
A Model for Structure Attacks, with Applications to PRESENT
and Serpent

Meiqin Wang1,2,3,?, Yue Sun4, Elmar Tischhauser2,3,??, and Bart Preneel2,3

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China.

2 Department of Electrical Engineering ESAT/SCD-COSIC, Katholieke Universiteit Leuven,
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.

3 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium.
4 Institute for Advanced Study, Tsinghua University, Beijing 100084, China.

mqwang@sdu.edu.cn

Abstract. Differential cryptanalysis is a classic cryptanalytic method for block ciphers, hash func-
tions and stream ciphers. Many extensions and refinements of differential cryptanalysis have been
developed. In this paper, we focus on the use of so-called structures in differential attacks, i.e. the
use of multiple input and one output difference. We give a general model and complexity analysis
for structure attacks and show how to choose the set of differentials to minimize the time and data
complexities. Being a subclass of multiple differential attacks in general, structure attacks can also
be analyzed in the model of Blondeau et al. from FSE 2011. In this very general model, a restrictive
condition on the set of input differences is required for the complexity analysis. We demonstrate
that in our dedicated model for structure attacks, this condition can be relaxed, which allows us
to consider a wider range of differentials. Finally, we point out an inconsistency in the FSE 2011
attack on 18 rounds of the block cipher PRESENT and use our model for structure attacks to attack
18-round PRESENT and improve the previous structure attacks on 7-round and 8-round Serpent.
To the best of our knowledge, those attacks are the best known differential attacks on these two
block ciphers.
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1 Introduction

Differential cryptanalysis [2] is a classic cryptanalytic method that has been successfully applied
to block ciphers, hash functions and stream ciphers. The key step for a differential attack is to
identify a differential characteristic with high probability as a distinguisher, then use it to recover
(part of) the key. Lai et al. propose the notion of differential which encompasses the collection
of all possible differential characteristics [13] for one fixed input and output difference. A lower
bound for the probability of a differential (and thus, an upper bound for the complexity of the
attack) can be obtained by combining the probabilities of a number of differential characteristics
belonging to the differential. Therefore, differentials give a better estimation of the actual attack
complexity than characteristics, since the distinguisher can exploit any characteristic belonging
to the differential. In order to further improve differential attacks, multiple differentials with a
single output difference but multiple input differences can be used. This can reduce the data
complexity provided that the set of input differences for the differentials can be combined in
a so-called structure. Therefore, we call this type of differential attacks structure attacks. The
structure technique in differential cryptanalysis was originally introduced in a more restrictive
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way as quartets to attack DES [2], and multiple differential characteristics with multiple input
differences and a single output difference have been used to attack DES. In addition, Biham et
al. use the structure technique to attack reduced-round versions of the Serpent block cipher [3].

At FSE 2011, Blondeau et al. proposed multiple differential cryptanalysis with multiple input
differences and multiple output differences [4] and gave an explicit formula to compute the success
probability of multiple differential cryptanalysis. Traditionally, a normal approximation to the
binomial distribution was used to evaluate the success probability of a differential attack [18,
19]. The approach of [4] provides a more accurate estimation of the success probability. Since
structure attacks are a special case of multiple differential cryptanalysis, those results also apply
to our structure attacks.

However, in order to ensure that one pair of ciphertexts can be only counted once, the
model of [4] requires a certain condition to be met (see Definition 1), which severely restricts
the set of input difference values that can be used in an attack. In this paper, we demonstrate
that this condition on the set of the input difference values is so strong that many valuable
differentials may be excluded. We show that in the structure technique, this condition can be
relaxed without counting ciphertexts more than once. This enables us to choose our differentials
more freely, leading to improved attack complexities. Moreover, in our model, the analysis of
the data and time complexities and the success rate is carried out independently of the general
framework of [4], and most importantly does not rely on condition (4) to be fulfilled. This is an
important difference to the setting of [4], in which the filtering step also deals with the restriction
of condition (4) (although this is not made explicit), but where this condition is still required
for the analysis of the data complexity and success rate of the attack.

We stress that this condition and the general model of [4] are still necessary for the analysis
of the general case where one has multiple input and multiple output differences. What we
propose in this paper, is a tailored model for structure attacks, which are an important and
often particularly efficient subclass of multiple differential cryptanalysis.

Furthermore, the multiple differential attack on 18-round PRESENT [4] uses 561 differen-
tials with 17 input differences and 33 output differences [5]. It turns out that the sum of the
probabilities of those 561 differentials is not correct in [4]. When calculated correctly, however,
the obtained probability is lower than the random probability, implying that this set of 561
differentials cannot be used in an attack. Even if we modify the attack of [4] to use only the
best possible subset of those differentials, the resulting probability will be so close to the ran-
dom probability that this attack on PRESENT will have much lower success probability than
described in [4]. Finally, we compare our attack to the corrected version [6] of the attack of [4].

In order to evaluate the resistance of a block cipher to differential cryptanalysis, it is crucial
to take into account the effect of combining multiple differentials. However, it is often not clear
a priori which choice of differentials can actually lead to an improvement. Compared to classic
differential cryptanalysis with one differential, a structure attack can obviously reduce the data
complexity. In order to reduce the overall time complexity, however, the differentials have to be
chosen carefully.

In this paper, we first present a general model for structure attacks, providing guidance
on how to choose the differentials to minimize the time complexity. Secondly, we demonstrate
structure attacks for 18-round PRESENT-80 with a data complexity of 264 chosen plaintexts
and time complexity of 276 18-round encryptions. We find that the properties of differentials
in PRESENT cause structure attacks to be more efficient than the multiple differential crypt-
analysis proposed in [4]. Thirdly, we improve the differential cryptanalytic result for the block
cipher Serpent. In [3], Biham et al. describe a differential attack for 7-round Serpent with a data
complexity of 284 chosen plaintexts and a time complexity of 285 memory accesses. Biham et al.
also give a differential attack on 8-round Serpent-256 with 2213 memory accesses and 284 cho-
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sen plaintexts. In our attack for 7-round Serpent, the data complexity is reduced to 271 chosen
plaintexts and the time complexity is 274.99 encryptions. The attack can be further extended
to 8-round Serpent-256. The time complexity is then increased to 2203.81 encryptions, with the
data complexity remaining at 271 chosen plaintexts.

For PRESENT-80, the best known attack is the linear hull cryptanalysis of 26-round
PRESENT [8]. For Serpent-128, the best known cryptanalytic result is the differential-linear
cryptanalysis on 12 rounds [12]. Although our attacks do not improve on those results for
PRESENT and Serpent, to the best of our knowledge, they are the best differential attack-
s for PRESENT and Serpent. Moreover, our proposed attack model can be used to improve
differential cryptanalytic results on other block ciphers as well.

This paper is organized as follows. Section 2 briefly describes the method for computing
the success probability with multiple differentials. Section 3 introduces the structure attack
model and the probability distribution of the key under multiple differentials. In Sect. 4, we
demonstrate the attack for 18-round PRESENT. In Sect. 5, the improved attacks on 7-round
and 8-round Serpent are presented. Section 6 concludes the paper.

2 Brief Description of Blondeau et al.’s Multiple Differential Cryptanalysis

In [4], Blondeau et al. propose multiple differential cryptanalysis using multiple differentials with
different input differences and different output differences and give a precise analytical model to
compute the success probability. In [18], Selçuk uses a Gaussian approximation of the binomial
distribution to derive a formula for the success probability for differential cryptanalysis. Since
then, his formula has been used in many papers on differential cryptanalysis. Blondeau et al.
demonstrate that Selçuk’s method cannot be applied to multiple differential cryptanalysis and
express the distribution of key counters instead in terms of a hybrid distribution including the
Kullback-Leibler divergence and a Poisson distribution [4]. Blondeau et al. obtain the following
formula for the success probability PS :

PS ≈ 1−G∗[G−1(1− l−1
2nk−2)− 1], (1)

where nk is the number of key candidates, l is the size of the list to keep, G is defined by
G−1(y) = min{x|G(x) ≥ y}. The functions G and G∗ are defined as follows:

G∗(τ)
def
= G(τ, p∗) and G(τ)

def
= G(τ, p),

where p∗ =
∑

i,j p
(i,j)
∗

|∆0| and p = |∆|
2m|∆0| . p

(i,j)
∗ is the probability for the differential with the i-

th input difference value and the j-th output difference value, m is the block size, |∆0| is the
number of input difference values and |∆| is the number of differentials. G(τ, p∗) and G(τ, p) can
be calculated with the following equations:

G(τ, q)
def
=


G−(τ, q) if τ < q − 3 ·

√
q/Ns,

1−G+(τ, q) if τ > q + 3 ·
√
q/Ns,

GP(τ, q) otherwise,

(2)

where GP(τ, q) is the cumulative distribution function of the Poisson distribution with parameter
qNs, and Ns is the number of samples. G−(τ, q) and G+(τ, q) are defined as follows:

G−(τ, q)
def
= e−NsD(τ‖q) · [ q

√
1−τ

(q−τ)
√
2πτNs

+ 1√
8πτNs

],

G+(τ, q)
def
= e−NsD(τ‖q) · [ (1−q)

√
τ

(τ−q)
√

2πNs(1−τ)
+ 1√

8πτNs
],

(3)
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where D(τ‖q) is the Kullback-Leibler divergence and is defined by:

D(τ‖q) def
= τ ln

(
τ

q

)
+ (1− τ) ln

(
1− τ
1− q

)
.

On the assumptions for this analysis. In order to guarantee that each pair is counted only
once, Blondeau et al. give Definition 1 as a necessary condition for the set of the input differences
∆0.

Definition 1. The set of input differences ∆0 is admissible if there exists a set χ of N/2 plain-
texts that fulfils the condition:

∀δ(i)0 ∈ ∆0, ∀x ∈ χ, x⊕ δ(i)0 /∈ χ, (4)

where N is the number of chosen plaintexts. However, this condition is so strong that many
differentials will be excluded. For example, independent of the algorithm under consideration,
the set of input differences ∆0 = {1x, 2x, 3x} is never admissible in any substitution-permutation
network (SPN) because of this condition, since the overlapping bits of 3x = 1x ⊕ 2x will always
result in double-counting.

By contrast, in the structure technique, we can use a hash table to exclude the duplicate pair
arising from the violation of Definition 1. In fact, making use of hash tables, structure attacks
can use more differentials while still ensuring that each pair is counted only once. Since we only
have one possible output difference, this also enables the use of the complexity analysis of [4]
for sets of plaintexts not satisfying Def. 1: This condition is only necessary to avoid counting

both x and x ⊕ δ(i)0 for any δ
(i)
0 ∈ ∆0, i.e. guarantee Ns = N |∆0|/2. This is satisfied in our

approach, since each hash table will produce N/2 plaintext pairs with one input difference from
N plaintexts, in total therefore Ns = |∆0|N/2 plaintext pairs with |∆0| input diffference values.
For structure attacks, the complexity analysis of [4] is therefore applicable independent of Def. 1.

This has additionally been verified by experiments on SmallPresent with block length of
24 bits, 12 rounds, and a set of 11 differentials with input differences violating Definition 1 and
a single output difference.

On previous attacks on 18-round PRESENT. There are two previously published differ-
ential attacks on 18-round PRESENT [4, 6]. In this section, we point out two inconsistencies in
both attacks, and demonstrate that our attack compares favourably to them.

In [4], a multiple differential attack for 18-round PRESENT is presented. They identify
561 differentials5 including 17 input differences and 33 output differences using a branch-and-

bound algorithm. In [4], the probabilities p∗ and p are calculated as p∗ =
∑

i,j p
(i,j)
∗

|∆0| = 2−58.50

and p = |∆|
2m|∆0| = 2−64 · 33 = 2−58.96. However, the value of p∗ is not correct; it should be

p∗ = 2−60.39, which is less than the random probability for 33 output differences p = 2−58.96. A
possible remedy for this is to only choose some subset of the 561 differentials. We found that the
best case is to choose four differentials with one input difference value 1001x and the following
four output difference values:

{04040404x||00000000x, 00000404x||00000000x, 04000404x||00000000x, 00040404x||00000000x}.

For this case, the success probability will take the maximum 68.08% for nk = 42, l = 241 and
N = 264. In this way, the attack for 18-round PRESENT-80 presented in [4] will have time

5 These differentials have been obtained through private communication with Blondeau et al.
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complexity 279 and data complexity 264 with a success probability of only 68.08%. The memory
requirements are 242 bytes for counters.

In [6], another multiple differential attack on 18-round PRESENT is presented. It can be
seen from Table 4 of [6], that |∆0| = 17 (and not 16 as assumed in the paper). This results
in p∗ = 2−62.6765 (instead of 2−62.59) and p = 2−63.56 (instead of p=263.47). Based on these
values, we compare this attack to our attack from Sect. 4 for different values of the number ` of
remaining key candidates (see Table 1). One can see that for the same data and time complexities,

Table 1. Comparison of our attacks on PRESENT with the multiple differential cryptanalysis of [6].

Attack of [6] Attack of Sect. 4

` PS ` PS N time complexity

238 65.27% 236 85.94% 264 276

239 79.68% 237 92.30% 264 277

241 94.62% 239 98.36% 264 279

the structure attack performs consistently better than multiple differential cryptanalysis with
multiple input differences and multiple output differences. This implies that PRESENT is not
a good example to show the efficiency of multiple differential cryptanalysis with different input
differences and different output differences.

3 Structure Attack

3.1 Principle of the attack

The structure attack is a form of differential cryptanalysis which uses multiple input differ-
ences and a single output difference. Structure attacks are a special case of multiple differential
cryptanalysis, but their form allows for a dedicated attack procedure, which we describe in this
section.

A structure attack is performed in three phases:

1. Data Collection Phase: Collect a large number of ciphertext pairs with the differences
produced from the output difference of the differentials and the corresponding plaintext
differences belong to the set of the input differences.

2. Data Analysis Phase: Derive the list of the best candidates for some key bits from the
collected ciphertext pairs.

3. Key Search Phase: Search the list of candidates and all the corresponding master keys
(i.e., the unexpanded key from which the round subkeys are derived).

The idea of the structure attack is to use more differentials with multiple input differences
and a single output difference to reduce the data complexity. However, the set of the input
differences must be controlled in order to reduce the time complexity. This is done by organizing
the plaintext in so-called structures:

Definition 2. Let {∆1
0, . . . ,∆

t
0} be a set of t input differences. A collection of plaintexts of the

form ⋃
x

{x⊕∆
∣∣ ∆ ∈ span{∆1

0, . . . ,∆
t
0}}, (5)

with span denoting the linear span operator, is called a structure.

5



In this way, we can construct structures to produce the expected number of right pairs with
lower data complexity compared with a single differential. Now we will give a model to choose
the differentials to reduce the complexity. For clarity of exposition, we describe the model for
the case of a substitution-permutation network (SPN); however, the concept can analogously be
applied to other block cipher constructions, most importantly Feistel ciphers.

If we attack an R-round block cipher with |∆0| r-round differentials with a single output
difference and multiple input differences, we denote these differentials as follows:

∆i
0

r→ ∆r, P robability = pi, (1 ≤ i ≤ |∆0|),

where ∆i
0 and ∆r are the i-th input difference and the output difference, respectively. The

following notations are related with the attack:

– m: the block size of the block cipher.

– k: the key size of the block cipher.

– |∆0|: the number of differentials.

– pi: the probability of the differential with input difference ∆i
0.

– Nst: the number of structures is 2Nst .

– Np: the number of plaintexts bits involved in the active S-boxes in the first round for all
differentials.

– Nc: the number of ciphertexts bits involved in the non-active S-boxes in the last round
deriving from ∆r.

– β: the filtering probability for the ciphertext pairs.

– pf : the filtering probability for the ciphertext pairs according to active S-boxes, pf = β ·2NC .

– l: the size of the candidate list.

– nk: the number of guessed subkey bits in the last R− r rounds.

In the attack, 2Nst structures are constructed. In each structure, all the input bits to non-
active S-boxes in the first round are fixed to some random value, while Np input bits of all
active S-boxes take all 2Np possible values. There are 2Nst · 2Np−1 = 2Nst+Np−1 pairs for each

differential. We expect that about 2Nst+Np−1 ·
∑|∆0|

i=1 pi pairs produce the output difference ∆r.
These pairs are right pairs.

The attack is described as follows.

1. For each structure:

(a) Insert all the ciphertexts into a hash table indexed by Nc bits of the non-active S-boxes
in the last round.

(b) For each entry with the same Nc bits value, check whether the input difference is any one
of the total |∆0| possible input differences. If a pair satisfies one input difference, then
go to the next step.

(c) For the pairs in each entry, check whether the output differences of active S-boxes in the
last round can be caused by the input differences according to the differential distribution
table. If the pair passes the test, then go to the next step.

(d) Guess nk bits subkeys to decrypt the ciphertext pairs to round r and check whether the
obtained output difference at round r is equal to ∆r. If so, add one to the corresponding
counter.

2. Choose the list of the l best key candidates from the counters.

3. Search the list of candidates and all the corresponding master key.

6



Obviously the time complexity in step 2 is negligible, so we denote Ta, Tb, Tc, Td and T3 as
the time complexity in step (a), (b), (c), (d) and 3, respectively, which are listed in following:

Ta : 2Nst+Np memory accesses;
Tb : 2Nst+2Np−Nc memory accesses;
Tc : |∆0| · 2Nst+Np−Nc memory accesses;
Td : |∆0| · 2Nst+Np−Nc · pf · 2nk partial decryptions;
T3 : l · 2k−nk .

This assumes that there are nk independent subkey bits from the key schedule. In general, Td
can be approximated by |∆0| · 2Nst+Np−Nc = Tc. Since |∆0| < 2Np , we have Tc < Tb. Then the
whole time complexity can be expressed as follows:

Ta + Tb + Tc + Td + T3 '


Ta + T3 if Np < Nc,

Tb + T3 if Np > Nc,

2Ta + T3 = 2Tb + T3 if Np = Nc.

If the time complexity in the key searching process T3 is much smaller than the time complexity
of the data collection process and the data analysis process, we will take Np = Nc to minimise
the whole time complexity as the minimum value 2Ta. Otherwise, we can try to take a larger
value for Np to increase the sum of the probabilities for differentials to further reduce the data
complexity.

It is worth noting that in the structure attack, any pair of plaintexts with the given input
difference is only counted once. In this way, the number of input differences can be increased
compared with the condition in Definition 1, improving the efficiency of the attacks. This is
especially applicable in an attack scenario where the probability of many differentials are close
to 2−m, implying a low success rate PS . Therefore, a large value for l has to be chosen, which
causes the complexity T3 of step 3 to increase. In this case, increasing the number of input
differences can help improving the attack, whereas increasing the number of output differences
does not have this effect in the case of multiple differential cryptanalysis.

In the case of reduced-round PRESENT, we have the above-mentioned scenario (many dif-
ferentials with probability close to 2−64), so that when choosing our set of differentials, we only
include a limited number of high-probability differentials to maintain a good success probability
PS . For reduced-round Serpent, the probabilities of the differentials are much larger than 2−128

(the inverse of the block size), so that we can choose more differentials here without affecting
the success probability. In order to minimize the time complexity, we choose Np = Nc according
to our model.

3.2 Ratio of Weak Keys for Multiple Differentials

In general, the differential probability is related to the value of the key. As we use multiple
differentials in the structure attack, we need to consider the ratio of keys which can produce the
expected number of right pairs. We call those keys weak keys since the attacks are only expected
to work for those.

A cipher is called key-alternating if it consists of an alternating sequence of unkeyed rounds
and simple bitwise key additions. Note that most block cipher proposals, including PRESENT
and Serpent, are key-alternating ciphers. The fixed-key cardinality of a differential N [K](a, b) is
the number of pairs with input difference a and output difference b where the key K is fixed to
a specific value. In [11, 10], Daemen and Rijmen give the following theorem.
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Theorem 1. Assuming that the set of pairs following a characteristic for a given key can be
modeled by a sampling process, the fixed-key cardinality of a differential in a key-alternating
cipher is a stochastic variable with the following distribution:

Pr(N [K](a, b) = i) ≈ Poisson
(
i, 2m−1EDP (a, b)

)
,

where m is the block size, EDP (a, b) denotes the expected differential probability of the differential
(a, b), and the distribution function measures the probability over all possible values of the key
and all possible choices of the key schedule.

For multiple differentials with multiple input differences and a single output difference, we
have pj = EDP (aj , b), 1 ≤ j ≤ |∆0|. We denote the fixed-key cardinality of multiple differentials
(aj , b) with a single output difference b by N [K]

{
(aj , b)

}
j
. Based on Theorem 1, we can now

derive Theorem 2.

Theorem 2. Under the assumptions of Theorem 1, in a key-alternating cipher, the fixed-key
cardinality of multiple differentials is a stochastic variable with the following distribution:

Pr
(
N [K]

{
(aj , b)

}
j

= i
)
≈ Poisson

i, 2m−1∑
j

EDP (aj , b)

 ,

where the distribution function measures the probability over all possible values of the key and
all possible choices of the key schedule.

Proof. The cardinality of multiple differentials equals the sum of the cardinalities of each differ-
ential (aj , b) for the iterative cipher, so we have

N [K]
{

(aj , b)
}
j

=
∑
j

N [K](aj , b).

From Theorem 1, the cardinality for each differential (aj , b) has Poisson distribution. Making the
standard assumption that the cardinalities of the differentials are independent random variables,
the sum still is Poisson distributed with as λ-parameter the sum of the λ-parameters of the terms:

λ =
∑
j

2m−1EDP (aj , b).

From Theorem 2, in the structure attack based on the differentials

∆i
0

r→ ∆r, P robability = pi, (1 ≤ i ≤ |∆0|),

the ratio of the weak keys rw that can produce more than or equal to µ right pairs can be
computed as follows:

rw = 1−
µ−1∑
x=0

Poisson

x, 2m−1 |∆0|∑
j=1

pi

 .

Note that when evaluating the ratio of weak keys, we have a different setting than when
dealing with the distribution of the counters in a (multiple) differential attack. While approxi-
mating the distribution of the counters with either normal or Poisson distributions was shown
to be problematic for accurately estimating the tails [19, 4], the distribution of the weak keys
instead depends on the cardinality of the multiple differentials. In this setting, using the Pois-
son distribution as in Theorem 2 also yields a good approximation for the tails. This was also
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experimentally verified with small-scale variants of the block cipher PRESENT [14], with block
lengths ranging from 8 to 24 bits.

Additionally, the accuracy of the weak key ratio rw based on Theorem 2 has been verified by
experiments on SmallPresent with a block length of 24 bits, 12 rounds and an master key with
8 bit entropy. 7 differentials with 7 different input and a single output difference were used. The
λ-parameter of the Poisson distribution was 223 ·

(
5 · 2−23 + 2 · 2−22

)
= 23.17. The distribution

of the ratio of weak keys for different values of µ is listed in Table 2. The experimental results
very closely follow the theoretical estimate.

Table 2. Theoretical and experimental weak key ratio for SmallPresent-24.

µ 2 4 6 8 16

theoretical rw 0.9988 0.9788 0.8843 0.6762 0.0220
experimental rw 1 0.98 0.89 0.68 0.02

4 Attack on 18-Round PRESENT

The block cipher PRESENT is designed as a very lightweight cipher. It has a 31-round SPN
structure in which the S-box layer has 16 parallel 4-bit S-boxes and the diffusion layer is a bit
permutation [7]. The block size is 64 bits and the key size can be 80 bits or 128 bits. One round
of PRESENT is illustrated in Fig. 1.

S
15

S
14

S
13

S
12 11

S S
10

S S S S S S S S S S
89 7 6 5 4 3 2 1 0

K i

G=0

B=3 B=0

N=0
G=3

Fig. 1. One round of the PRESENT block cipher.

PRESENT has been extensively analyzed. Wang presents a differential attack on 16-round
PRESENT [20]. Collard et al. give a statistical saturation attack for 24-round PRESENT [9].
There are three papers about attacks based on linear hulls for PRESENT [8, 17, 16], leading to
linear attacks for up to 26 rounds. Since the S-box of PRESENT admits linear approximations
with single-bit linear masks, the attacker can exploit linear hulls containing many single-bit
linear trails over an arbitrary number of rounds. However, for differential attacks, we have to
use paths in which two active S-boxes appear per round. Hence, a linear attack will typically
be more efficient than differential attacks. As explained in Sect. 2, Blondeau et al. use multiple
differentials to attack 18 rounds of the PRESENT block cipher. However, as outlined in Sec-
t. 2, this attack does not work as described. By analyzing the properties of the differentials of
PRESENT, we have found that the structure attack for PRESENT is more efficient than the
multiple differential attack.

In order to identify a differential with high probability, we must collect more differential
paths with high probability for a differential. The differential paths with two active S-boxes
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in every round have a much bigger contribution to the differential, so we will focus on dif-
ferential paths with only two active S-boxes in each round. Using those differential paths, a
high-probability differential can be identified. Then we can choose more differentials to improve
the attack according to the formulas for the overall time complexity described in Sect. 3, .

4.1 Searching Differential Paths for PRESENT

We now give a method to search all differential characteristics with two active S-boxes in each
round which have higher probability compared with other differential paths.

First, we introduce some notation. The block size of PRESENT is 64 bits and we can divide
16 nibbles into four groups, in each of which there are four nibbles. We define G as the index
of a group, so the four least significant nibbles belong to the group G = 0 and the four most
significant nibbles belong to the group G = 3. We denote the index of a nibble as N , and in
each group the least significant nibble is N = 0 and the most significant nibble is the nibble
with N = 3. In each nibble, we denote B as the B-th bit, the least significant bit is B = 0 and
the most significant bit is B = 3. In this way, the position of any bit can be denoted by a triple
(G,N,B), as also illustrated in Fig. 1. The permutation layer P is computed as follows,

P (16 ·G+ 4 ·N +B) = 16 ·B + 4 ·G+N, 0 ≤ G,N,B ≤ 3.

After the permutation layer P , the bit (G,N,B) will be transferred to the bit (B,G,N). Here
we also give another triple (G,N, V ) where G and N are the group index and nibble index,
respectively, while V is the difference of the nibble. We will use the following notation:

– (Gr,k, Nr,k, Br,k): The position of the k-th (k = 1, 2, 3, 4) output bit for S-box in round r.
– (Gr,k, Nr,k, Vr,k): The output difference value of the k-th (k = 1, 2) active S-box for nibble

(Gr,k, Nr,k) in round r.

We focus on finding differential characteristics with two active S-boxes in each round. The
foundation for this search is formulated in Theorem 3. Next an efficient searching algorithm for
the differential characteristics with two active S-boxes per round will be presented.

Theorem 3. For the PRESENT block cipher, differential characteristics with only two active
S-boxes per round must have the following pattern:

1. If two active S-boxes are in the same group in round r, their output difference will be equal
and must have two non-zero bits to ensure that only two active S-boxes appear in the (r+2)-nd
round, and two active S-boxes in round r + 1 will be in the different groups;

2. If two active S-boxes are in different groups in round r, their output difference will be equal
and must have only one non-zero bit to ensure that only two active S-boxes appear in the
(r + 1)-st round, and two active S-boxes in round r + 1 will be in the same group.

For the proof of Theorem 3, see Appendix A. With Theorem 3, we give the searching algo-
rithm for the differential paths in Fig. 3 in the appendix.

Using Algorithm in Fig. 3, we search for 16-round differential paths (characteristics) with
two active S-boxes in each round having a probability greater than 2−92. In total, we find
139 differentials with probability greater than 2−64, among which 91 differentials have out-
put difference ∆16 = 00000500x||00000500x and 18 differentials have output difference ∆16 =
00000900x||00000900x. We list them in Table 5 and Table 6, respectively. The differentials have
been ordered according to their probabilities in these two tables. In both Table 5 and Table 6,
the first column i contains the number of the differential, ∆i

0 is the input difference and pi is the
probability for each differential. At the same time, we list the remaining 30 differentials with dif-
ferent output difference values in Table 7. Moreover, we present the number of differential paths
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with different probability for Table 5 in Table 8 and Table 9. In Table 8, the first column denotes
the index number in the first column of Table 5. For example, the differentials with number 19
and 20 consist of differential trails with the same probabilities. Columns 2, 3, . . . , 12 denote the
number of differential paths with probability 2−71, 2−73, . . . , 2−91, respectively. In Table 9, the
first column denotes the index number in the first column of Table 5. Column 2, 3, . . . , 13 denote
the number of differential paths with probability 2−70, 2−72, . . . , 2−92, respectively. There is no
differential path with probability greater than 2−70 or less than 2−92 for the 91 differentials.

4.2 Key Recovery Attack on 18-Round PRESENT-80

In this section, we show how to use the 16-round differentials listed in Table 5 to attack 18-
round PRESENT-80. The first step is to choose the set of differentials. From the output difference
00000500x||00000500x at round 16, we can derive that the number of recovered subkey bits in
round 17 and round 18 is 8 + 32 = 40. Those 40 subkey bits are independent according to the
key schedule. In this attack, we will use the whole codebook and set the size of the candidates of
subkey counters l to 236. In our structure attack, we will use Blondeau et al.’s method (see Sect. 2)
to compute the success rate. With Equation (1), we have nk = 40, l = 236 and N = 264. We
gradually increase the number of differentials with higher probability from Table 5 to compute
the success probability for every case. As a result, we found that the success rate will increases
as |∆0| = i increases if 1 ≤ i ≤ 36. The success probability is 85.95% as |∆0| = 36. If we add the
i-th (37 ≤ i ≤ 91) differential to the set, the success probability will be reduced. This implies
that the i-th (37 ≤ i ≤ 91) differential has no contribution to reduce the data complexity since
its probability is too low. Therefore, in our attack, we will only use the first 36 differentials in
Table 5.

If we use multiple differentials cryptanalysis for PRESENT following Blondeau et al., we
can choose more output difference values. We can add the 18 differentials in Table 6 to the set
of 36 differentials. The input difference values for the 18 differentials belong to the set of the
input difference values for the 36 differentials, so we have |∆0| = 36 and |∆16| = 2. Then we get
p∗ = 2−62.74 and p = 2−63. As τ (p < τ < p∗) increases, G(τ, p) will decrease. Even if we take
τ = p∗, G(τ, p) is still larger than (1− l−1

2nk−2), so the attack will not work for l = 236. Therefore,
our structure attack works better for PRESENT than the multiple differential cryptanalysis
presented in [4].

Moreover, we have identified the differential trails with two active S-boxes per round but
more than two active S-boxes in the last round. As a result, those differentials have no advantage
compared with the differentials in Table 5. Therefore, these differentials do not contribute to
improving multiple differential cryptanalysis for PRESENT.

We will use the structure attack for 18-round PRESENT-80 with the first 36 differentials
with p∗ = 2−63.14 and p = 2−64. For the 36 input differences, there are 10 active S-boxes in the
first round which are nibbles 0, 1, 2, 3, 4, 8, 12, 13, 14 and 15, so the S-boxes for the nibbles 5,
6, 7, 9, 10 and 11 are all non-active.

We construct 224 structures of 240 chosen plaintexts each. In each structure, all the inputs
to the 6 non-active S-boxes in the first round take a fixed random value, while 40 bits of input
to 10 active S-boxes take 240 possible values. In all structures, there are 224 · 239 = 263 pairs for
each possible differential. The sum of the probabilities for all 36 differentials is 2−57.97, so the
number of right pairs is 263 · 2−57.97 = 25.03.

According to the output difference of 16-round differentials, there are two active S-boxes in
round 17 in nibble 2 and 10 whose input difference is 5 and the possible output differences will
be 1, 4, 9, 10, 11, 12 or 13. After the bit permutation, 8 output bits from the two active S-boxes
in round 17 will be one input bit to 8 different S-boxes in round 18 respectively. As the number
of non-zero bits among the 8 output bits is at most 6, the maximum number of active S-boxes
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for round 18 is 6 and the minimum number of active S-boxes for round 18 is 2. We denote the
number of active S-boxes in round 18 as Na (2 ≤ Na ≤ 6), the output difference for the j-th

S-box in round i as Yi,j , the filter probability with Na active S-boxes in round 18 as p
(a)
f . We

present the filter probability for different values of Na in Table 3. The filter probability for the
ciphertext pairs β according to active S-boxes can be computed with the sum of column 3 in
Table 3, and we get β = 2−12.55.

Table 3. Filter probability for the structure attack on 18-round PRESENT.

Na (Y17,2, Y17,10) p
(a)
f

2 {(1, 1), (1, 4), (4, 1), (4, 4)} 2−24 · ( 7
16

)2 · 4 = 2−24.83

3 {(1, 9), (1, 10), (1, 12), (4, 9),
(4, 10), (4, 12), (9, 1), (9, 4), 2−20 · ( 7

16
)3 · 12 = 2−19.99

(10, 1), (10, 4), (12, 1), (12, 4))}
4 {(9, 9), (9, 10), (9, 12), (10, 9),

(10, 10), (10, 12), (12, 9), (12, 10), 2−16 · ( 7
16

)4 · 17 = 2−16.68

(12, 12), (1, 11), (1, 13), (4, 11),
(4, 13), (11, 1), (11, 4), (13, 1), (13, 4)}

5 {(9, 11), (9, 13), (10, 11), (10, 13),
(12, 11), (12, 13), (11, 9), (11, 10), 2−12 · ( 7

16
)5 · 12 = 2−14.38

(11, 12), (13, 9), (13, 10), (13, 12)}
6 {(11, 11), (11, 13), (13, 11), (13, 13)} 2−8 · ( 7

16
)6 · 4 = 2−13.16

We now describe in detail the attack procedure of Sect. 3 for 18-round PRESENT-80. We

have |∆0| = 36,
∑|∆0|

i=1 pi = 2−57.97, Nst = 24, Np = 40, Nc = 32, β = 2−12.55, pf = 2−44.55,
nk = 40 and l = 236.

We denote Ta, Tb, Tc, Td and T3 as the time complexity in step (a), (b), (c) (d) and 3,
respectively, which are as follows:

Ta : 264 memory accesses;
Tb : 272 memory accesses;
Tc : 36 · 232 memory accesses;
Td : 36 · 231 · 2−12.55 · 240 · (12 + 1

8) · 2 = 265.20 1-round encryptions.
T3 : 236 · 240 = 276 18-round encryptions.

Therefore, the total time complexity will be 276 18-round encryptions. The data complexity
is 264 chosen plaintexts and the memory requirements are 240 128-bit cells for the hash table,
which can be reused for the 240 counters. The success probability is 85.95%.

The ratio of weak key satisfying the sum of the probabilities of the 36 differentials is computed
as follows:

rw = 1−
µ−1∑
x=0

Poisson

x, 2n−1 Nd∑
j=1

pi

 = 1−
25.03−1∑
x=0

Poisson
(
x, 263 · 2−57.97

)
= 0.57.

This means that the number of weak keys for which our attack can succeed is 280 · 0.57 = 279.19

for PRESENT-80. A comparison with the attack of [6] can be found in Table 1.

5 Attack on Reduced-Round Serpent

Serpent was one of the five AES candidates in the final round; it is an SPN block cipher with
32 rounds [1]. Fig. 2 depicts Serpent reduced to 8 rounds, from round 4 to 11.
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Fig. 2. The block cipher Serpent reduced to 8 rounds.

In the previous differential cryptanalysis of Serpent in [3], Biham et al. used the structure
attack for Serpent. They identify a differential characteristic for 1

2 + 5 rounds staring from the
linear transformation with fewer active S-boxes (13 active S-boxes) in the first half round, then
extend it backwards to 6 rounds. Moreover, there is only one differential characteristic in each
differential due to the strong avalanche characteristics of Serpent. Biham et al. claim that 214

differential characteristics with probability 2−93 have been found. However, it can be shown that
there are only 213 differential characteristics with probability 2−93. The proof has been omitted
due to space constraints.

For the differential characteristics, the output difference of S-boxes in the first round is
{0906b010x||00000080x||13000226x||06040030x}. As the first round uses S4 S-boxes, the partial
differential distribution table for S4 is listed in Table 4. We will use all the possible non-zero
input differences according to the output differences for the S-boxes in the first round. So we

have |∆0| = 235.32 and
∑|∆0|

i=1 pi = 2−65 which is equal to the probability of the differential
characteristic from round 2 to round 6.

Table 4. Partial differential distribution table for S4

out \in 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

1x 0 0 0 2 0 2 0 0 0 2 0 4 2 2 2 0
2x 0 0 0 2 0 0 0 2 0 4 2 0 0 4 2 0
3x 0 0 2 0 4 2 2 2 2 0 0 0 0 0 2 0
4x 0 0 0 2 0 0 4 2 0 2 0 0 0 2 0 4
6x 0 0 4 0 0 0 0 0 0 2 2 0 0 2 2 4
8x 0 0 0 2 0 2 2 2 0 0 2 0 2 0 2 2
9x 0 0 2 2 0 2 2 0 2 2 0 0 0 2 2 0
Bx 0 2 0 2 4 0 0 0 2 0 2 4 0 0 0 0

We now apply the structure attack described in Sect. 3. We construct 219 structures of 252

chosen plaintexts each. In each structure, all the inputs to non-active S-boxes in the first round
are fixed to some random value, while the 52 bits of input to all the active S-boxes take all the
252 possible values. There are 219 · 251 = 270 pairs for each differential characteristic. We expect
that about 270 · 2−65 = 25 pairs produce the output difference ∆6. In order to reduce the time
complexity and ensure a higher success probability, 52 bits subkey are guessed after the data
collection process. After retrieving 52 bits of the subkey, we can use the right pairs to recover
the remaining 24 bits of the subkey.

The success probability PS can be computed with Equation (1). Here N = 271, |∆0| = 235.32,
p∗ = 2−65 · 2−35.32 · 252 = 2−48.32, Ns = 270 · 235.32 · 2−52 = 253.32, p = 2−52, nk = 52, l = 2,
β = 2−26.22, hence we get PS = 89.87%.

The time complexity is 227.10 · 252 · 13/32 = 277.81 one-round encryptions which is equivalent
to 274.99 7-round encryptions, the data complexity is 271 chosen plaintexts and the memory
requirements are 252 hash cells of 256 bits and 252 32-bit counters storing 25 pairs each, hence
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using about 257 256-bit words. This attack consequently applies to Serpent with all key sizes of
128,192 and 256 bits.

The attack can be further extended to 8-round Serpent-256. By exhaustively searching the
128-bit subkey in the last round to decrypt to round 7, the above attack for 7 rounds can be
applied. The time complexity is 2203.81 8-round encryptions, the data complexity is 271 chosen
plaintexts and the memory requirements are the same as for the 7-round attack. This attack
therefore applies only to Serpent with a 256-bit key.

In comparison, the previous differential attack for 7-round Serpent described in [3] has a
time complexity of 285 memory accesses and a data complexity of 284 chosen plaintexts. For the
previous differential attack on 8-round Serpent, the time complexity is 2213 memory accesses
and the data complexity is 284 chosen plaintexts. This implies that our attacks require much less
chosen plaintexts. Under the assumption that in this case, a seven-round encryption is roughly
equivalent to 243/2 · 7/32 = 24.7 memory accesses [15], our attacks also slightly reduce the time
complexity.

It is possible to further reduce the data requirements at the expense of the time complexity.
We have identified another set of differentials for 5.5 rounds which have 16 instead of 13 active
S-boxes in the first round (the sequence of active S-Boxes is 16–10–6–2–1–5, and there are 241.49

input differences). The combined probability of these differentials is 2−62.85, leading to a total
time complexity greater than the previously described attack.

The ratio of weak keys satisfying the probability of the multiple differentials is computed as
follows:

rw = 1−
µ−1∑
x=0

Poisson

x, 2n−1 Nd∑
j=1

pi

 = 1−
25−1∑
x=0

Poisson
(
x, 270 · 2−65

)
= 0.52.

This means that this attack is expected to work with about half of all possible keys, inde-
pendent of the key size.

6 Conclusion

Modern block ciphers are designed to withstand differential cryptanalysis, as it is one of the
most important cryptanalytic methods. Usually, the resistance to this attack is evaluated based
on bounding the probabilities of differential characteristics; sometimes this is extended to the
case of differentials. However, bounding the probability of a single differential path or a single
differential is not sufficient to demonstrate resistance to differential cryptanalysis. The case of
multiple differentials has to be considered as well. In this paper, we give a general model for
the structure attack, providing guidance on how to choose the set of differentials to minimize
the time complexity. As concrete applications of our model, we present structure attacks on
18-round PRESENT and improve the previous differential cryptanalytic results for the Serpent
block cipher. To the best of our knowledge, those attacks are the best known differential attacks
on these two block ciphers.

Comparing our model for structure attacks against the general model for multiple differential
cryptanalysis proposed in [4], we conclude that the limitation for the set of input differences
imposed by the model of [4] excludes many valuable differentials. We show that in structure
attacks, a very important – and often particularly efficient – subclass of multiple differential
attacks, this restriction can be relaxed. In our model presented in Sect. 3, the analysis of an
attack can be carried out without this assumption.

The relevance of the limitation imposed by the condition of Definition 1 is additionally
supported by our concrete application of the structure attack to PRESENT, which is more
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efficient than the multiple differential cryptanalysis with different output differences described
in [4] and [6] where this condition was necessary. By removing this limitation, we have identified
new sets of differentials that improve on the previous analysis.

It remains an interesting open question to find a block cipher other than PRESENT for which
multiple differential cryptanalysis with multiple output differences produces superior results to
the structure attack.

Furthermore, our attack model can be used as a guidance to improve differential attacks for
other algorithms. Applying it to other block ciphers than PRESENT or Serpent will be subject
of future work.
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A Proof of Theorem 3

Proof. The output differences for the two active S-boxes are (Gr,1, Nr,1, Vr,1) and (Gr,2, Nr,2, Vr,2).
First, we will prove the case for two active S-boxes in the same group in round r. We have
Gr,1 = Gr,2 and Nr,1 6= Nr,2.

1. Vr,1 ∈ {1, 2, 4, 8}: If Vr,2 ∈ {1, 2, 4, 8}, we denote their two non-zero bits as

{(Gr,1, Nr,1, Br,1), (Gr,1, Nr,2, Br,2)}.

We have

{(Gr,1, Nr,1, Br,1), (Gr,1, Nr,2, Br,2)} P→ {(Br,1, Gr,1, Nr,1), (Br,2, Gr,1, Nr,2)} S→
{(Br,1, Gr,1, Nr+1,1), (Br,1, Gr,1, Nr+1,2), (Br,2, Gr,1, Nr+1,3), (Br,2, Gr,1, Nr+1,4)}
P→ {(Nr+1,1, Br,1, Gr,1), (Nr+1,2, Br,1, Gr,1), (Nr+1,3, Br,2, Gr,1), (Nr+1,4, Br,2, Gr,1, )}.

As there are two active S-boxes in round r+1, we have Br,1 6= Br,2. Because bitNr+1,1 and bit
Nr+1,2 are from the same S-box, we haveNr+1,1 6= Nr+1,2. Similarly, we haveNr+1,3 6= Nr+1,4.
There will be four active S-boxes in the (r+2)-nd round. If Vr,2 ∈ {3, 5, 6, 9, 10, 12}, we denote
the three non-zero bits as

{(Gr,1, Nr,1, Br,1), (Gr,1, Nr,2, Br,2), (Gr,1, Nr,2, Br,3)}.

We have

{(Gr,1, Nr,1, Br,1), (Gr,1, Nr,2, Br,2), (Gr,1, Nr,2, Br,3)}
P→ {(Br,1, Gr,1, Nr,1), (Br,2, Gr,1, Nr,2), (Br,3, Gr,1, Nr,2)|Br,1 = Br,2 6= Br,3}
S→ {(Br,1, Gr,1, Nr+1,1), (Br,3, Gr,1, Nr+1,2), (Br,3, Gr,1, Nr+1,3)|Nr+1,2 6= Nr+1,3}
P→ {(Nr+1,1, Br,1, Gr,1), (Nr+1,2, Br,3, Gr,1), (Nr+1,3, Br,3, Gr,1)}.

There will be three active S-boxes in round r + 2.
2. Vr,1 ∈ {7, 11, 13, 14, 15} or Vr,2 ∈ {7, 11, 13, 14, 15}: There will be at least three active S-boxes

in round r + 1.
3. Vr,1, Vr,2 ∈ {3, 5, 6, 9, 10, 12}: We denote the four non-zero bits as
{(Gr,1, Nr,1, Br,1), (Gr,1, Nr,1, Br,2), (Gr,1, Nr,2, Br,3), (Gr,1, Nr,2, Br,4)}.
We have

{(Gr,1, Nr,1, Br,1), (Gr,1, Nr,1, Br,2), (Gr,1, Nr,2, Br,3), (Gr,1, Nr,2, Br,4)}
P→ {(Br,1, Gr,1, Nr,1, )(Br,2, Gr,1, Nr,1), (Br,3, Gr,1, Nr,2), (Br,4, Gr,1, Nr,2)}.

Only if Br,1 = Br,3 and Br,2 = Br,4, there will be 2 active S-boxes in round r+ 1, so we have
Vr,1 = Vr,2. For Br,1 6= Br,2, the two active S-boxes in round r+ 1 will be in different groups.

Next, we will prove the case for two active S-boxes in different groups in round r. We have
Gr,1 6= Gr,2.

1. Vr,1 ∈ {7, 11, 13, 14, 15} or Vr,2 ∈ {7, 11, 13, 14, 15}: There will be at least three active S-boxes
in round r + 1.

2. Vr,1 ∈ {3, 5, 6, 9, 10, 12}: There are at least three non-zero bits, namely
(Gr,1, Nr,1, Br,1), (Gr,1, Nr,1, Br,2) and (Gr,2, Nr,2, Br,3).
We have

{(Gr,1, Nr,1, Br,1), (Gr,1, Nr,1, Br,2), (Gr,2, Nr,2, Br,3)}
P→ {(Br,1, Gr,1, Nr,1), (Br,2, Gr,1, Nr,1), (Br,3, Gr,2, Nr,2)}.

For Br,1 6= Br,2 and Gr,1 6= Gr,2, there are three active S-boxes in round r + 1.

16



3. Vr,1 ∈ {1, 2, 4, 8}: From the above proof, we have Vr,2 ∈ {1, 2, 4, 8}. There are two non-zero
bits {(Gr,1, Nr,1, Br,1), (Gr,2, Nr,2, Br,2)}. We have

{(Gr,1, Nr,1, Br,1), (Gr,2, Nr,2, Br,2)}
P→ {(Br,1, Gr,1, Nr,1), (Br,2, Gr,2, Nr,2)}

S→ {(Br,1, Gr,1, Nr+1,1), (Br,1, Gr,1, Nr+1,2), (Br,2, Gr,2, Nr+1,3), (Br,2, Gr,2, Nr+1,4)}
P→ {(Nr+1,1, Br,1, Gr,1), (Nr+1,2, Br,1, Gr,1), (Nr+1,3, Br,2, Gr,2), (Nr+1,4, Br,2, Gr,2)}.

In order to ensure that there are two active S-boxes in round r + 2, Nr+1,1 = Nr+1,3,
Nr+1,2 = Nr+1,4 and Br,1 = Br,2. So we have Vr,1 = Vr,2 and the two active S-boxes in round
r + 1 are in the same group.

ut
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Table 5. Differentials for 16-round PRESENT with output difference 00000500x||00000500x

i ∆i
0 logpi2 i ∆i

0 logpi2
1 000f0000x||0000000fx -62.13 47 000f0000x||00000f00x -63.79

2 00070000x||00000007x -62.57 48 0f000000x||0000000fx -63.79

3 0f000000x||00000f00x -62.79 49 0f000000x||00000d00x -63.79

4 000f0000x||00000007x -62.84 50 0f000000x||00000b00x -63.79

5 00070000x||0000000fx -62.84 51 0f000000x||00000300x -63.79

6 000d0000x||0000000dx -62.88 52 0f000000x||00000500x -63.79

7 00f00000x||000000f0x -62.95 53 03000000x||00000f00x -63.79

8 00090000x||00000009x -63.10 54 05000000x||00000f00x -63.79

9 000f0000x||00000003x -63.13 55 0d000000x||00000f00x -63.79

10 000f0000x||00000005x -63.13 56 0b000000x||00000f00x -63.79

11 000f0000x||0000000bx -63.13 57 00070000x||00000003x -63.84

12 000f0000x||0000000dx -63.13 58 00070000x||00000005x -63.84

13 00030000x||0000000fx -63.13 59 00030000x||00000007x -63.84

14 00050000x||0000000fx -63.13 60 00050000x||00000007x -63.84

15 000b0000x||0000000fx -63.13 61 f0000000x||00000007x -63.84

16 000d0000x||0000000fx -63.13 62 70000000x||0000000fx -63.84

17 f0000000x||0000000fx -63.13 63 000f0000x||00007000x -63.84

18 000f0000x||0000f000x -63.13 64 00070000x||0000f000x -63.84

19 000d0000x||00000007x -63.19 65 0d000000x||00000700x -63.85

20 00070000x||0000000dx -63.19 66 07000000x||00000d00x -63.85

21 0f000000x||000000f0x -63.21 67 00000f00x||00000f00x -63.87

22 00f00000x||00000f00x -63.21 68 00000000x||0f000f00x -63.87

23 00000000x||000f000fx -63.21 69 d0000000x||0000000dx -63.88

24 0000000fx||0000000fx -63.21 70 000d0000x||0000d000x -63.88

25 07000000x||00000700x -63.23 71 00000000x||000f0007x -63.91

26 00700000x||00000070x -63.39 72 00000000x||0007000fx -63.91

27 000b0000x||0000000bx -63.44 73 0000000fx||00000007x -63.91

28 000f0000x||00000009x -63.50 74 00000007x||0000000fx -63.91

29 00090000x||0000000fx -63.50 75 00900000x||00000090x -63.92

30 0f000000x||00000700x -63.50 76 0f000000x||00000070x -63.92

31 07000000x||00000f00x -63.50 77 07000000x||000000f0x -63.92

32 000b0000x||00000007x -63.52 78 00f00000x||00000700x -63.92

33 00070000x||0000000bx -63.52 79 00700000x||00000f00x -63.92

34 0d000000x||00000d00x -63.54 80 00f00000x||00000030x -63.95

35 70000000x||00000007x -63.57 81 00f00000x||00000050x -63.95

36 00070000x||00007000x -63.57 82 00f00000x||000000b0x -63.95

37 000d0000x||00000009x -63.58 83 00f00000x||000000d0x -63.95

38 00090000x||0000000dx -63.58 84 00300000x||000000f0x -63.95

39 00000000x||00070007x -63.64 85 00500000x||000000f0x -63.95

40 00000007x||00000007x -63.64 86 00b00000x||000000f0x -63.95

41 07000000x||00000070x -63.65 87 00d00000x||000000f0x -63.95

42 00700000x||00000700x -63.65 88 0d000000x||000000d0x -63.95

43 00700000x||000000f0x -63.66 89 00d00000x||00000d00x -63.95

44 00f00000x||00000070x -63.66 90 00000000x||000d000dx -63.95

45 00d00000x||000000d0x -63.70 91 0000000dx||0000000dx -63.95

46 09000000x||00000900x -63.76
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Table 6. Differentials for 16-round PRESENT with output difference 00000900x||00000900x

i ∆i
0 logpi2 i ∆i

0 logpi2
1 000f0000x||0000000fx -62.98 10 000f0000x||00000005x -63.98

2 00070000x||00000007x -63.42 11 000f0000x||0000000bx -63.98

3 0f000000x||00000f00x -63.68 12 000f0000x||0000000dx -63.98

4 000f0000x||00000007x -63.69 13 00030000x||0000000fx -63.98

5 00070000x||0000000fx -63.69 14 00050000x||0000000fx -63.98

6 000d0000x||0000000dx -63.72 15 000b0000x||0000000fx -63.98

7 00f00000x||000000f0x -63.92 16 000d0000x||0000000fx -63.98

8 00090000x||00000009x -63.94 17 f0000000x||0000000fx -63.98

9 000f0000x||00000003x -63.98 18 000f0000x||0000f000x -63.98

Table 7. Other differentials for 16-round PRESENT

i ∆i
0 ∆16 logpi2

1 00000000x||00001001x 00000404x||00000000x -62.96
2 00001001x||00000000x 00000404x||00000000x -63.62
3 00000000x||00004004x 00000404x||00000000x -63.66
4 00000000x||10010000x 00000404x||00000000x -63.78
5 00000000x||0000c004x 00000404x||00000000x -63.87
6 00000000x||0000400cx 00000404x||00000000x -63.87
7 00000000x||0000c00cx 00000404x||00000000x -63.87
8 00000000x||00002002x 00000404x||00000000x -63.88
9 00000000x||00001008x 00000404x||00000000x -63.96
10 00000000x||0000100ex 00000404x||00000000x -63.96
11 00000000x||00008001x 00000404x||00000000x -63.96
12 00000000x||0000e001x 00000404x||00000000x -63.96

1 000f0000x||0000000fx 05000000x||00000500x -63.00
2 00070000x||00000007x 05000000x||00000500x -63.43
3 0f000000x||00000f00x 05000000x||00000500x -63.66
4 000f0000x||00000007x 05000000x||00000500x -63.69
5 00070000x||0000000fx 05000000x||00000500x -63.69
6 00f00000x||000000f0x 05000000x||00000500x -63.82
7 000d0000x||0000000dx 05000000x||00000500x -63.80

1 000f0000x||0000000fx 00000000x||05000500x -63.33
2 00070000x||00000007x 00000000x||05000500x -63.75
3 0f000000x||00000f00x 00000000x||05000500x -63.99

1 000f0000x||0000000fx 00000300x||00000300x -63.29
2 00070000x||00000007x 00000000x||05000500x -63.73

1 000f0000x||0000000fx 00000005x||00000005x -63.51
2 00070000x||00000007x 00000005x||00000005x -63.95

1 00000000x||00001001x 00004004x||00000000x -63.81

1 000f0000x||0000000fx 00005000x||00005000x -63.67

1 000f0000x||0000000fx 00000050x||00000050x -63.67

1 000f0000x||0000000fx 09000000x||00000900x -63.84

Table 8. Number of differential paths with different probability for differentials in Table 5 (first part)

i 2−71 2−73 2−75 2−77 2−79 2−81 2−83 2−85 2−87 2−89 2−91

9,10,11,12,13,14,15,16,17,18 12 160 986 3744 9654 17440 21988 18536 9280 1920 0

19,20 12 157 952 3567 9092 16264 20348 17068 8520 1760 0

32,33 9 123 769 2913 7350 12692 14780 10980 4600 800 0

35,36 9 117 707 2669 7056 13858 20936 24568 21248 11520 2560

37,38 6 89 628 2795 8562 18504 27976 28004 16200 3680 0

47,48 8 104 628 2348 5976 10676 13340 11160 5568 1152 0

49,50,51,52,53,54,55,56 4 64 486 2336 7838 19064 33976 43600 38368 20736 4608

57,58,59,60,61,62,63,64 9 114 655 2258 5092 7600 7180 3800 800 0 0

65,66 4 63 472 2243 7448 17942 31704 40376 35344 19040 4224

69,70 3 55 457 2295 7744 18318 30608 35268 26256 11040 1920

80,81,82,83,84,85,86,87 4 60 438 2066 6886 16766 30064 38908 34584 18880 4224
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Table 9. Number of differential paths with different probability for differentials in Table 5 (second part)

i 2−70 2−72 2−74 2−76 2−78 2−80 2−82 2−84 2−86 2−88 2−90 2−92

1 12 160 986 3744 9654 17440 21988 18536 9280 1920 0 0

2 9 117 707 2669 7056 13858 20936 24568 21248 11520 2560 0

3 4 64 486 2336 7838 19064 33976 43600 38368 20736 4608 0

4,5 9 114 655 2258 5092 7600 7180 3800 800 0 0 0

6 3 55 457 2295 7744 18318 30608 35256 26256 11040 1920 0

7 4 60 438 2066 6886 16766 30064 38908 34584 18880 4224 0

8 3 49 383 1897 6526 16098 28564 35504 28928 13440 2560 0

21,22 4 56 382 1708 5490 13088 23300 30260 27208 15168 3456 0

23,24 0 48 472 2112 5724 10404 13104 11336 6400 1920 0 0

25 3 47 351 1673 5650 14212 27472 41472 48928 43520 25600 6144

26 3 44 316 1480 4971 12516 24286 36824 43656 39168 23296 5632

27 0 21 274 1641 6002 14746 25040 29168 22336 10080 1920 0

28,29,30,31 3 46 331 1486 4562 9840 14808 14736 8480 1920 0 0

34 1 21 205 1243 5222 15940 35960 59616 70464 55488 24960 4608

39,40 0 36 342 1496 4090 8128 12572 14936 12928 7680 2560 0

41,42 3 41 275 1223 3976 9836 18950 28680 34008 30720 18688 4608

43,44 3 43 297 1309 4000 8664 13168 13268 7720 1760 0 0

45 1 20 188 1112 4609 14004 31658 52832 63048 50160 22752 4224

46 1 19 175 1037 4364 13596 31832 55600 70336 60416 30208 6144

67,68 0 16 200 1184 4420 11276 20280 26080 23392 13824 4608 0

71,72,73,74 0 36 330 1330 3072 4480 4280 2600 800 0 0 0

75 1 18 160 928 3857 11954 28014 49196 62800 54528 27520 5632

76,77,78,79 3 40 257 1070 3152 6706 10188 10412 6200 1440 0 0

88,89 1 19 169 949 3768 11100 24650 40920 49128 39696 18336 3456

90,91 0 12 178 1160 4430 10944 18260 20952 16416 8160 1920 0
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(s0, s1): the nibble positions for the two active S-boxes.
(v0, v1): the difference values for the two active S-boxes.
cnt[i][j]: the entity with input difference i and output difference j in differential distri-
bution table of S-box.
xor: a list of structures and each structure is a triple.
xor[i][0] : the information of the first active S-box in round i+ 1.
xor[i][1] : the information of the second active S-box in round i+ 1.
xor[i][j].sbox: the nibble position of the active S-box.
xor[i][j].in: the input difference of the active S-box.
xor[i][j].out: the output difference of the active S-box.
Procedure(s0,s1,v0,v1):

struct {
sbox
in
out

}xor[ROUND][2] = 0

if s0
4

= s1
4

: #(same group)
for xor[0][0].out ∈ (3, 5, 6, 9, 10, 12):
xor[0][1].out = xor[0][0].out
if cnt[v0][xor[0][0].out]! = 0 and cnt[v1][xor[0][1].out]! = 0:

(xor[1][0].sbox, xor[1][1].sbox, xor[1][0].in, xor[1][1].in) =
P (s0, s1, xor[0][0].out, xor[0][1].out)
for xor[1][0].out ∈ (1, 2, 4, 8):

if cnt[xor[1][0].in][xor[1][0].out]! = 0:
xor[1][1].out = xor[1][0].out
(xor[2][0].sbox, xor[2][1].sbox, xor[2][0].in, xor[2][1].in) =
P (xor[1][0].sbox, xor[1][1].sbox, xor[1][0].out, xor[1][1].out)
...
Compute probability and display differential path.

else #(different groups)
for xor[0][0].out ∈ (1, 2, 4, 8):
xor[0][1].out = xor[0][0].out
if cnt[v0][xor[0][0].out]! = 0 and cnt[v1][xor[0][1].out]! = 0:

(xor[1][0].sbox, xor[1][1].sbox, xor[1][0].in, xor[1][1].in) =
P (s0, s1, xor[0][0].out, xor[0][1].out)
for xor[1][0].out ∈ (3, 5, 6, 9, 10, 12):

if cnt[xor[1][0].in][xor[1][0].out]! = 0:
xor[1][1].out = xor[1][0].out
(xor[2][0].sbox, xor[2][1].sbox, xor[2][0].in, xor[2][1].in) =
P (xor[1][0].sbox, xor[1][1].sbox, xor[1][0].out, xor[1][1].out)
...
Compute probability and display differential path.

Fig. 3. Search algorithm for the differential paths of PRESENT with two active S-boxes per round.
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