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Abstract. We propose a new authentication protocol that is provably secure based on a ring variant of the
learning parity with noise (LPN) problem. The protocol follows the design principle of the LPN-based protocol
from Eurocrypt’11 (Kiltz et al.), and like it, is a two round protocol secure against active attacks. Moreover, our
protocol has small communication complexity and a very small footprint which makes it applicable in scenarios
that involve low-cost, resource-constrained devices.
Performance-wise, our protocol is more efficient than previous LPN-based schemes, such as the many variants
of the Hopper-Blum (HB) protocol and the aforementioned protocol from Eurocrypt’11. Our implementation
results show that it is even comparable to the standard challenge-and-response protocols based on the AES
block-cipher. Our basic protocol is roughly 20 times slower than AES, but with the advantage of having 10
times smaller code size. Furthermore, if a few hundred bytes of non-volatile memory are available to allow the
storage of some off-line pre-computations, then the online phase of our protocols is only twice as slow as AES.
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1 Introduction

Lightweight shared-key authentication protocols, in which a tag authenticates itself to a reader, are exten-
sively used in resource-constrained devices such as radio-frequency identification (RFID) tags or smart
cards. The straight-forward approach for constructing secure authentications schemes is to use low-level
symmetric primitives such as block-ciphers, e.g. AES [DR02]. In their most basic form, the protocols
consist of the reader sending a short challenge c and the tag responding with AESK(c), where K is the
shared secret key. The protocol is secure if AES fulfils a strong, interactive security assumption, namely
that it behaves like a strong pseudo-random function.

Authentication schemes based on AES have some very appealing features: they are extremely fast,
consist of only 2 rounds, and have very small communication complexities. In certain scenarios, however,
such as when low-cost and resource-constrained devices are involved, the relatively large gate-count
and code size used to implement AES may pose a problem. One approach to overcome the restrictions
presented by low-weight devices is to construct a low-weight block cipher (e.g. PRESENT [BKL+07]),
while another approach has been to deviate entirely from block-cipher based constructions and build a
provably-secure authentication scheme based on the hardness of some mathematical problem. In this
work, we concentrate on this second approach.

Ideally, one would like to construct a scheme that incorporates all the beneficial properties of AES-
type protocols, while also acquiring the additional provable security and smaller code description char-
acteristics. In the past decade, there have been proposals that achieved some, but not all, of these criteria.
Most of these proposals are extensions and variants of the Hopper-Blum (HB) protocol, recently a pro-
tocol following a different blueprint has been proposed by Kiltz et al. [KPC+11]. Our proposal can be
seen as a continuation of this line of research that contains all the advantages enjoyed by LPN-based
protocols, while at the same time, getting even closer to enjoying the benefits of AES-type schemes.

OVERVIEW OF OUR RESULTS. In this work we present a new symmetric authentication protocol which
(i) is provably-secure against active attacks (as defined in [JW05]) based on the Ring-LPN assumption,
? Supported by the European Research Council / ERC Starting Grant (259668-PSPC)
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a natural variant of the standard LPN (learning parity with noise) assumption; (ii) consists of 2 rounds;
(iii) has small communication complexity (approximately 1300 bits); (iv) has efficiency comparable to
AES-based challenge-response protocols (depending on the scenario), but with a much smaller code size.
To demonstrate the latter we implemented the tag part of our new protocol in a setting of high practical
relevance – a low-cost 8-bit microcontroller which is a typical representative of a CPU to be found on
lightweight authentication tokens, and compared its performance (code size and running time) with an
AES implementation on the same platform.

PREVIOUS WORKS. Hopper and Blum [HB00,HB01] proposed a 2-round authentication protocol that
is secure against passive adversaries based on the hardness of the LPN problem (we remind the reader
of the definition of the LPN problem in Section 1.2). The characteristic feature of this protocol is that
it requires very little workload on the part of the tag and the reader. Indeed, both parties only need to
compute vector inner products and additions over F2, which makes this protocol (thereafter named HB)
a good candidate for lightweight applications.

Following this initial work, Juels and Weis constructed a protocol called HB+ [JW05] which they
proved to be secure against more realistic, so called active attacks. Subsequently, Katz et al. [KS06a],
[KS06b,KSS10] provided a simpler security proof for HB+ as well as showed that it remains secure when
executed in parallel. Unlike the HB protocol, however, HB+ requires three rounds of communication be-
tween tag and reader. From a practical aspect, 2 round authentication protocols are often advantageous
over 3 round protocols. They often show a lower latency which is especially pronounced on platforms
where the establishment of a communication in every directions is accompanied by a fixed initial delay.
An additional drawback of both HB and HB+ is that their communication complexity is on the order of
hundreds of thousands of bits, which makes them almost entirely impractical for lightweight authentica-
tion tokens because of timing and energy constraints. (The contactless transmission of data on RFIDs or
smart cards typically requires considerably more energy than the processing of the same data.)

To remedy the overwhelming communication requirement of HB+, Gilbert et al. proposed the three-
round HB] protocol [GRS08a]. A particularly practical instantiation of this protocol requires fewer than
two thousand bits of communication, but is no longer based on the hardness of the LPN problem. Rather
than using independent randomness, the HB] protocol utilized a Toeplitz matrix, and is thus based on a
plausible assumption that the LPN problem is still hard in this particular scenario.

A feature that the HB,HB+, and HB] protocols have in common is that at some point the reader
sends a random string r to the tag, which then must reply with 〈r, s〉+ e, the inner product of r with the
secret s plus some small noise e. The recent work of Kiltz et al. [KPC+11] broke with this approach,
and they were able to construct the first 2-round LPN-based authentication protocol (thereafter named
EC11) that is secure against active attacks. In their challenge-response protocol, the reader sends some
challenge bit-string c to the tag, who then answers with a noisy inner product of a random r (which the
tag chooses itself) and a session-key K(c), where K(c) selects (depending on c) half of the bits from the
secret s. Unfortunately, the EC11 protocol still inherits the large communication requirement of HB and
HB+. Furthermore, since the session key K(c) is computed using bit operations, it does not seem to be
possible to securely instantiate EC11 over structured (and hence more compact) objects such as Toeplitz
matrices (as used in HB] [GRS08a]).

1.1 Our contributions

PROTOCOL. In this paper we propose a variant of the EC11 protocol from [KPC+11] which uses an
“algebraic” derivation of the session keyK(c), thereby allowing to be instantiated over a carefully chosen
ring R = F2[X]/(f). Our scheme is no longer based on the hardness of LPN, but rather on the hardness of
a natural generalization of the problem to rings, which we call Ring-LPN(see Section 3 for the definition
of the problem.) The general overview of our protocol is quite simple. Given a challenge c from the
reader, the tag answers with (r, z = r · K(c) + e) ∈ R × R, where r is a random ring element, e is a



Table 1. Summary of implementation results

Protocol Time (cycles) Code size
online offline (bytes)

Ours: reducible f (§5.1) 30, 000 82, 500 1, 356
Ours: irreducible f (§5.2) 21, 000 174, 000 459
AES-based [LLS09,Tik] 10, 121 0 4, 644

low-weight ring element, and K(c) = sc + s′ is the session key that depends on the shared secret key
K = (s, s′) ∈ R2 and the challenge c. The reader accepts if e′ = r ·K(c) − z is a polynomial of low
weight, cf. Figure 1 in Section 4. Compared to the HB and HB+ protocols, ours has one less round and
a dramatically lower communication complexity. Our protocol has essentially the same communication
complexity as HB], but still retains the advantage of one fewer round. And compared to the two-round
EC11 protocol, ours again has the large savings in the communication complexity. Furthermore, it inherits
from EC11 the simple and tight security proof that, unlike three-round protocols, does not use rewinding.

We remark that while our protocol is provably secure against active attacks, we do not have a proof
of security against man-in-the-middle ones. Still, as argued in [KSS10], security against active attacks
is sufficient for many use scenarios (see also [JW05,KW05,KW06]). We would like to mention that
despite man-in-the-middle attacks being outside our “security model”, we think that it is still worthwhile
investigating whether such attacks do in fact exist, because it presently seems that all previous man-in-
the middle attacks against HB-type schemes along the lines of Gilbert et al. [GRS05] and of Ouafi et
al. [OOV08] do not apply to our scheme. In Appendix A, however, we do present a man-in-the-middle
attack that works in time approximately n1.5 · 2λ/2 (where n is the dimension of the secret and λ is the
security parameter) when the adversary can influence on the order of n1.5 · 2λ/2 interactions between the
reader and the tag. To resist this attack, one could simply double the security parameter, but we believe
that even for λ = 80 (and n > 512, as it is currently set in our scheme) this attack is already impractical
because of the extremely large number of interactions that the adversary will have to observe and modify.

IMPLEMENTATION. We demonstrate that our protocol is indeed practical by providing a lightweight
implementation of the tag part of the protocol. (The reader is typically not run on a constrained device
and therefore we do not consider its performance.) The target platform was an AVR ATmega163 [Atm]
based smart card. The ATmega163 is a small 8-bit microcontroller which is a typical representative of
a CPU to be found on lightweight authentication tokens. The main metrics we consider are run time
and code size. We compare our results with a challenge-response protocol using an AES implementation
optimized for the target platform. A major advantage of our protocol is its very small code size. The most
compact implementation requires only about 460 bytes of code, which is an improvement by factor of
about 10 over AES-based authentication. Given that EEPROM or FLASH memory is often one of the
most precious resources on constrained devices, our protocol can be attractive in certain situations. The
drawback of our protocol over AES on the target platform is an increase in clock cycles for one round
of authentication. However, if we have access to a few hundred bytes of non-volatile data memory, our
protocol allows precomputations which make the on-line phase only a factor two or three slower than
AES. But even without precomputations, the protocol can still be executed in a few 100 msec, which will
be sufficient for many real-world applications, e.g. remote keyless entry systems or authentication for
financial transactions. Table 1 gives a summary of the results, see Section 5 for details.

We would like to stress at this point that our protocol is targeting lightweight tags that are equipped
with (small) CPUs. For ultra constrained tokens (such as RFIDs in the price range of a few cents targeting
the EPC market) which consist nowadays of a small integrated circuit, even compact AES implementa-
tions are often considered too costly. (We note that virtually all current commercially available low-end
RFIDs do not have any crypto implemented.) However, tokens which use small microcontrollers are far
more common, e.g., low-cost smart cards, and they do often require strong authentication. Also, it can
be speculated that computational RFIDs such as the WISP [Wik] will become more common in the fu-



ture, and hence software-friendly authentication methods that are highly efficient such as the protocol
provided here will be needed.

1.2 LPN, Ring-LPN, and Related Problems

The security of our protocols relies on the new Ring Learning Parity with Noise (Ring-LPN) problem
which is a natural extension of the standard Learning Parity with Noise (LPN) problem to rings. It can
also be seen as a particular instantiation of the Ring-LWE (Learning with Errors over Rings) problem
that was recently shown to have a strong connection to lattices [LPR10]. We will now briefly describe
and compare these hardness assumptions, and we direct the reader to Section 3 for a formal definition of
the Ring-LPN problem.

The decision versions of these problems require us to distinguish between two possible oracles to
which we have black-box access. The first oracle has a randomly generated secret vector s ∈ Fn2 which
it uses to produce its responses. In the LPN problem, each query to the oracle produces a uniformly
random matrix4 A ∈ Fn×n2 and a vector As + e = t ∈ Fn2 where e is a vector in Fn2 each of whose
entries is an independently generated Bernoulli random variable with probability of 1 being some public
parameter τ between 0 and 1/2. The second oracle in the LPN problem outputs a uniformly-random
matrix A ∈ Fn×n2 and a uniformly random vector t ∈ Fn2 .

The only difference between LPN and Ring-LPN is in the way the matrix A is generated (both by
the first and second oracle). While in the LPN problem, all its entries are uniform and independent, in
the Ring-LPN problem, only its first column is generated uniformly at random in Fn2 . The remaining n
columns of A depend on the first column and the underlying ring R = F2[X]/(f(X)). If we view the
first column of A as a polynomial r ∈ R, then the ith column (for 0 ≤ i ≤ n− 1) of A is just the vector
representation of rXi in the ring R. Thus when the oracle returns As+ e, this corresponds to it returning
the polynomial r · s+ e where the multiplication of polynomials r and s (and the addition of e) is done
in the ring R. The Ring-LPNR assumption states that it is hard to distinguish between the outputs of the
first and the second oracle described above. In Section 3, we discuss how the choice of the ring R affects
the security of the problem.

While the standard Learning Parity with Noise (LPN) problem has found extensive use as a crypto-
graphic hardness assumption (e.g., [HB01,JW05,GRS08b,GRS08a,ACPS09,KSS10]), we are not aware
of any constructions that employed the Ring-LPN problem. There have been some previous works that
considered some relatively similar “structured” versions of LPN. The HB] authentication protocol of
Gilbert et al. [GRS08a] made the assumption that for a random Toeplitz matrix S ∈ Fm×n2 , a uniformly
random vector a ∈ Fn2 , and a vector e ∈ Fm2 whose coefficients are distributed as Berτ , the output
(a, Sa+ e) is computationally indistinguishable from (a, t) where t is uniform over Fm2 .

Another related work, as mentioned above, is the recent result of Lyubashevsky et al. [LPR10],
where it is shown that solving the decisional Ring-LWE (Learning with Errors over Rings) problem is
as hard as quantumly solving the worst case instances of the shortest vector problem in ideal lattices.
The Ring-LWE problem is quite similar to Ring-LPN, with the main difference being that the ring R is
defined as Fq[X]/(f(X)) where f(X) is a cyclotomic polynomial and q is a prime such that f(X) splits
completely into deg(f(X)) distinct factors over Fq.

Unfortunately, the security proof of our authentication scheme does not allow us to use a polynomial
f(X) that splits into low-degree factors, and so we cannot base our scheme on lattice problems. For a
similar reason (see the proof of our scheme in Section 4 for more details), we cannot use samples that
come from a Toeplitz matrix as in [GRS08a]. Nevertheless, we believe that the Ring-LPN assumption is
very natural and will find further cryptographic applications, especially for constructions of schemes for
low-cost devices.

4 In the more common description of the LPN problem, each query to the oracle produces one random sample in Fn2 . For
comparing LPN to Ring-LPN, however, it is helpful to consider the oracle as returning a matrix of n random independent
samples on each query.



2 Definitions

2.1 Rings and Polynomials

For a polynomial f(X) over F2, we will often omit the indeterminate X and simply write f . The degree
of f is denoted by deg(f). For two polynomials a, f in F2[X], a mod f is defined to be the unique poly-
nomial r of degree less than deg(f) such that a = fg+ r for some polynomial g ∈ F2[X]. The elements
of the ring F2[X]/(f) will be represented by polynomials in F2[X] of maximum degree deg(f) − 1.
In this paper, we will only be considering rings R = F2[X]/(f) where the polynomial f factors into
distinct irreducible factors over F2. For an element a in the ring F2[X]/(f), we will denote by â, the
CRT (Chinese Remainder Theorem) representation of a with respect to the factors of f . In other words,
if f = f1 . . . fm where all fi are irreducible, then

â
.
= (a mod f1, . . . , a mod fm).

If f is itself an irreducible polynomial, then â = a. Note that an element â ∈ R has a multiplicative
inverse iff, for all 1 ≤ i ≤ m, a 6= 0 mod fi. We denote by R∗ the set of elements in R that have a
multiplicative inverse.

2.2 Distributions

For a distribution D over some domain, we write r $← D to denote that r is chosen according to the
distributionD. For a domain Y , we writeU(Y ) to denote the uniform distribution over Y . Let Berτ be the
Bernoulli distribution over F2 with parameter (bias) τ ∈ ]0, 1/2[ (i.e., Pr[x = 1] = τ if x← Berτ ). For
a polynomial ring R = F2[X]/(f), the distribution BerRτ denotes the distribution over the polynomials
of R, where each of the coefficients of the polynomial is drawn independently from Berτ . For a ring R
and a polynomial s ∈ R, we write ΛR,s

τ to be the distribution over R× R whose samples are obtained by
choosing a polynomial r $← U(R) and another polynomial e $← BerRτ , and outputting (r, rs+ e).

2.3 Authentication Protocols

An authentication protocol Π is an interactive protocol executed between a Tag T and a reader R,
both PPT algorithms. Both hold a secret x (generated using a key-generation algorithm KG executed on
the security parameter λ in unary) that has been shared in an initial phase. After the execution of the
authentication protocol, R outputs either accept or reject. We say that the protocol has completeness
error εc if for all λ ∈ N, all secret keys x generated by KG(1λ), the honestly executed protocol returns
reject with probability at most εc. We now define different security notions of an authentication protocol.

PASSIVE ATTACKS. An authentication protocol is secure against passive attacks, if there exists no PPT
adversary A that can make the reader R return accept with non-negligible probability after (passively)
observing any number of interactions between reader and tag.

ACTIVE ATTACKS. A stronger notion for authentication protocols is security against active attacks. Here
the adversary A runs in two stages. First, she can interact with the honest tag a polynomial number of
times (with concurrent executions allowed). In the second phase A interacts with the reader only, and
wins if the reader returns accept. Here we only give the adversary one shot to convince the verifier.5 An
authentication protocol is (t, q, ε)-secure against active adversaries if every PPT A, running in time at
most t and making q queries to the honest reader, has probability at most ε to win the above game.

5 By using a hybrid argument one can show that this implies security even if the adversary can interact in k ≥ 1 independent
instances concurrently (and wins if the verifier accepts in at least one instance). The use of the hybrid argument looses a
factor of k in the security reduction.



3 Ring-LPN and its Hardness

The decisional Ring-LPNR (Ring Learning Parity with Noise in ring R) assumption, formally defined
below, states that it is hard to distinguish uniformly random samples in R× R from those sampled from
ΛR,s
τ for a uniformly chosen s ∈ R.

Definition 1 (Ring-LPNR). The (decisional) Ring-LPNR
τ problem is (t, q, ε)-hard if for every distin-

guisher D running in time t and making q queries,∣∣∣Pr [s $← R : DΛ
R,s
τ = 1

]
− Pr

[
DU(R×R) = 1

]∣∣∣ ≤ ε.
3.1 Hardness of LPN and Ring-LPN

One can attempt to solve Ring-LPN using standard algorithms for LPN, or by specialized algorithms that
possibly take advantage of Ring-LPN’s additional structure. Some work towards constructing the latter
type of algorithm has recently been done by Hanrot et al. [HLPS11], who show that in certain cases, the
algebraic structure of the Ring-LPN and Ring-LWE problems makes them vulnerable to certain attacks.
These attacks essentially utilize a particular relationship between the factorization of the polynomial
f(X) and the distribution of the noise.

Ring-LPN with an irreducible f(X) When f(X) is irreducible over F2, the ring F2[X]/(f) is a field.
For such rings, the algorithm of Hanrot et al. does not apply, and we do not know of any other algorithm
that takes advantage of the added algebraic structure of this particular Ring-LPN instance. Thus to the
best of our knowledge, the most efficient algorithms for solving this problem are the same ones that are
used to solve LPN, which we will now very briefly recount.

The computational complexity of the LPN problem depends on the length of the secret n and the
noise distribution Berτ . Intuitively, the larger the n and the closer τ is to 1/2, the harder the problem
becomes. Usually the LPN problem is considered for constant values of τ somewhere between 0.05 and
0.25. For such constant τ , the fastest asymptotic algorithm for the LPN problem, due to Blum et al.
[BKW03], takes time 2Ω(n/ logn) and requires approximately 2Ω(n/ logn) samples from the LPN oracle.
If one has access to fewer samples, then the algorithm will perform somewhat worse. For example, if one
limits the number of samples to only polynomially-many, then the algorithm has an asymptotic complex-
ity of 2Ω(n/ log logn) [Lyu05]. In our scenario, the number of samples available to the adversary is limited
to n times the number of executions of the authentication protocol, and so it is reasonable to assume that
the adversary will be somewhat limited in the number of samples he is able to obtain (perhaps at most 240

samples), which should make our protocols harder to break than solving the Ring-LPN problem. Levieil
and Fouque [LF06] made some optimizations to the algorithm of Blum et al. and analyzed its precise
complexity. To the best of our knowledge, their algorithm is currently the most efficient one and we will
refer to their results when analyzing the security of our instantiations.

In Section 5, we base our scheme on the hardness of the Ring-LPNR problem where the ring is
R = F2[X]/(X532 + X + 1) and τ = 1/8. According to the analysis of [LF06], an LPN problem of
dimension 512 with τ = 1/8 would require 277 memory (and thus at least that much time) to solve
when given access to approximately as many samples (see [LF06, Section 5.1]). Since our dimension is
somewhat larger and the number of samples will be limited in practice, it is reasonable to assume that
this instantiation has 80-bit security.

Ring-LPN with a reducible f(X) For efficiency purposes, it is sometimes useful to consider using
a polynomial f(X) that is not irreducible over F2. This will allow us to use the CRT representation of
the elements of F2[X]/(f) to perform multiplications, which in practice turns out to be more efficient.
Ideally, we would like the polynomial f to split into as many small-degree polynomials fi as possible,



but there are some constraints that are placed on the factorization of f both by the security proof, and the
possible weaknesses that a splittable polynomial introduces into the Ring-LPN problem.

If the polynomial f splits into f =
∏m
i=1 fi, then it may be possible to try and solve the Ring-LPN

problem modulo some fi rather than modulo f . Since the degree of fi is smaller than the degree of f , the
resulting Ring-LPN problem may end up being easier. In particular, when we receive a sample (r, rs+e)
from the distribution ΛR,s

τ , we can rewrite it in CRT form as

(r̂, r̂s+ e) = ((r mod f1, rs+ e mod f1), . . . ,

(r mod fm, rs+ e mod fm)),

and thus for every fi, we have a sample

(r mod fi, (r mod fi)(s mod fi) + e mod fi),

where all the operations are in the ring (or field) F2[X]/(fi). Thus solving the (decision) Ring-LPN
problem in F2[X]/(f) reduces to solving the problem in F2[X]/(fi). The latter problem is in a smaller
dimension, since deg(s) > deg(s mod fi), but the error distribution of (e mod fi) is quite different than
that of e. While each coefficient of e is distributed independently as Berτ , each coefficient of (e mod fi)
is distributed as the distribution of a sum of certain coefficients of e, and therefore the new error is
larger.6 Exactly which coefficients of e, and more importantly, how many of them, combine to form
every particular coefficient of e′ depends on the polynomial fi. For example, if

f(X) = (X3 +X + 1)(X3 +X2 + 1)

and e =
5∑
i=0

eiX
i, then,

e′ = e mod (X3 +X + 1) = (e0 + e3 + e5) + (e1 + e3 + e4 + e5)X + (e2 + e4 + e5)X
2,

and thus every coefficient of the error e′ is comprised of at least 3 coefficients of the error vector e, and
thus τ ′ > 1

2 −
(1−2τ)3

2 .
In our instantiation of the scheme with a reducible f(X) in Section 5, we used the f(X) such that it

factors into fi’s that make the operations in CRT form relatively fast, while making sure that the resulting
Ring-LPN problem modulo each fi is still around 280-hard.

4 Authentication Protocol

In this section we describe our new 2-round authentication protocol and prove its active security under
the hardness of the Ring-LPN problem. Detailed implementation details will be given in Section 5.

4.1 The Protocol

Our authentication protocol is defined over the ring R = F2[X]/(f) and involves a “suitable” mapping
π : {0, 1}λ → R. We call π suitable for ring R if for all c, c′ ∈ {0, 1}λ, π(c)− π(c′) ∈ R \ R∗ iff c = c′.
We will discuss the necessity and existence of such mappings after the proof of Theorem 1

– Public parameters. The authentication protocol has the following public parameters, where τ, τ ′

are constants and n depend on the security parameter λ.
R, n ring R = F2[X]/(f), deg(f) = n
π : {0, 1}λ → R mapping
τ ∈ (0, 1/2) parameter of Bernoulli distribution
τ ′ ∈ (τ, 1/2) acceptance threshold

6 If we have k elements e1, . . . , ek
$← Berτ , then a simple calculation shows that the element e′ = e1+ . . .+ek is distributed

as Berτ ′ where τ ′ = 1
2
− (1−2τ)k

2
.



Public parameters: R, π : {0, 1}λ → R, τ, τ ′

Secret key: s, s′ ∈ R

Tag T ReaderR
c←− c

$← {0, 1}λ

r
$← R∗; e $← BerRτ ∈ R

z := r · (s · π(c) + s′) + e
(r,z)−−→

if r 6∈ R∗ reject
e′ := z − r · (s · π(c) + s′)
if wt(e′) > n · τ ′ reject
else accept

Fig. 1. Two-round authentication protocol with active security from the Ring-LPNR assumption.

– Key Generation. Algorithm KG(1λ) samples s, s′ $← R and returns s, s′ as the secret key.
– Authentication Protocol. The ReaderR and the Tag T share secret value s, s′ ∈ R. To be authenti-

cated by a Reader, the Tag and the Reader execute the authentication protocol from Figure 1.

4.2 Analysis

For our analysis we define for x, y ∈]0, 1[ the following constant:

c(x, y) :=

(
x

y

)x(1− x
1− y

)1−x
.

We now state that our protocol is secure against active adversaries. Recall that active adversaries can
arbitrarily interact with a Tag oracle in the first phase and tries to impersonate the Reader in the 2nd
phase.

Theorem 1. If ring mapping π is suitable for ring R and the Ring-LPNR problem is (t, q, ε)-hard then
the authentication protocol from Figure 1 is (t′, q, ε′)-secure against active adversaries, where

t′ = t− q · exp(R) ε′ = ε+ q · 2−λ + c(τ ′, 1/2)−n (4.1)

and exp(R) is the time to perform O(1) exponentiations in R. Furthermore, the protocol has complete-
ness error εc(τ, τ ′, n) ≈ c(τ ′, τ)−n.

Proof. The completeness error εc(τ, τ ′, n) is (an upper bound on) the probability that an honestly gen-
erated Tag gets rejected. In our protocol this is exactly the case when the error e′ has weight ≥ n · τ ′,
i.e.

εc(τ, τ
′, n) = Pr[wt(e′) > n · τ ′ : e $← BerRτ ]

Levieil and Fouque [LF06] show that one can approximate this probability as εc ≈ c(τ ′, τ)−n.
To prove the security of the protocol against active attacks we proceed in sequences of games. Game0

is the security experiment describing an active attack on our scheme by an adversaryAmaking q queries
and running in time t′, i.e.

– Sample the secret key s, s′ $← R.
– (1st phase of active attack) A queries the tag T on c ∈ {0, 1}λ and receives (r, z) computed as

illustrated in Figure 1.
– (2nd phase of active attack) A gets a random challenge c∗ $← {0, 1}λ and outputs (r, z). A wins if

the readerR accepts, i.e. wt(z − r · (s · π(c∗) + s′)) ≤ n · τ ′.



By definition we have Pr[A wins in Game0] ≤ ε′.
Game1 is as Game0, except that all the values (r, z) returned by the Tag oracle in the first phase (in

return to a query c ∈ {0, 1}λ) are uniform random elements (r, z) ∈ R2. We now show that if A is
successful against Game0, then it will also be successful against Game1.

Claim. |Pr[A wins in Game1]− Pr[A wins in Game0]| ≤ ε+ q · 2−λ

To prove this claim, we construct an adversary D (distinguisher) against the Ring-LPN problem which
runs in time t = t′ + exp(R) and has advantage

ε ≥ |Pr[A wins in Game1]− Pr[A wins in Game0]| − q · 2−λ

D has access to a Ring-LPN oracle O and has to distinguish between O = ΛR,s
τ for some secret

s ∈ R and O = U(R× R).

– D picks a random challenge c∗ $← {0, 1}λ and a
$← R. Next, it runs A and simulates its view

with the unknown secret s, s′, where s ∈ R comes from the oracle O and s′ is implicitly defined as
s′ := −π(c∗) · s+ a ∈ R.

– In the 1st phase, A can make q (polynomial many) queries to the Tag oracle. On query c ∈ {0, 1}λ
to the Tag oracle, D proceeds as follows. If π(c)− π(c∗) 6∈ R∗, then abort. Otherwise, D queries its
oracle O() to obtain (r′, z′) ∈ R2. Finally, D returns (r, z) to A, where

r := r′ · (π(c)− π(c∗))−1, z := z′ + ra. (4.2)

– In the 2nd phase,D uses c∗ ∈ {0, 1}λ to challengeA. On answer (r, z),D returns 0 to the Ring-LPN
game if wt(z−r ·a) > n ·τ ′ or r 6∈ R∗, and 1 otherwise. Note that sπ(c∗)+s′ = (π(c∗)−π(c∗))s+
a = a and hence the above check correctly simulates the output of a reader with the simulated secret
s, s′.

Note that the running time of D is that of A plus O(q) exponentiations in R.
Let bad be the event that for at least one query c made by A to the Tag oracle, we have that π(c) −

π(c∗) 6∈ R∗. Since c∗ is uniform random in R and hidden fromA’s view in the first phase we have by the
union bound over the q queries

Pr[bad] ≤ q · Pr
c∗∈{0,1}λ

[π(c)− π(c∗) ∈ R \ R∗]

= q · 2−λ. (4.3)

The latter inequality holds because π is suitable for R.
Let us now assume bad does not happen. If O = ΛR,s

τ is the real oracle (i.e., it returns (r′, z′) with
z′ = r′s+ e) then by the definition of (r, z) from (4.2),

z = (r′s+ e) + ra = r(π(c)s− π(c∗)s+ a) + e = r(sπ(c) + s′) + e.

Hence the simulation perfectly simulates A’s view in Game0. If O = U(R × R) is the random oracle
then (r, z) are uniformly distributed, as in Game1. That concludes the proof of Claim 4.2.

We next upper bound the probability that A can be successful in Game1. This bound will be infor-
mation theoretic and even holds ifA is computationally unbounded and can make an unbounded number
of queries in the 1st phase. To this end we introduce the minimal soundness error, εms, which is an upper
bound on the probability that a tag (r, z) chosen independently of the secert key is valid, i.e.

εms(τ
′, n) := max

(z,r)∈R×R∗
Pr

s,s′
$←R

[wt(z − r · (s · π(c∗) + s′)︸ ︷︷ ︸
e′

) ≤ nτ ′]



As r ∈ R∗ and s′ ∈ R is uniform, also e′ = z − r · (s · π(c∗) + s′ is uniform, thus εms is simply

εms(τ
′, n) := Pr

e′
$←R

[wt(e′) ≤ nτ ′]

Again, it was shown in [LF06] that this probability can be approximated as

εms(τ
′, n) ≈ c(τ ′, 1/2)−n. (4.4)

Clearly, εms is a trivial lower bound on the advantage of A in forging a valid tag, by the following claim
in Game1 one cannot do any better than this.

Claim. Pr[A wins in Game1] = εms(τ
′, n)

To see that this claim holds one must just observe that the answers A gets in the first phase of the active
attack in Game1 are independent of the secret s, s′. Hence A’s advantage is εms(τ

′, n) by definition.
Claims 4.2 and 4.2 imply (4.1) and conclude the proof of Theorem 1.

We require the mapping π : {0, 1}λ → R used in the protocol to be suitable for R, i.e. for all c, c′ ∈
{0, 1}λ, π(c) − π(c′) ∈ R \ R∗ iff c = c′. In Section 5 we describe efficient suitable maps for any
R = F2[X]/(f) where f has no factor of degree≤ λ. This condition is necessary, as no suitable mapping
exists if f has a factor fi of degree ≤ λ: in this case, by the pigeonhole principle, there exist distinct
c, c′ ∈ {0, 1}λ such that π(c) = π(c′) mod fi, and thus π(c)− π(c′) ∈ R \ R∗.

We stress that for our security proof we need π to be suitable for R, since otherwise (4.3) is no longer
guaranteed to hold. It is an interesting question if this is inherent, or if the security of our protocol can be
reduced to the Ring-LPNR problem for arbitrary rings R = F2[X]/(f), or even R = Fq[X]/(f) (This is
interesting since, if f has factors of degree� λ, the protocol could be implemented more efficiently and
even become based on the worst-case hardness of lattice problems). Similarly, it is unclear how to prove
security of our protocol instantiated with Toeplitz matrices.

5 Implementation

There are two objectives that we pursue with the implementation of our protocol. First, we will show
that the protocol is in fact practical with concrete parameters, even on extremely constrained CPUs. Sec-
ond, we investigate possible application scenarios where the protocol might have additional advantages.
From a practical point of view, we are particularly interested in comparing our protocol to classical sym-
metric challenge-response schemes employing AES. Possible advantages of the protocol at hand are (i)
the security properties and (ii) improved implementation properties. With respect to the former aspect,
our protocol has the obvious advantage of being provably secure under a reasonable and static hardness
assumption. Even though AES is arguably the most trusted symmetric cipher, it is “merely” computa-
tionally secure with respect to known attacks.

In order to investigate implementation properties, constrained microprocessors are particularly rele-
vant. We chose an 8-bit AVR ATmega163 [Atm] based smartcard, which is widely used in myriads of
embedded applications. It can be viewed as a typical representative of a CPU used in tokens that are in
need for an authentication protocol, e.g., computational RFID tags or (contactless) smart cards. The main
metrics we consider for the implementation are run-time and code size. We note at this point that in many
lightweight crypto applications, code size is the most precious resource once the run-time constraints are
fulfilled. This is due to the fact that EEPROM or flash memory is often heavily constrained. For instance,
the WISP, a computational RFID tag, has only 8 kBytes of program memory [Wik,MSP].

We implemented two variants of the protocol described in Section 4. The first variant uses a ring
R = F2[X]/(f), where f splits into five irreducible polynomials; the second variant uses a field, i.e.,
f is irreducible. For both implementations, we chose parameters which provide a security level of λ =
80 bits, i.e., the parameters are chosen such that ε′ in (4.1) is bounded by 2−80 and the completeness
εc is bounded by 2−40. This security level is appropriate for the lightweight applications which we are
targeting.



5.1 Implementation with a Reducible Polynomial

From an implementation standpoint, the case of reducible polynomial is interesting since one can take
advantage of arithmetic based on the Chinese Remainder Theorem.

PARAMETERS. To define the ring R = F2[X]/(f), we chose the reducible polynomial f to be the
product of the m = 5 irreducible pentanomials specified by the following powers with non-zero coef-
ficients: (127, 8, 7, 3, 0), (126, 9, 6, 5, 0), (125, 9, 7, 4, 0), (122, 7, 4, 3, 0), (121, 8, 5, 1, 0)7. Hence f is
a polynomial of degree n = 621. We chose τ = 1/6 and τ ′ = .29 to obtain minimal soundness er-
ror εms ≈ c(τ ′, 1/2)−n ≤ 2−82 and completeness error εc ≤ 2−42. From the discussion of Section 3
the best known attack on Ring-LPNR

τ with the above parameters has complexity > 280. The mapping
π : {0, 1}80 → R is defined as follows. On input c ∈ {0, 1}80, for each 1 ≤ i ≤ 5, pad c ∈ {0, 1}80
with deg(fi) − 80 zeros and view the result as coefficients of an element vi ∈ F2[X]/(fi). This de-
fines π(c) = (v1, . . . , v5) in CRT representation. Note that, for fixed c, c∗ ∈ {0, 1}80, we have that
π(c)− π(c∗) ∈ R \ R∗ iff c = c∗ and hence π is suitable for R.

IMPLEMENTATION DETAILS. The main operations are multiplications and additions of polynomials that
are represented by 16 bytes. We view the CRT-based multiplication in three stages. In the first stage, the
operands are reduced modulo each of the five irreducible polynomials. This part has a low computational
complexity. Note that only the error e has to be chosen in the ring and afterwards transformed to CRT
representation. It is possible to save the secret key (s, s′) and to generate r directly in the CRT represen-
tation. This is not possible for e because e has to come from BerRτ . In the second stage, one multiplication
in each of the finite fields defined by the five pentanomials has to be performed. We used the right-to-left
comb multiplication algorithm from [HMV03]. For the multiplication with π(c) we exploit the fact that
only the first 80 coefficients can be non-zero. Hence we wrote one function for normal multiplication
and one for sparse multiplication. The latter is more than twice as fast as the former. The subsequent
reduction takes care of the special properties of the pentanomials, thus code reuse is not possible for the
different fields. The third stage, constructing the product polynomial in the ring, is shifted to the prover
(RFID reader) which normally has more computational power than the tag T . Hence the response (r, z)
is sent in CRT form to the reader. If non-volatile storage — in our case we need 2·5·16 = 160 bytes — is
available we can heavily reduce the response time of the tag. At an arbitrary point in time, choose e and
r according to their distribution and precompute tmp1 = r · s and tmp2 = r · s′+ e. When a challenge c
is received afterwards, tag T only has to compute z = tmp1 · π(c) + tmp2. Because π(c) is sparse, the
tag can use the sparse multiplication and response very quickly. The results of the implementation are
shown in Table 2 in Section 5.3. Note that all multiplication timings given already include the necessary
reductions and addition of a value according to Figure 1.

5.2 Implementation with an Irreducible Polynomial

PARAMETERS. To define the field F = F2[X]/(f), we chose the irreducible trinomial f(X) = X532 +
X + 1 of degree n = 532. We chose τ = 1/8 and τ ′ = .27 to obtain minimal soundness error εms ≈
c(τ ′, 1/2)−n ≤ 2−80 and completeness error εc ≈ 2−55. From the discussion in Section 3 the best known
attack on Ring-LPNF

τ with the above parameters has complexity > 280. The mapping π : {0, 1}80 → F
is defined as follows. View c ∈ {0, 1}80 as c = (c1, . . . , c16) where ci is a number between 1 and
32. Define the coefficients of the polynomial v = π(c) ∈ F as zero except all positions i of the form
i = 16 · (j − 1) + cj , for some j = 1, . . . , 16. Hence π(c) is sparse, i.e., it has exactly 16 non-zero
coefficients. Since π is injective and F is a field, the mapping π is suitable for F.

IMPLEMENTATION DETAILS. The main operation for the protocol is now a 67-byte multiplication. Again
we used the right-to-left comb multiplication algorithm from [HMV03] and an optimized reduction algo-
rithm. Like in the reducible case, the tag can do similar precomputations if 2·67 = 134 bytes non-volatile

7 (127, 8, 7, 3, 0) refers to the polynomial X127 +X8 +X7 +X3 + 1.



storage are available. Because of the special type of the mapping v = π(c), the gain of the sparse multi-
plication is even larger than in the reducible case. Here we are a factor of 7 faster, making the response
time with precomputations faster, although the field is larger. The results are shown in Table 3 in Sec-
tion 5.3.

5.3 Implementation Results

All results presented in this section consider only the clock cycles of the actual arithmetic functions. The
communication overhead and the generation of random bytes is excluded because they occur in every
authentication scheme, independent of the underlying cryptographic functions. The time for building e
from BerRτ out of the random bytes and converting it to CRT form is included in Overhead. Table 2 and
Table 3 shows the results for the ring based and field based variant, respectively.

Table 2. Results for the ring based variant w/o precomputation

Aspect time code size
in cycles in bytes

Overhead 17, 500 264
Mul 5× 13, 000 164
sparse Mul 5× 6, 000 170

total 112, 500 1356

The overall code size is not the sum of the other values because, as mentioned before, the same
multiplication code is used for all normal and sparse multiplications, respectively, while the reduction
code is different for every field (≈ 134 byte each). The same code for reduction is used independently
of the type of the multiplication for the same field. If precomputation is acceptable, the tag can answer
the challenge after approximately 30, 000 clock cycles, which corresponds to a 15 msec if the CPU is
clocked at 2 MHz.

Table 3. Results for the field based variant w/o precomputation

Aspect time code size
in cycles in bytes

Overhead 3, 000 150
Mul 150, 000 161
sparse Mul 21, 000 148

total 174, 000 459

For the field-based protocol, the overall performance is slower due to the large operands used in the
multiplication routine. But due to the special mapping v = π(c), here the tag can do a sparse multipli-
cations in only 21, 000 clocks cycles. This allows the tag to respond in 10.5 msec at 2 MHz clock rate if
non-volatile storage is available.

As mentioned in the introduction, we want to compare our scheme with a conventional challenge-
response authentication protocol based on AES. The tag’s main operation in this case is one AES encryp-
tion. The implementation in [LLS09] states 8, 980 clock cycles for one encryption on a similar platform,
but unfortunately no code size is given; [Tik] reports 10121 cycles per encryption and a code size of 4644
bytes.8 In comparison with these highly optimized AES implementations, our scheme is around eleven
times slower when using the ring based variant without precomputations. If non-volatile storage allows

8 An internet source [Poe] claims to encrypt in 3126 cycles with code size of 3098 bytes but since this is unpublished material
we do not consider it in our comparison.



precomputations, the ring based variant is only three times slower than AES. But the code size is by a
factor of two to three smaller, making it attractive for Flash constrained devices. The field based variant
without precomputations is 17 to 19 times slower than AES, but with precompuations it is only twice
as slow as AES, while only consuming one tenths of the code size. From a practical point of view, it is
important to note that even our slowest implementation is executed in less than 100 msec if the CPU is
clocked at 2 MHz. This response time is sufficient in many application scenarios. (For authentications
involving humans, a delay of 1 sec is often considered acceptable.)

The performance drawback compared to AES is not surprising, but it is considerably less dramatic
compared to asymmetric schemes like RSA or ECC [GPW+04]. But exploiting the special structure of
the multiplications in our scheme and using only a small amount of non-volatile data memory provides
a response time in the same order of magnitude as AES, while keeping the code size much smaller.

6 Conclusions and open Problems

We proposed a new [KPC+11]-like authentication protocol with provable security against active attacks
based on the Ring-LPN assumption, consisting of only two rounds, and having small communication
complexity. Furthermore, our implementations on an 8-bit AVR ATmega163 based smartcard demon-
strated that it has very small code size and its efficiency can be of the same order as traditional AES-
based authentication protocols. Overall, we think that its features make it very applicable in scenarios
that involve low-cost, resource-constrained devices.

Our protocol cannot be proved secure against man-in-the-middle (MIM) attacks, but using a recent
transformation from [DKPW12] we can get a MIM secure scheme with small extra cost (one application
of a universal hash function.) Still, finding a more direct construction which achieves MIM security (or
proving that the current protocol already has this property) but doesn’t require any hashing remains an
interesting open problem.

We believe that the Ring-LPN assumption is very natural and will find further cryptographic appli-
cations, especially for constructions of schemes for low-cost devices. In particular, we think that if the
LPN-based line of research is to lead to a practical protocol in the future, then the security of this pro-
tocol will be based on a hardness assumption with some “extra algebraic structure”, such as Ring-LPN
in this work, or LPN with Toeplitz matrices in the work of Gilbert et al. [GRS08a]. More research, how-
ever, needs to be done on understanding these problems and their computational complexity. In terms
of Ring-LPN, it would be particularly interesting to find out whether there exists an equivalence be-
tween the decision and the search versions of the problem similar to the reductions that exist for LPN
[BFKL93,Reg09,KS06a] and Ring-LWE [LPR10].
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A Man-in-the-Middle Attack

In this section, we sketch a man-in-the-middle attack against the protocol in Figure 1 that recovers the
secret key in time approximately O

(
n1.5 · 2λ/2

)
when the adversary is able to insert himself into that

many valid interactions between the reader and the tag. For a ring R = F2[X]/(f) and a polynomial
g ∈ R, define the vector g to be a vector of dimension deg(f) whose ith coordinate is the Xi coefficient
of g. Similarly, for a polynomial h ∈ R, let Rot(h) be a deg(f) × deg(f) matrix whose ith column

(for 0 ≤ i < deg(f)) is
−−−→
h ·Xi, or in other words, the coefficients of the polynomial h · Xi in the

ring R. From this description, one can check that for two polynomials g, h ∈ R, the product
−−→
g · h =

Rot(g) · h mod 2 = Rot(h) · g mod 2.
We now move on to describing the attack. The ith (successful) interaction between a reader R and

a tag T consists of the reader sending the challenge ci, and the tag replying with the pair (ri, zi) where
zi − ri · (s · π(ci) + s′) is a low-weight polynomial of weight at most n · τ ′. The adversary who is
observing this interaction will forward the challenge ci untouched to the tag, but reply to the reader with
the ordered pair (ri, z′i = zi + ei) where ei is a vector that is strategically chosen with the hope that the
vector z′i − ri · (s · π(ci) + s′) is exactly of weight n · τ ′. It’s not hard to see that it’s possible to choose
such a vector ei so that the probability of z′i − ri · (s · π(ci) + s′) being of weight n · τ ′ is approximately
1/
√
n. The response (ri, z′i) will still be valid, and so the reader will accept. By the birthday bound, after

approximately 2λ/2 interactions, there will be a challenge cj that is equal to some previous challenge
ci. In this case, the adversary replies to the reader with (ri, z

′′
i ), where the polynomial z′′i is just the

polynomial z′i whose first bit (i.e. the constant coefficient) is flipped. What the adversary is hoping for is
that the reader accepted the response (ri, z′i) but rejects (ri, z′′i ). Notice that the only way this can happen
is if the first bit of z′i is equal to the first bit of ri · (s · π(ci) + s′), and thus flipping it, increases the error
by 1 and makes the reader reject. We now explain how finding such a pair of responses can be used to
recover the secret key.

Since the polynomial expression z′i − ri · (s · π(ci) + s′) = z′i − ri · π(ci) · s− ri · s′ can be written
as matrix-vector multiplications as

z′
i −Rot(ri · π(ci)) · s−Rot(ri) · s

′ mod 2,

if we let the first bit of z′
i be βi, the first row of Rot(ri · π(ci)) be ai and the first row of Rot(ri) be bi,

then we obtain the linear equation
〈ai, s〉+ 〈bi, s′〉 = βi.

To recover the entire secret s, s′, the adversary needs to repeat the above attack until he obtains 2n
linearly-independent equations (which can be done withO(n) successful attacks), and then use Gaussian
elimination to recover the full secret.


