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Where it all began
- for me

The Goldwasser-Micali-Rivest Signature Scheme in 1987

First scheme with security reducible to factoring. 

Main technical tool: claw-free pairs of trapdoor 
permutations

(f0, f1) such that f0, f1: XX
Both functions easy to compute but hard to find
x,y such that f0(x)= f1(y)

Can build such permutations based on hardness of 
factoring (details later). If you know the factors,         
you can invert both permutations

x y



A main idea in the GMR scheme – the basic 
”authentication step”

Suppose we already know that value z was produced by the 
signer = the guy who can invert the permutations.

To demonstrate that bit string b1, b2,…, bt also was produced 
by the signer, he will give you w, such that

w z
fb1 fb2 fb3 fbt

w acts as “authentication tag” for b1,…,bt.

If you can forge a tag for a different string b’1,…,b’t but same z,
then you can create a claw: the new chain of values must “link into” 
to the old one somewhere..



My observation

This is can also be seen as a hash function!

Choose a fixed w as initial value, input is b1,…,bt, hash value is z

Finding a collision means you find a claw
- immediate if input length is fixed
- in general case, only problem is if one message is a suffix of 
another. Can use suffix-free encoding to avoid this.

Using GMR’s factoring based construction, much faster to hash than 
to invert permutations – modular squaring versus full-scale 
exponentiation.
In general, no need for trapdoor to do the hash

w z
fb1 fb2 fb3 fbt



[Damgård, Eurocrypt 87]

First formal definition of collision intractable hash function 
families.
Construction based on claw-free permutations.
- concrete examples from factoring and discrete log

Theorem: 
Secure Signature Scheme + Collision Intractable hash fct.
= Secure Secure signature Scheme  or
Hash-then-sign works if signature scheme and hash are both 
good.

Application to GMR: hash based on claw-free perm + GMR
is secure if factoring is hard, and much faster than GMR.



A More General Design Principle       
[Damgård,Crypto 89]

Observation: the claw-free permutation based construction is 
based on the fact that the mapping

h: X × {0,1}  X , where h(x,b) = fb(x)

is collision-intractable and compresses its input

We should be able to use any function with these properties as 
basis for hash functions.

Construction: given h:{0,1}m{0,1}n for m > n

Split message in m-n bit blocks (m-n-1 in some variants),

Pad last block with 0’s and append block containing pad-info

Use fixed initial value, iterate h, hash output is last h-value.



Merkle-Damgård

My paper also contained some efficient constructions of the 
compression function f  - all dead today 

Meanwhile, Brassard, program chair of Crypto 89, found out that 
Merkle some years before independently had a very similar – but 
unpublished – construction.

Brassard had Merkle write up his construction, and the papers were 
presented back to back.

Soon became known as the Merkle-Damgård 
construction/strenghtening. The name seems to have been first 
used by Rivest in a presentation on MD4. Or was it Lai and Massey?



Later work on the MD construction 

An MD-based hash function with n-bit output has n/2 bit security 
if compression function is good.

Of course, cannot expect more from an n-bit output function. 

 If adversary has 2n/2 time or more, all bets are off.

Still, a line of research investigates just how bad it goes in this 
case.

Not without motivation, but no need to be surprised that things go 
wrong!



New ”modes of use”

The MD construction can be seen as a mode of use for the 
underlying compression function.

A mode that preserves collision intractability.

Lots of other properties might be good:

- Pseudorandom function preserving

- Pseudorandom Oracle preserving

Especially given how people use hash functions (SSL etc.).

Ex. [Bellare and Ristenpart06] the EMD transform. Preserves all 
three properties. Essentially same efficiency as MD for long 
messages. 



Some Recent Work – or: 

Claw-free functions strike back, The DAKOTA hash 
function [Damgård, Knudsen, Thomsen, ACNS08]

Recall one of the old constructions of claw-free permutations:

RSA modulus n, 2 random squares mod n, a0, a1.

f0(x) = a0 x2 mod n, f1(x) = a1 x2 mod n

Permute the set of squares mod n if n=pq with p,q =3 mod 4.

Finding x, y with f0(x)= f1(y) means you can find square root of 

a0 a1
-1 mod n    - as hard as factoring n.

When using this for hashing: 

Start with some initial state value (a square)

Repeat: read next bit b of input, apply fb to current state.

Until message exhausted



Optimizing Construction

RSA modulus n, 4 random squares mod n, a00, a01,a10,a11

fb1b2(x) = ab1b2 x2 mod n

When using this for hashing: 

read next 2 bits b1 b2 of input,  apply fb1b2 to current state.

Generalizes,  but description quickly becomes too large.

Our idea: we can see the construction as being based on a function 

f: {0,1}2
 {a00, a01, a10, a11 }    f(b1 b2) = ab1b2

Then we make a compression function:

h: {0,1}2×Zn  Zn       h((b1 b2),x) = f(b1,b2) x2 mod n

If we could make f have bigger input domain, we could hash much 
faster. Not possible here because we specify the function ”by a 
table”. But what if we specified f by some algorithm instead?



Optimizing Construction, cnt’d

Idea: specify an algorithm for some function 

f: {0,1}t  Zn*   

Then we make a compression function:

h: {0,1}t ×Zn*  Zn*       h(y,x) = f(y) x2 mod n

Problem: seems f would have to always output squares. Not known 
how to do that unless factorization known, or we square something. 
Neither option works. 

So twist construction so compression fct. becomes:

h: {0,1}t ×Zn*  Zn*       h(y,x) = (f(y) x)2 mod n

Now OK, if f just maps into Zn*



The Result 

Hash function based on 

f: {0,1}t  Zn*   

And compression function:

h: {0,1}t ×Zn*  Zn*       h(y,x) = (f(y) x)2 mod n

+ MD mode is collision intractable if: 

Given f,n hard to find

x,y,z such that f(x)/f(y) = ± z2 mod n

Necessary that f is collision intractable and 1-way 

BUT f does not have to compress!

So 1-way and injective is good enough



A suggestion for f 

Assumption: given f,n hard to find

x,y,z such that f(x)/f(y) = ± z2 mod n

Let f(x) = AES-CBCK(x2 mod n’)

For fixed, public AES key K and RSA modulus n’ < n.

Fix domain for x such that 0< x < n’/2.

Then hard to find collision for f, and f is hard to invert.

Infeasible to start from 2 values and find the third to fit.

Get all three at the same time?

Hopefully hard because AES does not mix well with arithmetic mod 
n and n’.

Speed: on 64-bit machines, about 5 times faster than VSH, about 8 
times slower than AES-256.



The future: new use cases for hash functions 
– an example: Isolated proofs of Knowledge

The prover The Verifier

The prover claims to know a piece of information w    

But in fact…

Some third party knows w and the prover is just relaying messages!

ww



Avoiding the problem: limit the bandwith of 
the Prover’s communication to third parties

The prover The Verifier

Now the prover cannot just relay all messages. Can we design protocol 
such that the prover must know w to succeed?   

[Damgård, Nielsen, Wichs EuroCrypt2008] Yes, and one solution 
follows if hash functions with certain properties exist..

w



Towards a Solution: A bit commitment scheme 
based on hashing 

The prover The Verifier

b

Bit commitment scheme based on hash function H

Commit to bit b by sending  H(b, randomness)  to the verifier.
Open: reveal b and randomness – the verifier checks.
Binding: after commitment prover cannot change her mind (because H is 
collision intractable)
Hiding: Verifier cannot guess b before opening (because H compresses its 
input)

H(b,r,rand)

b, rand



Solution: A bit commitment scheme with 
special properties is enough

The prover The Verifier

b

The verifier sends a looong bit string r to the prover – so long that she 
cannot send full info on r to Snoopy.

Commit to bit b by sending  H(b, r, randomness)  to the verifier.
Open: reveal b and randomness – the verifier checks.
The special property: if the commitment can be opened, then the prover 
(and not Snoopy) must have known b already at commitment time.

r

H(b,r,rand)

b, rand



Does this work?

The prover The Verifier

b

If H is a random oracle, then yes! 

If the commitment can be opened, someone must have called the oracle 
with r as part of the input.
And (except with negligible probability) it was not Snoopy..
.. so the prover must have made the call and therefore knows b!

r

H(b,r,rand)

b, rand



But we don’t really need a random oracle..

The prover The Verifier

b

What we really need is that H satisfies an extra assumption: 

If Snoopy has input b and the prover has r, then any protocol that outputs
H(b,r,rand) to the prover for some value of rand, without revealing b to 
the prover, must require more communication that the prover can do.

Open question: do hash functions with this property exist??

r

H(b,r,rand)

b, rand



The End…

We have come a long way since the claw-free permutations of the 80-ties.

Simple collision intractability only is not enough these days..

Many new and interesting use cases for hash functions.

New designs and ideas wanted! 


