What Price a Provably Secure Cipher?

Ming-Shing Chen
Department of Electrical Engineering
National Taiwan University
Taipei, Taiwan
ccheng@cc.ee.ntu.edu.tw

February 9, 2010

Acknowledgement

- This is a joint work with
- Tien-Ren Chen
- Chen-Mou Cheng
- Chun-Hung Hsiao
- Ruben Niederhagen
- Dr. Bo-Yin Yang, Academia Sinica, Taiwan

The Provably-secure $\operatorname{QUAD}(q, n, r)$ Stream Cipher

- Proposed by Berbain, Gilbert, and Patarin in Eurocrypt 2006
- P_{i} 's, Q_{j} 's: randomly chosen, public quadratic polynomials

State: n-tuple $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}$
Output: r-tuple $\left(P_{1}(\mathbf{x}), P_{2}(\mathbf{x}), \ldots, P_{r}(\mathbf{x})\right)$
Update: $\mathbf{x} \leftarrow\left(Q_{1}(\mathbf{x}), Q_{2}(\mathbf{x}), \ldots, Q_{n}(\mathbf{x})\right)$

A Graphical Depiction

Security of QUAD

- Main security theorem of QUAD
- Breaking QUAD implies the capability to solve $n+r$ random quadratic equations in n variables
- Generic $\mathcal{M Q}$ (Multivariate Quadratics) is NP-hard
- $\mathcal{M Q}(q, n, n+r)=$ solve for n variables from $n+r$ quadratic equations, all coefficients and variables in \mathbb{F}_{q}
- All known algorithms have average time complexity $2^{\text {an+o(n) }}$ for $r / n=$ constant
- Most also require exponential space

Key Observation

- The same reduction carries over to polynomials of arbitrary degrees, e.g., cubics, quartics, ..., without any modifications
- So long as linear terms are dense to keep the same distribution under random linear forms
- But polynomials with higher degrees have way too many coefficients to be practical!
- Need to use sparse polynomials
- Need a new security assumption

$\operatorname{SMP}\left(q, d, n, m,\left(\eta_{2}, \ldots, \eta_{d}\right)\right)$

- An instance \mathbf{S} in $\mathcal{S M} \mathcal{P}\left(q, d, n, m,\left(\eta_{2}, \ldots, \eta_{d}\right)\right)$, the class of sparse multivariate polynomials, comprises
- m polynomials $\left(P_{1}(\mathbf{x}), P_{2}(\mathbf{x}), \cdots, P_{m}(\mathbf{x})\right)$ in n variables $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Each P_{i} is a degree-d polynomial with exactly $\eta_{j}=\eta_{j}(n)$ nonzero degree- j terms for each $2 \leq j \leq d$
- The affine terms are random
- Obviously $\mathcal{S M P}$ contains $\mathcal{M Q}$
- Furthermore, solving $\mathcal{S M P}$ systems with reasonably many terms appears to be hard
- Ample empirical evidence to support this conjecture

SPELT, Generalization of QUAD

(1) \mathbf{P}, \mathbf{Q} drawn from $\mathcal{S M P}$
(2) Need to select good parameters, say for $q=16, n=r$

- For cubics, need $n=144$ at least
- For quartics, need $n=108$ at least
- Don't need too many terms
- 10 cubic terms per equation already makes things hard

Timing on 3 GHz Intel CPU

Stream cipher	Cycles/byte	Throughput	Security
AES (Bernstein and Schwabe)	9.2	2.61 Gbps	$\leq 2^{?}$
SPELT $(16,4,32,32,(10,8,5))$	1244	19.3 Mbps	$\leq 2^{152}$
QUAD(2, 160, 160) (BBG SAC 2006)	2081	11.5 Mbps	$\leq 2^{140}$
SPELT $(16,4,108,108,(20,15,10))$	5541	4.3 Mbps	$\geq 2^{80}$
SPELT $(2,3,208,208,(480,20))$	11744	2.0 Mbps	$\geq 2^{82}$
$\operatorname{QUAD}(2,320,320)($ BBG SAC 2006)	13646	1.8 Mbps	$\geq 2^{82}$

Latest Development

- We learned how to launch better brute-force attacks
- $O\left(2^{n}\right)$ rather than $O\left(2^{n+o(n)}\right)$
- Bad news for QUAD/SPELT because this means more variables and slower speed
- We learned how to program GPU
- Can we make QUAD/SPELT usable in practice?

Preliminary Performance Results

Stream cipher	Cycles/byte	Throughput	
		CPU	GPU
AES (BS; OBSC, FSE 2010)	9.2	2.61 Gbps	30.9 Gbps
SPELT(64, 4, 32, 32, (10, 8, 5))	1244	19.3 Mbps	
$\operatorname{QUAD}(2,160,160)($ BBG SAC 2006)	2081	11.5 Mbps	
SPELT $(16,4,108,108,(20,15,10))$	5541	4.3 Mbps	
$\operatorname{SPELT}(2,3,208,208,(480,20))$	11744	2.0 Mbps	
$\operatorname{QUAD}(2,320,320)($ BBG SAC 2006)	13646	1.8 Mbps	
$\operatorname{SPELT}(31,4,112,112,(32,16,8))$	624	36.3 Mbps	784 Mbps
$\operatorname{SPELT}(2,3,224,224,(448,20))$	3121	7.3 Mbps	826 Mbps
$\operatorname{QUAD}(2,320,320)$	3701	6.1 Mbps	2.6 Mbps

Concluding Remarks

- In the case of stream cipher, the cheapest price for provable security seems to be one or two orders of magnitude in terms of speed

Thanks for Listening!

- Questions or comments?

