linear equations that define the inner part of the state.
Add them to EM , by allocating additional 2n variables for their undetermined values (the
vector of values of EM contain 2n undetermined values).

6. Perform Gauss Elimination on EM , and obtain the dependent equations, where the coeffi-

cients of the variables of L(M
1
) are zero. These give linear equations on the 2n variables of

the inner state.
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7. Choose a common message prefix of m−2 blocks, each containing r bits, M∗1 ,M
∗
2 , ...,M

∗
m−2,

where m > 1.

8. Compute the inner part of the state, Cm−2, after running the Keccak permutation on the
prefix.

9. Iterate over the 2r possible values of the message block with index m − 1, M∗m−1, in some
order:

(a) Execute the Keccak permutation on the message block M∗m−1 and the inner state Cm−2,
and obtain the next inner state Cm−1.

(b) Check if the equations obtained in step 6 hold for Cm−1. If they do, output ∆I and
EM (without the trivial equations), in addition to the message prefix M∗1 ,M

∗
2 , ...,M

∗
m−1.

Otherwise, go to the beginning of step 9 (choose the next value of M∗m−1).

Note that in step 2, we add no equations to EM for non-active Sboxes, and for active Sboxes
we add at most 4 equations (since all the non-zero DDT entries that correspond to a non-zero
output difference have a value of at least 2). Thus, after step 3, EM contains a subset of dimension
at least 1600− (4 · 320) = 320. Since L−1 has a very fast diffusion, it is very unlikely that non of
the initial states defined by this large subset attain the value of the 8-bit pad. Consequently, it
is very unlikely that the procedure will fail even once on step 4. Thus, we ignore this possibility
and assume that step 9 is the time complexity bottleneck of the procedure. Assuming that we
get q dependent equations in step 6 of the attack, we obtain q linear equations on the inner state
bits after m− 1 blocks, Cm−1. Thus, assuming that the Keccak permutation behaves randomly,
we expect to run it 2q times in step 9, until all the q equations are satisfied. Note that we can
calculate the expected running time of the algorithm only after selecting the exact value of ∆I

from the candidate set of input differences. Hence, it may be useful to run steps 1–6 several
times, and choose the value of ∆I which gives the best expected running time.

Although we cannot bound its expected complexity, in practice, the running time of the
original value phase can be much lower than the running time of the alternative value phase.
Thus, it is advisable to run the original value phase in case the expected running time of the
alternative value phase is too high, and to calculate the expected running time of the alternative
value phase in case the original value phase seems to be unsuccessful.

C Appendix: Differential Characteristics for Keccak

In this section, we give examples of 3-round differential characteristics, which lead to collisions on
4-round Keccak-224 and Keccak-256, and 4-round characteristics, which lead to near-collisions
on 5-round Keccak-224 and Keccak-256.

The differential characteristics are given as a sequence of the starting state differences in
each round. In all the presented characteristics, all the active Sboxes get an input difference
with a Hamming weight of 1, and we assume that they produce the same differences as outputs
(which occurs with probability 2−2). In order to calculate the probability of the final transition,
we only consider active Sboxes which effect the output bits (since we truncate the final state to
obtain the hashed output). Each state difference is given as a matrix of 5 × 5 lanes of 64 bits,
ordered from left to right, where each lane is given in hexadecimal using the little-endian format.
The symbol ’-’ is used in order to denote a zero 4-bit difference value. For example, consider the
second state difference in Characteristic 1: each of the first two lanes has a zero difference, and
only the LSB of the third lane contains a non-zero difference.
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|26978AF134CB835E|AF224C4D78366789|C4DAE35E2656F26B|357C4789AF3-6AF1|78D3526BC6A74C4D|

|26978AF134CB835E|AF224C4D78366789|C4DAE35E2656F26B|357C4789AF3-6AF1|78D3526BC6A74C4D|

|26978AF134CB835E|AF224C4D78366789|C4DAE35E2676F26B|357C4789AF3-6AF1|78D3526BC4A74C4D|

|26978AF134CB835E|AF224C4D78366789|C4DAE35E265EF26B|357C4789AF3-4AF1|78D3526BC6A74C4D|

|26978AF134CB835E|AF226C4D78366789|C4DAE35E2656F26B|35FC4789AF3-6AF1|78D3526BC6A74C4D|

|----------------|----------------|---------------1|-------4--------|----------------|

|----------------|----------------|----------------|----------------|----------------|

|----------------|----------------|----------------|----------------|----------------|

|----------------|----------------|----------------|-------4--------|----8-----------|

|----------------|----------------|---------------1|----------------|----8-----------|

|----------------|----------------|----------------|--8-------------|2---------------|

|4---------------|----------------|----------------|----------------|2---------------|

|----------------|----------------|----------------|--8-------------|----------------|

|----------------|----------------|----------------|----------------|----------------|

|4---------------|----------------|----------------|----------------|----------------|

|----------------|----------------|----------------|----------------|----------------|

|-----------8----|-----------2----|----------------|----------------|----------------|

|----------------|----------------|-----------1----|----------------|-----------1----|

|---------1------|-------4--------|----------------|----------------|----------------|

|----------------|----------------|----------------|----------------|----------------|

The probability of each one of the first two transitions is 2−12. The probability of the third transition is 1, since
there are no active Sboxes which affect the output.
Characteristic 1: A 3-round characteristic leading to collisions on Keccak-224 and Keccak-256 with probability
2−24

|BD135E2FA6BD1346|12D789A92F12D78F|D7E26BC344D7E224|E69AF134B5E69AD5|98BC4D6BF898BC58|

|BD135E2FA6BD1346|12D789A82F12D78F|D7E26BC344D7E264|E69AF134B5E69AD5|98BC4D6BF898BC58|

|BD135E2FA6BD1346|12D789AB2F12D78F|D7E26BC344D7E224|E69AF134B5E29AD5|98BC4D6BF898BC58|

|BD135E2FA6BD1346|12D789A92F12D78F|D7E26BC344D7E224|E69AF134B5E69AD5|98BC4D6BF898BC58|

|BD135E2FA6BD1346|12D789A92F12D78F|D7E26BC344D7E224|E29AF134B5E69AD5|98BC4D7BF898BC58|

|----------------|------------1---|----------------|----------------|---4------------|

|----------------|----------------|----------------|----------------|----------------|

|----------------|------------1---|-----8----------|----------------|----------------|

|----------------|----------------|-----8----------|----------------|---4------------|

|----------------|----------------|----------------|----------------|----------------|

|----------------|----------------|----------4-----|----------------|----------------|

|----------------|----------------|----------------|----------------|----------------|

|------------2---|----------------|----------------|-4--------------|----------------|

|------------2---|----------------|----------4-----|-4--------------|----------------|

|----------------|----------------|----------------|----------------|----------------|

|----------------|----------------|----------------|------------8---|----------------|

|----------------|----------------|-----------1----|----------------|----------------|

|----------------|----------------|-----------8----|----------------|----------------|

|----------------|----------------|----------------|------2---------|----------------|

|----------1-----|----------------|----------------|--4-------------|----------------|

|----------------|2---------------|48-----4---2----|-4---12---------|---8---82-----1-|

|----98----------|-2---2-8-----4--|----------------|4---------------|--1----8----2---|

|-----------4----|2---1-----------|----12----------|4---2---2-8-----|------4---------|

|---1-4-----2---1|----------------|---------8------|--2-----8-----4-|----4--------9--|

|--2---1-----4---|-------------48-|1-4-----2---1---|----------------|-----------8----|

The characteristic leads to near-collisions with a Hamming distance of 5 for Keccak-224, and 8 for Keccak-256.
The probability of each one of the first three transitions is 2−12. The probability of the final transition is 2−21 for
Keccak-224 and 2−23 for Keccak-256. The total probability is 2−57 for Keccak-224 and 2−59 for Keccak-256.
Characteristic 2: A 4-round characteristic leading to near-collisions on Keccak-224 and Keccak-256
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D Appendix: Actual Collisions and Near-Collisions for Round-Reduced
Keccak-224 and Keccak-256

We give several examples of collisions and near-collisions for Keccak-224 and Keccak-256. The
padded messages and output values are given in blocks of 32-bits ordered from left to right,
where each block is given in hexadecimal using the little-endian format.

M1=

C4F31C32 4C59AE6D 5D19F0F4 25C4E44B D8853032 8D5E12F2 BB6E6EE2 27C33B1E 6C091058 EB9002D5

3BA4A06F 4A0CC7F1 CCB55E51 8D0DD983 2B0A0843 9B21D3B0 53679075 526DDED2 48294844 6FF4ED2C

1ACE2C15 471C1DC7 D4098568 F1EBF639 EAF7B257 09FDAE87 688878E6 4875EB30 C9C32D80 3C9E6FCB

3C2ABCFA E6A4807B 2AB281B8 812332B3

M2=

A4D30EF7 80BB8F69 90C048DF EB7213B9 A6650424 3A65F63E 8C268881 B651B81F AADAFA3C EE2CA5C3

DB78EAC2 C8EAE779 442F9C35 3221E287 B3017A5A 90790712 1B1C8BDC E08B10A8 9A9D25CA 1BE7AAAC

4E2F3E9C 73717DAD 5566015A A198CFB9 5A1CA8C2 A0E3348A AE6C0BB1 3980F9E4 A4FA8B91 6E81A989

89A9BCAA E12BF1F1 30EF9595 812E8B45

Output=

61FB1891 F326B6D5 24DD94DF 73274984 05DA9A1D 3FD359B9 78B8393B F2E7990B

The messages were found using the target difference algorithm on the target difference given by Characteristic 1.

Collision 1: A collision for 4-round Keccak-256

M1=

FAC7AC69 2710BE04 8462C382 7ABF1BF9 D065CD30 DB64DEB8 1410CD30 C837D79B 22E446B7 31E9BD55

A6B2074C C86E32CC DE50A10A F7BAAA58 D96CBC88 9FBD75F6 5E0D735A D22AA663 16A574AA 7DB08692

558AB029 109B4D30 86CE5DCA 13A295C7 E7C9D94B 648794D2 62EE3CF8 69439337 8CAB9F15 AC7C3267

90F41CBE A20E6893 B4781F24 0BA37647 F29A67A0 81F628D0

M2=

CE5FBC81 47710FCC 462C92E0 48F5D2CF F92F6EC3 053E64E1 570780B9 F838EC54 8F74809F 66B4AC6F

70DD1843 BF34F0C5 5010C89A D8791148 D5CC073E 3239AEBC 7DF48D79 0EC7767B FB081604 AFA975B9

F8EFAE0F ED793473 479E931C F2F80A74 7192D08F 5EB5AB27 F1CAC04E F394232D 48656B2A A3471644

DB74E60A 05FB3B18 41DC27C3 8384BF53 32534C3E 811C00B5

Output=

826B10DC 0670E4E1 5B510CDA AB876AA8 B50557ED 267932FB AA4D38E8

The messages were found using the target difference algorithm on the target difference given by Characteristic 1.

Collision 2: A collision for 4-round Keccak-224
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M1=

23296F07 44536A2B 16E1E363 09B509F9 639CA324 2B834133 61457E6D 9CF07597 6797B3D4 D1715ABA

6D8F4F9F 70D12920 E014BB37 54C32ADE 6117B3FB 30114566 4BA7D70A 00F055F0 71CFFDD4 B53F2563

E223A16D CC8DDAC4 7A59836B A53FBDDE 9FFEC45F 6A3476DC 7349BB92 56AF6E92 83866932 56624032

A936E410 60AC00FA 7E7C61F9 81583CAC

M2=

49D48DE2 9FA843CA 747C88E0 55425134 098CA5B3 C97DC68A B82BC6FD 0F864996 26B13425 D9F73B75

932CD02F FB12E036 47706100 9DEFFFE4 79435F9C DA727EF0 D9CA67C6 520BE2D1 19CF3933 3136D1A9

EEBEA9DD 150CA247 D494BF4A 492EFB26 11CB4C8D F5A10A05 69128FF4 B142742F CA59FE32 4FE68436

068F76AB 041A673E 461575B5 81AA2A54

Output1=

407D4466 FEA8B231 EC968181 DF902165 23C219FF 54571D70 2800F506 E818644B

Output2=

407D4466 FEA8B231 EC928181 FF902165 23C019FF 1C571D74 2800F516 E810656B

The messages were found using the target difference algorithm on the target difference given by Characteristic 2.

Near-Collision 1: A near collision with Hamming distance of 10 for 5-round Keccak-256

M1=

7DBC1AA9 62A70B2A C2BDAF81 4A4D484B 672F6FAF ED312C83 24BC1974 16946039 6B46EDF6 1AE571A0

EDA59D6E 7561766D 8F0B4C57 3C05C569 715B7DF9 53F81761 F6D43507 6E040495 9B5C08AB 5130BA66

22AF7F5C 755840F2 2E893F59 4C4A730F 8C4F425D 182F8D00 E98515ED E29251AD 853AB863 DC46A7AC

9FB7BB08 14767EFC 5345C7AF AA774E81 8A01A570 81D65453

M2=

5659C936 AF3BA787 809C1CE6 B287F81B E0A5E769 ECCEB8A0 72506F44 1A1B2A02 EE9AE408 D16A9358

BF03C4D6 90845C46 0C0441CC 8203EA8D 6D122EB1 9193F64F 55C3A6A7 47377ED6 D26E806F DEC2CBF8

A3B8949E A91B248D 420B13BC BEAB4166 EE348CF6 DB6CCD82 122F6BDA 2FBFA7E4 75E8A429 F397BC46

7E9DE824 6A973A22 371FD02D 92035083 267D1C7A 812EDE70

Output1=

85373497 97D871C2 FBD0A823 584C0ED4 C1B3BF4F BC408766 0584B08D

Output2=

85373497 97D871C2 FBD0A823 784C0ED4 E1B1BF5F BC408776 0584B08D

The messages were found using the target difference algorithm on the target difference given by Characteristic 2.

Near-Collision 2: A near collision with Hamming distance of 5 for 5-round Keccak-224
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